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Electrodynamics of semiconductor-coated noble metal nanoshells
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The full Maxwell equations for a system of concentric shells of a noble metal and a semiconductor, with a
very sharp excitonic resonance with a bare frequency in the gap between the bare plasmonic resonant frequency
branches and having a strong oscillator strength, are solved. The plasmon-exciton coupling model is verified to
produce for this dressed plexcition a spectrum that consists of a splitting of the bare excitonic resonance into
two daughters and a shift in the plasmonic resonances from their bare values. The spectral region separating
the excitonic daughters exhibits the features characteristic of induced transparency and slow light propagation.
Furthermore, I show that the eigenvalues of this coupled system as herein are computed to significantly differ from
those obtained in the electrostatic approximation where retardation and radiation reaction terms are neglected.
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I. INTRODUCTION

The problem of plasmon-exciton coupling in different
geometric configurations has been addressed recently in
a number of publications [1–7]. Within these studies, the
feasibility of achieving induced transparency and slow light
effects in certain spectral band were examined [8–10].

The goal of identifying a system whereby induced trans-
parency and slow light has been the subject of extensive recent
research. Electromagnetically induced transparency (EIT) has
been demonstrated for media consisting of metal atoms in
the gaseous phase [11], in doped solid-state materials [12],
and on quantum-dots-based system [13]. Coupled optical
resonators as a classical equivalent to EIT were also recently
considered [14]. A system of coupled plasmon-exciton (metal-
semiconductor) is one other possible realization of the coupled
resonators scheme. The plasmon-exciton coupling observed
in this latter case is a direct consequence of imposing the
standard continuity equations for the tangential components of
the electric field and the magnetic flux density at the different
interfaces of the nanostucture.

In this paper I shall examine specifically the detailed
full electrodynamics treatment of concentric nanoshells con-
figuration [15–18], but consisting in this case of a noble
metal and an inorganic semiconductor. In this instance,
the plasmom-exciton coupling controls the dynamics of the
system. Furthermore, I shall show that analyzing this problem
within the theoretical framework of eigenvalues clarifies
the results obtained for the cross sections. The method of
eigenvalues is shown, as well, to be a convenient and direct
tool for assessing the validity and accuracy of the alternate
approximate models.

I shall consider in my analysis a configuration (see Fig. 1)
that incorporates as special cases other previously considered
cases, specifically, I shall solve for the case of multishells
concentric spherical configuration arranged as follows:

dielectric D : 0 � r � α R region D

noble metal : αR � r � βR region C

excitonic material : β R < r � R region B

dielectric A : r > R region A

*jmanassah@gmail.com

Dielectric D is introduced in the model because it is often the
case that in a number of standard techniques for preparing
spherical nanostructures, it is easiest to start with a seed
(typically a silicate), furthermore, varying the radius of the core
provides one with the ability to tune the plasmonic resonance
to a desired frequency. For simplicity I shall assume here that
dielectric D is the vacuum. Dielectric A is the medium in
which the ensemble of nanostructure objects are dispersed for
ultimate application into a device.

The semiconductor selected should be chosen such that its
exciton satisfies the following properties:

(a) A resonance frequency value in the gap separating the
two bare plasmonic branches,

(b) a very small spectral width as compared to the noble
metal plasmonic spectral line width, and

(c) a large oscillator strength.
As previously pointed out by Yanopapas and Vitanov

[19,20] CuCl is a semiconductor which satisfies all of the
above properties, if used in conjunction with silver, as the noble
metal. I shall use both materials parameters in my illustrations.

Given that the nanosphere that will be considered has
mesoscopic dimension (R ≈ 20 nm), which, while much
smaller than the typical optical wavelength, is still much larger
than the atomic scale, thus permitting the treatment of each
of the active media by classical electrodynamics, and where
the different materials in the system are represented by their
respective permittivity.

The approach followed here to solve the problem is to start
by describing the fields of the E and M modes by the standard
solutions of Maxwell equations in spherical geometry, then
impose the continuity conditions at the different interfaces
and from this set of equations obtain the scattered field. Using
the Mie results [21], one can then obtain the scattering and
extinction cross sections of the scattered field. In order to
interpret the results thus obtained for the spectral distributions,
the eigenvalues of the coupled system are obtained. The
dependence of these quantities on the geometrical parameters
and material parameters are thus obtained.

