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Spectrum of collective spontaneous emission beyond the rotating-wave approximation
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The spectrum of cooperative light emission from ensembles of multilevel atoms is studied in optical vector
theory and without applying the rotating-wave approximation. The effects of counter-rotating terms are included
using a unitary transformation method. The spectra are analyzed and interpreted in terms of the radiative
eigenmodes of the atom ensemble. We further show how the qualitative features arise from the structure of the
underlying two-particle dipole-dipole interaction induced by the the vacuum field. We predict that for a suitable
modification of the ensemble properties, the sign of the cooperative Lamb shift can be reversed, while still
maintaining strong superradiant emission. Finally, we discuss the effects of finite detection resolution and of
averaging over many realizations of the random distribution of atoms for given ensemble parameters.
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I. INTRODUCTION

Spontaneous emission of atoms is not an immutable
property, but a consequence of the coupling to the environment.
This implies that it can be modified. One approach is to
manipulate the dipole moments which effectively couple to
the environment. For example, antisymmetric combinations
of excited states can have vanishing dipole moments to a
common ground state, effectively forming a decoherence-
free subspace [1–3]. A different approach is to modify the
atom’s environment. A particularly interesting case arises if
ensembles of atoms are considered, in which the dynamics
of a particular atom is modified by the presence of the
other atoms. Cooperative effects arising in the spontaneous
emission from such ensembles have been intensively studied
over many decades [3]. Relative to the emission of a single
atom, ensembles can accelerate or slow down spontaneous
decay, effects known as super- and subradiance, respectively
[4]. Related to the atomic linewidth is the Lamb shift [5,6],
which was named after Lamb [5] who first measured the
relative shift of the 2s1/2 and 2p1/2 levels in hydrogen. The
(single-atom) Lamb shift and spontaneous emission rate are
the real and imaginary parts of a complex energy shift arising
from the interaction of the atom with the vacuum field, which
in leading order can be visualized as emission of a (virtual)
photon from the atom and later reabsorption of the photon
by the same atom. In the many-atom case, the emission and
reabsorption of virtual photons between different atoms result
in a collective Lamb shift [7–9], which is the dispersive
counterpart of superradiance (subradiance). Superradiance and
subradiance have been extensively studied theoretically and
experimentally [7–29]. In contrast, experimental studies of the
collective Lamb shift in particular are scarce. Recently, the
collective Lamb shift was measured in an ensemble of nuclei
embedded in a thin-film cavity probed in grazing incidence
by a hard x-ray beam from a synchrotron light source [8].
In this experiment, the nuclei were prepared such that they
act as ideal two-level systems, and the measurement technique
allowed the cooperative decay of the nuclei to be followed over
several orders of magnitude in the emitted light intensity. More
recently, an experimental measurement of the cooperative
Lamb shift was performed in two-dimensional atomic vapors
with nanometer-scale thickness [9].

A problem in the theoretical analysis of the Lamb shift
arises from the fact that the atoms can undergo transitions to
higher atomic states, such that the atomic-level state space
cannot be reduced as is otherwise customary in quantum
optics. Nevertheless, the so-called rotating-wave approxi-
mation (RWA) is often applied to simplify the discussion.
Then the atomic system can be reduced to two relevant
atomic levels, such that evolutions to higher excited states
are neglected [20–24]. However, studies of the collective
spontaneous emission and the collective Lamb shift of N

two-level atoms including the counter-rotating terms [7,25,26]
somewhat surprisingly found that these terms can lead to
non-negligible contributions to the spontaneous emission
dynamics.

Motivated by this, recently we studied the collective spon-
taneous emission of a multilevel atomic ensemble including
the effects of counter-rotating terms [28]. For this, we applied
a unitary transformation method, which has been previously
introduced [30] to include the effects of the counter-rotating
terms at short time or long time scales for the case of a single
or two multilevel atoms in vacuum or in other reservoirs with
different spectra [31–34]. The advantages of such a unitary
transformation method have been discussed in detail in Refs.
[28,30]. In the previous paper [28], we in particular focused on
the time evolution of the populations in the initially prepared
state, as well as the total population in all excited atomic states.