While in the plasmon hybridization model of a metallic
nanoshell, one has, in the dipole approximation, only two
modes, the H mode (higher energy mode), which is the
antisymmetrically coupled (antibonding) plasmon mode, and
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FIG. 1. The geometric configuration of the system considered.

the L mode, which is the symmetrically coupled (bonding)
plasmon mode; I show that, in the present configuration, the
leading eigenmodes of the system, in the dipole approximation,
to consist primarily of four modes, which will be referred
to as the “dressed” L mode, two close in frequency modes
referred to as the Rl and Rh modes (which are the daughter
modes of the original excitonic pole), and the “dressed” H

mode. I shall omit henceforth the designation dressed, but
these are the modes that are being discussed. Subsequently,
I compute the shifts in the plasmonics resonances from their
values in the uncoupled case, and find their values for the
L mode to be significantly different. Finally, I compute
the deviations between the real and imaginary parts of the
computed eigenvalues from their values if computed in the
approximate electrostatic approximation. The results obtained
show that the retardation and radiation reaction terms, which
are neglected in the electrostatic approximation, have non-
negligible contributions.

It should be noted that all the results given throughout this
paper are computed using only the parameters of the particular
geometrical configuration and of the constituent equations of
the bulk material as previously given. There are no adjustable
parameters added.

The paper is organized as follows: In Sec. II the constituent
equations for the metal and the semiconductors are given. In
Sec. III a review showing the details of obtaining the E and
M modes in spherical geometry is given. In Secs. IV and V
the details of obtaining the E and M scattered fields for the
different partial waves are given. In Sec. VI the lowest order
partial-wave contributions to the cross sections are computed.
Only the electric dipole mode is found to be significant.
In Sec. VII the eigenvalues of the electric dipole mode are
computed and directly related to the features observed in
Sec. VI. In Sec. VIII the results obtained for the system’s
eigenvalues, using the full Maxwell equations, are compared
with the approximate results obtained using the electrostatic
approximation. I conclude in Sec. IX.

II. THE CONSTITUENT EQUATIONS

The relative dielectric of vacuum ε(D)
r (ω) is 1, and the

immersion medium dielectric is assumed to be constant over

the spectral region of interest, I take ε(A)
r (ω) = 1.777. The

permittivity of the excitonic material is taken to be modeled
by a single pole Lorentzian [19,20]:

ε(B)
r (ω) = εex,∞ + f

γ

ω0 − ω − iγ
, (1)

and the permittivity of the noble metal is taken to be modeled
by the Drude approximation as deduced from the Johnson-
Christy data [22]:

ε(C)
r (ω) = εp,∞ − ω2

p

ω2 + i�ω
. (2)

In the figures, except when indicated otherwise, I shall use
for illustrative purposes for the values of the above parameters
those for CuCl and Ag, namely,

εex,∞ = 5.59, f = 632, h̄ω0 = 3.30216 eV,

h̄γ = 49.206 μeV, εp,∞ = 3.7,

h̄ωp = 9 eV, h̄� = 17.28 meV.

It should be noted that a more accurate expression [23] than
Eq. (2) for the permittivity of silver can be used, if desired,
without any further complication in the ensuing treatment.

III. THE ELECTROMAGNETIC MODES IN
SPHERICAL GEOMETRY

The sourceless Maxwell equations for fields varying as
exp(−iωt)are given by

�∇ ◦ �B = 0, �∇ ◦ �D = 0,

�∇ × �E − iω �B = 0,
(3)�∇ × �H + iω �D = 0,

with �H = �B/μ0 (no magnetization present) and �D = ε �E
(where ε = n2ε0, and n is the index of refraction in each of
the separate materials). The quantities ε0 and μ0 are related by
c2 = 1/(ε0μ0), where c is the speed of light in vacuum.

From the above equations, one directly obtains the wave
equations

∇2 �E + ω2n2

c2
�E = 0, ∇2B + ω2n2

c2
�E = 0.

(4)

Solutions of Eqs. (3) and (4) in spherical geometry can be
divided into two classes: the electric modes, in which Br = 0,
and in magnetic modes, in which Er = 0.

Consider first the electric modes. The magnetic flux density
and the electric field are given, for the azimuthally symmetric
solutions, by

�B = Bφ(r,θ)êφ, (5)

�E = Er (r,θ )êr + Eθ (r,θ )êθ . (6)

Noting that

�∇ × �B = 1

r sin(θ )

{
∂

∂θ
[sin(θ )Bφ]

}
êr − 1

r

∂

∂r
(rBφ)êθ (7)
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and

�∇ × �∇ × �B =
(

−1

r

[
∂2

∂r2
(rBφ)

]

− 1

r

∂

∂θ

{
1

r sin(θ )

∂

∂θ
[sin(θ )Bφ]

})
êφ. (8)

Replacing Eq. (8) in the wave equation, one obtains
[

∂2

∂r2
(rBφ)

]
+ 1

r2

∂

∂θ

{
1

sin(θ )

∂

∂θ
[r sin(θ )Bφ]

}

+ k2(rBφ) = 0. (9)

Writing the solution as

(rBφ) = rf (r)�(θ ) (10)

and noting that the second term of Eq. (9) can be written as

∂

∂θ

{
1

sin(θ )

∂

∂θ
[r sin(θ )Bφ]

}
= 1

sin(θ )

∂

∂θ

[
sin(θ )

∂

∂θ
(rBφ)

]

−
[

rBφ

sin2(θ )

]
, (11)

the form of f (r) and �(θ ) can be obtained by recalling the
differential equations for the associated Legendre polynomials
P m

l and the spherical Bessel functions zl , namely,

1

sin(θ )

d

dθ

{
sin(θ )

dP m
l [cos(θ )]

dθ

}

+
[
l (l + 1) − m2

sin2(θ )

]
P m

l [cos(θ )] = 0, (12)

d2zl(kr)

dr2
+ 2

r

dzl(kr)

dr
+

[
k2 − l(l + 1)

r2

]
zl(kr) = 0, (13)

then the expression forBE
φ,l , where the superscript E was added

to specify that it is for the electric mode, is then given by

BE
φ,l(r,θ ) = zl(kr)P m

l [cos(θ )] . (14)

The corresponding expressions for EE
r,l(r,θ ) and EE

θ,l(r,θ ) can
be obtained using the fourth Maxwell equation, expression
(7) for the curl in spherical coordinates, the spherical Bessel
functions recursion relation

d

dy
[yzl(y)] = yzl−1(y) − lzl(y), (15)

and the expression for the function Gl(s) defined as

Gl(s) = d

ds

[√
1 − s2P 1

l (s)
] = l√

1 − s2

[
sP 1

l (s) − P 1
l+1(s)

]
.

(16)

If one introduces F as the generic symbol for regions (A,
B, C, D); and the dimensionless quantities x,uF defined as
x = r/R, uF = kF R where, as pointed earlier, R is the outer
radius of the sphere and kF is the complex wave number in
medium F ; the normalized wave vector in each region is
given by uF =

√
εF (ω)ωR/c, where εF (ω) is the permittivity

of medium F , and u0 = ωR/c; then the expressions for the
azimuthal symmetric magnetic flux density and electric field

associated with the E modes are given by

�BE

l (x,θ ) = [
F

(E,1)
l jl(u

F x) + F
(E,2)
l nl(u

F x)
]
P 1

l [cos(θ )] êφ

= BE
φ,l(x)P 1

l [cos(θ )] êφ, (17)

�EE(x,θ ) = − iu0

(uF )2x

([
F

(E,l)
l jl(u

F x) + F
(E,l)
l nl(u

F x)
]

×Gl [cos(θ )] êr + {
F

(E,l)
l [(uF x)jl−1(uF x)

− ljl(u
F x)] + F

(E,2)
l [(uF x)nl−1(uF x)

− lnl(u
F x)]

}
P 1

l [cos(θ )] êθ

)
= EE

r,l(x)Gl [cos(θ )] êr + EE
θ,l(x)P 1

l [cos(θ )] êθ .

(18)

Repeating the above derivations for the M modes, one
obtains

�EM
l (x,θ ) = [

F
(M,1)
l jl(u

F x) + F
(M,2)
l nl(u

F x)
]
P 1

l [cos(θ )] êφ

= EM
φ,l(x)P 1

l [cos(θ )] êφ, (19)

�BM
l (x,θ ) = − i

u0x

([
F

(M,1)
l jl(u

F x) + F
(M,2)
l nl(u

F x)
]

×Gl [cos(θ )] êr + {
F

(M,1)
l [(uF x)jl−1(uF x)

− ljl(u
F x)] + F

(M,2)
l [(uF x)nl−1(uF x)

− lnl(u
F x)]

}
P 1

l [cos(θ )] êθ

)
= BM

r,l (x)Gl [cos(θ )] êr + BM
θ,l(x)P 1

l [cos(θ )] êθ .

(20)

Obtaining the different physical quantities associated with
the scattered field starts with determining the values of the
respective F for a given incoming field.