Here, we complement this analysis by an investigation
of the spectrum of the cooperative spontaneous decay. We
first derive analytical expressions for the spectrum of emitted
light for arbitrary single-atom-excitation initial states of the
ensemble. Then we analyze the spectra for two initial states,
the so-called standard Dicke and the timed Dicke states. A
particular emphasis is put on the interpretation of the spectra
in terms of radiative eigenmodes of the ensemble, which
we study in detail for various parameter configurations. The
combination of these results allows us to trace and interpret
the evolution of the emission spectra from a single Lorentzian
emission line in small ensembles to rather complicated spectra
in more extended ensembles. As a main result, we find that for
intermediate ensemble sizes, the sign of the cooperative Lamb
shift changes its sign, while nevertheless strong superradiance
is maintained. These results are then qualitatively explained in
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terms of model calculations based on the dominant radiative
eigenmode in ensembles of atoms, in comparison to the effects
of the dipole-dipole interaction between two atoms induced
by the vacuum field. Finally, we analyze the effects of finite
detection resolution and averages over different realizations of
the atom positions for given ensemble parameters.

II. MODEL AND HAMILTONIAN

The system we consider consists of N identical multilevel
atoms interacting with the electromagnetic vacuum field, the
same as that given in Ref. [28]. The total Hamiltonian of the
system in minimal-coupling form reads (h̄ = 1)

H =
∑

j

∑
l

ωl|l〉jj 〈l| +
∑

k

ωkb
†
kbk

+
∑
j,k

∑
l,m

gk,lm|l〉jj 〈m| (b†ke
−ik·rj + H.c.), (1)

where ωl is the energy of the level |l〉, bk (b†k) is the annihilation
(creation) operator of the kth-mode vacuum field of frequency
ωk and wave vector k (≡kk̂), rj is the position of the j th atom,
and

gk,lm = |ωlm|dlm

√
1

2ε0ωkVem

(d̂lm · ê⊥
k )

:= gk,lm(d̂lm · ê⊥
k ) (2)

is the coupling strength. Here Vem is the quantization volume
of the vacuum field and ê⊥

k is the polarization direction of the
kth-mode field such that ê⊥

k · k = 0. Usually two polarizations
for each optical wave vector should be considered; here and
throughout this paper we just consider the one, ê⊥

k , since
the other one normal to the dipole moment dlm brings no
contribution and thus is neglected. We have assumed that the
dipole moments of all atoms are aligned, such that the dipole
moment dlm ≡ dlmd̂lm for the transition between the levels |l〉
and |m〉 is identical for all the atoms. For the sake of simplicity,
we can further assume that gk,lm is real. Note that gk,lm = 0
for l = m, and we define the notations rjj ′ ≡ rj − rj ′ and
ωlm ≡ ωl − ωm.

As detailed in Ref. [28], after introducing a unitary
transformation U = exp(iS) with

S =
∑
j,k

∑
l,m

gk,lmξk,lm

iωk
|l〉jj 〈m|(b†ke−ik·rj − H.c.) (3)

and ξk,lm = ωk/(ωk + |ωlm|), and subtracting in addition the
free-electron self-energy Eself = −∑

j,k

∑
l,m (|gk,lm|2/ωk)

|l〉jj 〈l|, one can obtain the effective Hamiltonian

HS = U †HU − Eself

= HS
0 + H1 + HV 1 + HV 2 + O(g2), (4)

expanded in powers of gk,lm. Here, HS
0 is the zeroth-order

term equivalent to that in the first line of Eq. (1), but with
the state energy ωl replaced by ω′

l = ωl + δl . The energy shift
δl can be interpreted as the single-atom nondynamic Lamb
shift [33] for level |l〉. The first-order term of Hamiltonian (4),
H1, describes vacuum-induced transitions between the states
and has the form of a Hamiltonian in the RWA even though

we did not apply the RWA to the original Hamiltonian Eq. (1).
The second-order terms HV 1 and HV 2 in the Hamiltonian (4)
arise due to virtual photon processes involving the emission
and reabsorption of a photon within the same atom and
between two different atoms, respectively, related to the
counter-rotating terms in Eq. (1). For the exact form of HS

(4), see the Appendix.
Since the first-order term of the Hamiltonian (4), H1, has

the form of a Hamiltonian in the RWA, the system of multilevel
atoms can effectively be reduced to an ensemble of two-level
atoms. The residual contribution of the higher excited levels in
the effective Hamiltonian (4) is of fourth order in the coupling
constant and can be neglected.