IV. THE E-MODES SOLUTIONS

In order to find the different values of the Fl for the
physical problem of an incoming plane wave propagating in
the z direction, one needs to use the partial-wave expansion of
exp(ikz), namely,

exp(ikz) =
∞∑
l=0

(i)l(2l + 1)jl(kr)Pl [cos(θ )] . (21)

The E-modes solutions in the different regions of the
sphere are given by adding the expression of the scattered
field obtained in Sec. III to that of the incoming field and
requiring that the tangential components of the electric field
and the magnetic flux density be continuous at each of the
interfaces. The magnetic flux density in the different regions
is given by

BE
φ,l = D

(E,1)
l jl(uDx), 0 � r � αR,

BE
φ,l = C

(E,1)
l jl(uCx) + C

(E,2)
l nl(uCx), αR < r � βR,

BE
φ,l = B

(E,1)
l jl(uBx) + B

(E,2)
l nl(uBx), βR < r � R,

BE
φ,l = jl(uAx) + AE

l h
(1)
l (uAx), r > R.

(22)

The different functional forms in the different regions of
space arise from the requirements that the solution be finite at
the origin, and that the scattered field be outgoing outside the
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nanosphere. The continuity of Bφ at x = α, x = β, and x = 1
(the materials are assumed to have no internal magnetization)
gives the equations

D
(E,1)
l jl(u

Dα) = C
(E,1)
l jl(u

Cα) + C
(E,2)
l nl(u

Cα), (23)

C
(E,1)
l jl(u

Cβ) + C
(E,2)
l nl(u

Cβ) = B
(E,1)
l jl(u

Bβ)

+B
(E,2)
l nl(u

Bβ), (24)

B
(E,1)
l jl(u

B) + B
(E,2)
l nl(u

B) = jl(u
A) + A

(E)
l h

(1)
1 (uA). (25)

The continuity of Eθ at x = α, x = β, x = 1, gives the set of
equations

D
(E,1)
l (uC)2[uDαjl−1(αuD) − ljl(αuD)]

= C
(E,1)
l (uD)2[uCαjl−1(αuC) − ljl(αuC)]

+C
(E,2)
l (uD)2[uCαnl−1(αuC) − lnl(αuC)], (26)

C
(E,1)
l (uB)2[uCβjl−1(βuC) − ljl(βuC)]

+C
(E,2)
l (uB)2[uCβnl−1(βuC) − lnl(βuC)]

= B
(E,1)
l (uC)2[uBβjl−1(βuB) − ljl(βuB)]

+B
(E,2)
l (uC)2[uBβnl−1(βuB) − lnl(βuB)], (27)

B
(E,1)
l (uA)2[uBjl−1(uB) − ljl(u

B)]

+B
(E,2)
l (uA)2[uBnl−1(uB) − lnl(u

B)]

= (uB)2[uAjl−1(uA) − ljl(u
A)]

+A
(E)
l (uB)2

[
uAh

(1)
l−1(uA) − lh

(1)
1 (uA)

]
. (28)

In Eqs. (23) and (26), h
(1)
l = jl + inl .

Equations (21)–(26) can be written in the matrix form:

[
ME

l

]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(E,1)
l

C
(E,1)
l

C
(E,2)
l

B
(E,1)
l

B
(E,2)
l

A
(E)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

jl(uA)
(uB)2jV,l(uA)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (29)

where the matrix ME
l is given by

[
ME

l

] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

jl(αuD) −jl(αuC) −nl(αuC) 0 0 0
(uC)2jV,l(αuD) −(uD)2jV,l(αuC) −(uD)2nV,l(αuC) 0 0 0

0 jl(βuC) nl(βuC) −jl(βuB) −nl(βuB) 0
0 (uB)2jV,l(βuC) (uB)2nV,l(βuC) −(uC)2jV,l(βuB) −(uC)2nV,l(βuB) 0

0 0 0 jl(uB) nl(uB) −h
(1)
l (uA)

0 0 0 (uA)2jV,l(uB) (uA)2nV,l(uB) −(uB)2h
(1)
V,l(u

A)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(30)

jV,l(w) = wjl−1(w) − ljl(w), nV,l(w) = wnl−1(w) − lnl(w), and h
(1)
V,l(w) = wh

(1)
l−1(w) − lh

(1)
l (w).

V. THE M-MODES SOLUTIONS

The solutions for the M modes can be obtained as well by using the boundary conditions for the tangential components of the
electric fields and the magnetic flux density, giving

[
MM

l

] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(M,1)
l

C
(M,1)
l

C
(M,2)
l

B
(M,1)
l

B
(M,2)
l

A
(M)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

jl(uA)
jV,l(uA)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (31)

where the matrix MM
l is given by

[
MM

l

] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

jl(αuD) −jl(αuC) −nl(αuC) 0 0 0
jV,l(αuD) −jV,l(αuC) −nV,l(αuC) 0 0 0

0 jl(βuC) nl(βuC) −jl(βuB) −nl(βuB ) 0
0 jV,l(βuC) nV,l(βuC) −jV,l(βuB) −nV,l(βuB) 0

0 0 0 jl(uB) nl(uB) −h
(1)
l (uA)

0 0 0 jV,l(uB) nV,l(uB) −h
(1)
V,l(u

A)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

and all the parameters are as previously defined.
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FIG. 2. The electric dipole contribution to the normalized scat-
tering cross section is plotted as function of the incoming frequency
in the different spectral windows. (a) The L window; (b) the Rl-Rh

window; and (c) the H window. R = 20 nm, α = 0.5, β = 0.95.

VI. THE SCATTERING AND THE EXTINCTION
CROSS SECTIONS

All the information about the scattered field is contained
in the expressions of {AE

l } and {AB
l }. Mie’s theory [21]

showed that the scattering cross section (i.e., the power
scattered divided by the incident flux) and the extinction cross
section (i.e., the sum of the scattering and absorption cross
sections) can be written as sums of independent multipole
contributions, namely,

σscat. = 2π

(kA)2

∞∑
l=1

(2l + 1)
(∣∣AE

l

∣∣2 + ∣∣AM
l

∣∣2)

= 2π

(kA)2

∞∑
l=1

(
σ̃ E

l + σ̃M
l

)
(33)

and

σext = 2π

(kA)2

∞∑
l=1

(2l + 1)Re
(
AE

l + AM
l

)

= 2π

(kA)2

∞∑
l=1

Re
(
ÃE

l + ÃM
l

)
. (34)

The contributions of the different partial modes can be
investigated by plotting the lowest order modes components
of the total scattering. I plot in Fig. 2 a function of the
incoming frequency, the electric dipole contribution in the
three windows where this quantity has maxima. I shall refer
hereafter to the mode showing in Fig. 2(a) as the L mode (L
is for the dressed lower frequency branch of the plasmonic
resonance spectrum), the two dressed excitonic daughter
modes appearing in Fig. 2(b) as the Rl and Rh modes (R for

(b)

3.305 3.31
eV

0.0005

0.0015

0.0025
1
M

(a)

3.305 3.31
ω eV

0.0025
0.005

0.0075
0.01

2
Eσ

σ

ω

FIG. 3. (Color online) (a) The electric quadrupole and (b) the
magnetic dipole contributions to the normalized scattering cross
section are plotted as function of the incoming field’s frequency in
the Rl-Rh spectral window. R = 20 nm, α = 0.5, β = 0.95.

the excitonic resonance, and l and h, respectively, for lower
and higher branches), and the mode showing in Fig. 2(c) as the
H mode (H for the dressed higher branch of the plasmonic
resonance spectrum). The two most prominent features of
these figures are that:

(a) the excitonic resonance has split into two daughter
peaks instead of the single excitonic peak present in the isolated
semiconductor; and

(b) the peaks of the dressed plasmonics resonances have
shifted from their isolated metal or bare values.

In Fig. 3 I plot as a function of the incoming frequency,
respectively, the contributions of the electric quadrupole and
magnetic dipole to the scattering cross section in the same
spectral window as that of Fig. 2(b). As can be observed,
the contribution from either modes is negligible in the region
of interest for induced transparency and slow light, i.e., in
between the maxima of the Rl and Rh modes. Given the minor
contributions of all other modes than the electric dipole mode
to the scattering cross section, for the considered nanostructure
(R ≈ 20 nm) I shall henceforth restrict my analysis to the
electric dipole mode.

In Fig. 4 I plot the real part and imaginary parts of AE
1 in the

spectral window of Fig. 2(b), the real part gives essentially the

(a)

3.305 3.31
eV

0.5

1.5

Re A1
E

(b)

3.305 3.31
eV

1
0.5

0.5
1

Im A1
E

ω

ω

FIG. 4. (Color online) (a) Re(ÃE
1 ) and (b) Im(ÃE

1 ) are plotted as
function of the incoming frequency in the Rl-Rh spectral window.
R = 20 nm, α = 0.5, β = 0.95.
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(a)

3.32 3.34 3.36 3.38
eV

0.5

1.0

1.5

1
E

(i)

(ii)
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(b)
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1
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ω
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σ