III. TIME EVOLUTION FOR SINGLE-ATOM-EXCITATION
STATES

A. Equations of motion

We now consider the special case of a single excitation
distributed in the ensemble of N two-level atoms with the
ground and first excited levels of the individual atoms denoted
as |g〉 and |e〉, respectively. The ensemble ground state of HS

0
then is

|G,0〉 = |G〉|0〉 = |g1g2 · · · gN 〉|0〉
with |0〉 being the vacuum state of the electromagnetic field.
The single-atom excited states of the system can be expressed
as superpositions of basis states

|ej 〉 := |g1g2 · · · ej · · · gN 〉 (j ∈ {1, . . . ,N}).
Further, we denote the electromagnetic field state with one
photon in mode k by |1k〉.

For the dynamics of the system with initially one atomic
excitation in the atoms, the single-excitation states (|ej ,0〉 and
|G,1k〉) span the relevant sub-Hilbert space. The wave function
in this single-excitation case can be written in the interaction
picture as

|ψ(t)〉 =
∑

j

βj (t)|ej ,0〉 +
∑

k

ηk(t)|G,1k〉. (5)

Using the Schrödinger equation with the initial value
ηk(0) = 0 and formally integrating the equation of the time
derivative of ηk(t) leads to

ηk(t) = −i
∑
j ′

2ωeggk,ege
−ik·rj ′

ωk + ωeg

∫ t

0
e−i(ω′

eg−ωk)t ′βj ′ (t ′)dt ′.

(6)

Substituting this result into the equation of motion for βj (t),
and in the Markov approximation and long time limit, one
finds

β̇j (t) = −	0

2
βj (t) −

∑
j ′(�=j )

	
(j )
j ′

2
βj ′ (t). (7)

Here,

	0 = γ0 − i
2γ0

π
(8)

is the complex single-atom decay rate where the real part
γ0 = k3

egd
2
eg/(3πε0) is the standard single-atom spontaneous
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emission rate in the vector theory [35] and the term “−γ0/π”
(=:L0) coming from the imaginary part is the single-atom
dynamic Lamb shift [28]. The second term in the right
side of Eq. (7), describing the vacuum-induced dipole-dipole
interaction between two different atoms j and j ′, can be
evaluated to give

	
(j )
j ′ = sin2 θjj ′	

(j )
j ′,1 + (3 cos2 θjj ′ − 1)

2
	

(j )
j ′,2, (9)

where

	
(j )
j ′,1 = −i

3 exp(iζjj ′)

2ζjj ′
γ0 (10)

is proportional to the induced term in the scalar photon theory
[see Eq. (A7) in Ref. [25]], and

	
(j )
j ′,2 = 3

ζ 3
jj ′

γ0[(sin ζjj ′ − ζjj ′ cos ζjj ′)

+ i(1 − cos ζjj ′ − ζjj ′ sin ζjj ′ )] (11)

with ζjj ′ := kegrjj ′ ≡ ωegrjj ′/c. Note that θjj ′ is the angle
between d̂eg and rjj ′ , and we have assumed the dipole moments
of the atoms to be aligned along the z direction (d̂eg = ẑ).

B. Eigensystem analysis

The equations of motion (7) for the state coefficients βj can
be rewritten in matrix-vector notation as

d

dt
	β = −� 	β, (12)

where 	β ≡ (β1, . . . ,βN )T and the matrix � has elements

�jj ′ =
{

	0/2 for j = j ′,

	
(j )
j ′

/
2 for j �= j ′.

(13)

The problem of the time evolution of cooperative spontaneous
emission of N atoms thus reduces to finding all (right)
eigenstates (or eigenvectors, eigenmodes) |ν(n)〉 and complex
eigenvalues λn of the matrix � [25,28,36].