ω

FIG. 5. (Color online) The electric dipole contribution to the
normalized scattering cross section is plotted as function of the in-
coming frequency in the Rl-Rh window, for different values of one of
the excitonic parameters. (a) (i) γ = γCuCl, (ii) γ = 5γCuCl, (iii) γ =
10γCuCl. The values of f and ω0 are kept fixed and equal to those of
CuCl. (b) (i) f = fCuCl, (ii) f = 1

2 fCuCl, (iii) f = 1
4 fCuCl. γ and ω0

are those of CuCl. Everywhere: R = 20 nm, α = 0.5, β = 0.95

extinction coefficient for the incoming wave in that window
(note the dip there, indicating very low absorption), and the
imaginary part shows the strong dispersion associated with
the slowing of the light. (I shall examine elsewhere the details
of the method to optimize the system configurations to tailor
these effects to specific applications.)

In Fig. 5 I plot the scattering cross section in the Rl-Rh

region, if one were to change arbitrarily the values of either
the excitonic damping constant [Fig. 5(a)] or the oscillator
strength [Fig. 5(b)] in the excitonic permittivity.

As can be observed, the positions of the maxima of the
Rl and Rh modes, their width and their interseparation are
very sensitive to the values of these two intrinsic excitonic
parameters. These figures also indicate the range of values for
which the desired topology in the Rl-Rh spectral distribution
is preserved.

VII. THE EIGENMODES ANALYSIS

In the preceding section I kept referring qualitatively to
certain eigenmodes but did not give a rigorous meaning to
these quantities. In this section I shall provide a more rigorous
definition to those quantities, and find a more suggestive way
to express them.

As pointed out in Secs. IV and V, both AE
l and AM

l are
obtained by first inverting, respectively, the matrices ME

l and
MM

l . This means that

AE
l (ω) = NE

l (ω)

�E
l (ω)

, (35)

with a similar expression forAM
l . The numerator of Eq. (35)

is the sum of cofactors of the matrix ME
l and of the incoming

fields spherical expansion coefficients. The denominator in
Eq. (35) is uniquely determined by the geometry and the
material used in the different regions of the system and is

always given by

�E
l (ω) = det

[
ME

l (ω)
]
. (36)

Now consider an expression of the form

f (u) = N (u)

(u − ω) �(u)
, (37)

and assume that the function N(u)/�(u) is meromorphic in the
complex u plane, �(u) has simple zeros at ω̂n, n = 1,2,3, . . . ,

and ω is different from any of these zeros; then the poles of
f (u) are all simple and located at the zeros of �(u) and at ω.
Now consider a contour at infinity C∞, the residue theorem
allows one to write

1

2πi

∮
C∞

N (u)

�(u) (u − ω)
du = N (ω)

�(ω)
+

∞∑
n=1

N (ω̂n)

�′ (ω̂n) (ω̂n − ω)
.

(38)

The contour integral vanishes if limu→∞ N(u)
�(u) = 0, and conse-

quently the ratio N (ω)/�(ω) can be written in the alternative
form:

N (ω)

�(ω)
=

∞∑
n=1

N (ω̂n)

�′ (ω̂n) (ω − ω̂n)
. (39)

This expression is known as the Mittag-Leffler expansion,
where {ω̂n} are the complex roots of any of the expressions
det(ME

l ) = 0, or det(MM
l ) = 0, as the case may be.

The above result leads us to the conclusion that if a plot
of the function |AE

l (ω)| or |AM
l (ω)| has n maxima, then this

indicates that �(ω) has n roots in the complex plane, and
that Eq. (39) is an alternative way to writing this quantity.
Thus, finding the zeros of the determinant of the matrices
ME

l and MM
l , also called the eigenvalues of the system, takes

special importance. The real part of any of these eigenvalues
corresponds to the value of ω at the corresponding maximum
in the total cross section and its imaginary part approximates
the width of this maximum.

In Figs. 6 and 7 I plot the real and imaginary parts of the
different eigenvalues that were denoted by the symbols (L, Rl,

H

L

(a)

0.2 0.4 0.6 0.8

1.5
2.0
2.5
3.0
3.5
4.0
4.5

Re eV

Rh

Rl

(b)

0.2 0.4 0.6 0.8

3.303
3.304
3.305
3.306
3.307
3.308

Re eV

ω

ω

Α

Α

FIG. 6. (Color online) The real part of all the eigenvalues Re(ω̂)
are plotted as function of the normalized core radius. (a) The L and
H modes. (b) The Rl and Rh modes. R = 20 nm, β = 0.95.
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L

H

(a)

0.2 0.4 0.6 0.8

0.05
0.04
0.03
0.02
0.01

Im eV

Rh
Rl

(b)

0.2 0.4 0.6 0.8

0.0005
0.0004
0.0003
0.0002
0.0001

Im eV

ω

ω

Α

Α

FIG. 7. (Color online) The imaginary part of the eigenvalues
Im(ω̂) are plotted as a function of the normalized core radius. (a) The
L and H modes. (b) The Rl and Rh modes. R = 20 nm, β = 0.95.

Rh, H ) as function of α [where the thickness of the noble metal
shell is (β − α)R] for a fixed value of the semiconductor shell
[the interval (βR,R)]. Note that the separation in the resonance
frequency of the daughters is everywhere much larger than the
resonances width, thus confirming the required condition for
obtaining low absorption, slowing of light in the spectral region
separating the two excitonic daughters.

Of particular interest, note
(i) the dressed L resonance can be tuned to any frequency

in a window extending all the way from the violet to the near
infra-red; and

(ii) the 1 to 2 order of magnitude increase in the width of
the dressed excitonic lines from their bare values—a common
feature observed when comparing the imaginary part of the
eigenvalues of a coupled system with those of the diagonal
elements (bare values).

In Figs. 8 and 9 I plot the modifications to the real and
imaginary values of the dressed plasmonics resonances from

(a)

0.2 0.4 0.6 0.8

50

100

150

200

Ag nm

(b)

0.2 0.4 0.6 0.8

1.4
1.2
1.0
0.8
0.6
0.4
0.2

Ag nm

Α

Α

FIG. 8. (Color online) The shift in the dressed (β = 0.95)
plasmonic resonance wavelength from its bare value (β = 1) as a
function of the normalized core radius. R = 20 nm. (a) L mode and
(b) H mode.
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2
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8

10

Δ Im Ag

(a)

0.2 0.4 0.6 0.8

10
20
30
40
50

Δ Im Ag

ω

ω

Α

Α

FIG. 9. (Color online) The relative change in the imaginary part
of the plasmonic eigenvalue of the dressed case (β = 0.95) and its
bare value (β = 1) is plotted as function of the normalized core radius.
R = 20 nm. (a) L mode and (b) H mode.

their bare values. The quantities plotted are, respectively,

�λ̂Ag = λ̂dressed − λ̂bare, (40)

δ(Im(ω̂)Ag) =
∣∣∣∣ Im (ω̂dressed) − Im (ω̂bare)

Im (ω̂dressed)

∣∣∣∣ × 100. (41)

One observes that both the wavelength and the width of
both dressed plasmonic resonances for the coupled system
are substantially different from their values for the case that
β = 1 (i.e., no semiconductor is present). The closeness of the
excitonic resonance to the L-plasmonic branch impacts the
later more substantially than it does the H branch, and leads
to a larger shift in the resonances wavelength, and a large
deviation in the linewidth. [Compare, respectively, Figs. 8(a),
8(b) and Figs. 9(a), 9(b)].

VIII. ELECTROSTATIC MODEL

Given that the electrostatic approximation to Maxwell equa-
tions have often been used in analyzing nanostructures, I shall
next compute the eigenvalues for the present configuration
in this approximation and compare the obtained results with
those deduced earlier in this paper using the full Maxwell
equations. But before embarking on the mathematical details
of the electrostatic approximation solution, let us pause and
recall what constitutes the difference between the full and
approximate theories, at the atomic level.

In the electrostatic approximation, the interaction of two
dipoles is the instantaneous short-range r−3 dipole-dipole
interaction; while in the full theory, the interaction between two
dipoles is given by the Lienard-Wiechert potential. This poten-
tial has in addition to the short term component also long range
r−1,r−2 terms, consequently introducing size dependence,
referred to as retardation effects when considering a finite
size sphere. This potential also includes an imaginary part, the
so-called radiation damping terms. These terms substantially
modify the linewidth of the resonances in addition to that of
the intrinsic value.
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I shall now give the details for deriving the eigenvalues in
the electric approximation. In the electrostatic approximation,
the electric field obeys the equations

�E = −�∇V, (42)

�∇ ◦ (ε �E) = 0. (43)

For spherical geometry Eqs. (42) and (43) lead in the dipole
approximation to the following form of the electric potential
in the different regions:

V (r,θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(1)r cos(θ ), 0 � r � αR,(
C(1)r + C(2) R3

r2

)
cos(θ ), αR � r � βR,(

B(1)r + B(2) R3

r2

)
cos(θ ), βR � r � R,

A(2) R3

r2 cos(θ ), r > R.

(44)

The terms proportional respectively to (r−2,r) in the regions
enclosing (r = 0,r = ∞) were set equal to zero to ensure that
the expression for the potential is everywhere finite.

The continuity of V at the different interfaces requires that

A(2) = B(1) + B(2), (45)

β3B(1) + B(2) = β3C(1) + C(2), (46)

α3C(1) + C(2) = α3D(1). (47)

The continuity of (ε∂V/∂r)at the different interfaces requires
that

−2ε(A)A(2) = (B(1) − 2B(2)), (48)

ε(B)(β3B(1) − 2B(2)) = ε(C)(β3C(1) − 2C(2)), (49)

ε(C)(α3C(1) − 2C(2)) = ε(D)α3D(1). (50)

The eigenvalues in the electrostatic approximation for the
dipole mode will be the roots of the equationdet(MStat

l=1) = 0,
where

MStat
l=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 0 0 0
0 β3 1 −β3 −1 0
0 0 0 α3 1 −α3

−2ε(A) −ε(B) +2ε(B) 0 0 0
0 ε(B)β3 −2ε(B) −ε(C)β3 +2ε(C) 0
0 0 0 ε(C)α3 −2ε(C) −ε(D)α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (51)

In Figs. 10 and 11 I plot the deviations of the real and
imaginary parts of the dressed plasmonics eigenvalues in the
electrostatic approximation from their Maxwell values.

The quantities plotted are defined as follows:

�λ̂Stat = λ̂ − λ̂Stat, (52)

δ(Im (ω̂)Stat) =
∣∣∣∣ Im (ω̂) − Im (ω̂Stat)

Im (ω̂)

∣∣∣∣ × 100. (53)

(a)
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Α
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20
Stat nm

(b)

0.2 0.4 0.6 0.8
Α

0.1
0.2
0.3
0.4
0.5

Stat nm

FIG. 10. (Color online) The shift in the dressed resonance
plasmonic wavelengths from their approximate electrostatic values
is plotted as function of the normalized core radius. R = 20 nm.
β = 0.95. (a) L mode and (b) H mode.

The subscript Stat is used to identify the quantities computed
in the electrostatic approximation.

One notes that although the radius of the sphere is only
20 nm, the deviations in the values of both the real and
imaginary parts of the eigenvalues can be substantial; thus
leading to the conclusion that the errors in the electrostatic
approximation exceed the experimental accuracy with which
the resonance frequencies and widths can be measured.

(a)

0.2 0.4 0.6 0.8
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20

40
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80

Δ Im Ω Stat

(b)

0.2 0.4 0.6 0.8
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5
10
15
20
25

Δ Im Ω Stat

FIG. 11. (Color online) The relative change in the imaginary part
of the plasmonic eigenvalues of the dressed case and their approxi-
mate electrostatic values is plotted as function of the normalized core
radius. R = 20 nm. β = 0.95. (a) L mode and (b) H mode.
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IX. CONCLUSION

In this paper I examined a system of concentric shells
consisting of a noble metal and a semiconductor, with a
very sharp excitonic resonance with a bare frequency in the
gap between the bare plasmonic resonant frequency branches
and having a strong oscillator strength. The plasmon-exciton
coupling leads to the following physical results:

(i) A splitting of the excitonic line occurs. The spectral re-
gion separating the excitonic daughters satisfies the conditions
for induced transparency and slow light propagation.

(ii) The plasmonics resonances, especially the L mode, are
shifted from their bare values.

Quantitatively I show that the full-Maxwell results obtained
differ markedly from those of the electrostatic model. Fur-
thermore, I show that the maxima observed in the partial
cross-section results obtained for the dipolar mode can be
identified with the complex zeros of the scattering matrix
characteristic determinant.

Finally, it is worth pointing out that the above analysis
provides yet another successful application of the eigenvalue
technique to probe the physical properties of concentric
nanoshells. Friedberg and the author formulated this technique
first in [24,25] while investigating the cooperative decay rate
and cooperative Lamb shift of an ensemble of resonant atoms
in a small sphere. This technique was subsequently used, as
well, in analyzing the deviation from Dicke’s results for the
superradiant rate in a small sphere with radially dependent
density [26,27]; in computing the plasmonic resonances in a
metallic nanoshell [28] and in multiple metallic shells [29]; and
in predicting and analyzing the Purcell-Dicke superradiant-
enhancing effect [30,31].

On the practical side, optimizing the above system param-
eters has the potential of identifying designs for ultrasensitive
laser-based gyroscopes and gravity/general relativity effects
detecting instrumentations [32,33], the details of this opti-
mization will be reported elsewhere.
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