After obtaining the eigenvalues and eigenvectors from the
secular equation by numerical calculation, one can readily
calculate the time evolution of an arbitrary initial single-atom-
excitation state |ψ(0)〉. For this, the initial state is decomposed
into a superposition of eigenstates |ν(n)〉 as

|ψ(0)〉 =
N∑

n=1

Cn|ν(n)〉, (14)

such that its time evolution is

|ψ(t)〉 =
∑

n

Cne
−λnt |ν(n)〉. (15)

If one of the Cn dominates the initial state, then the initial state
|ψ(0)〉 is an approximate (exponentially decaying) eigenstate,
with the real part of the related eigenvalue corresponding to
the collective (half) decay rate and the imaginary part to the
collective Lamb shift. Otherwise, |ψ(0)〉 is not an eigenstate,
such that its time evolution is complicated since it is a
superposition of different exponentially decaying components.

Note that the matrix � corresponding to Eq. (7) or Eq. (13)
is symmetric rather than Hermitian. Consequently, the eigen-
states |ν(n)〉 satisfy a transpose orthogonality condition rather
than Hermitian orthogonality [36]. If the nth eigenstate |ν(n)〉 is
written as (ν(n)

1 , . . . ,ν
(n)
N )T in the single-atom-excitation basis

{|ej ,0〉} with the j th element ν
(n)
j = 〈ej ,0|ν(n)〉, then 〈u(n)|,

which is defined as (ν(n)
1 , . . . ,ν

(n)
N ) in the same basis, is the nth

(left) eigenstate of the matrix � with the eigenvalue λn. The
corresponding orthogonality relation is

∑N
j=1 ν

(m)
j ν

(n)
j = δmn

or 〈u(m)|ν(n)〉 = δmn. Further, the coefficient Cn in Eq. (14) is
determined by

Cn = 〈u(n)|ψ(0)〉. (16)

The amplitude of the single-atom-excitation state βj (t) in
Eq. (7) then follows as

βj (t) = 〈ej ,0|ψ(t)〉 =
N∑

n=1

Cnν
(n)
j e−λnt . (17)

IV. SPECTRUM

In a previous work [28], we have discussed the collective
spontaneous emission in the present system, by considering
the time-dependent population in the initial state

P (I )(t) = |〈ψ(0)|ψ(t)〉|2, (18)

and the total population in all atomic excited states

P (T )(t) =
∑

j

〈ej ,0|ψ(t)〉〈ψ(t)|ej ,0〉. (19)

Both the Dicke state [4]

|D〉 = 1√
N

∑
j

|ej ,0〉 (20)

and the timed Dicke state (also called the exciton state or
single-excitation state of quasi-spin-waves) [7,14,23,27,36,37]∣∣TkI

〉 = 1√
N

∑
j

eikI ·rj |ej ,0〉 (21)

were considered as initial states. Here, kI is the wave vector
of the single-photon field which prepared the state and
thus defined the relative phase of the different excitation
possibilities.

In this work, we focus on the spectrum of the collective
spontaneous emission of the atomic ensemble. Upon sponta-
neous emission out of an initial single-atom-excited state such
as |D〉 or |TkI

〉, the amplitudes of the single-photon states |1k〉
in the long-time limit ηk(t → ∞) are given by

ηk(∞) = −i
∑

j

2ωeggk,ege
−ik·rj

ωk + ωeg

∫ ∞

0
ei(ωk−ω′

eg )tβj (t ′)dt ′

≈ −i
∑

j

∑
n

2ωeggk,ege
−ik·rj

ωk + ωeg

Cnν
(n)
j

λn + i(ωeg − ωk)

according to Eqs. (6) and (17). Here we have approximated
ω′

eg by ωeg in the exponential function as it only leads to a shift
which is identical for each atom.
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Let us first consider a detector positioned at R, far away
from the center of the atomic ensemble with position 0. Thus,
|R| ≡ R is much larger than the resonant optical wavelength
and the dimensions of the atomic ensemble. The electric field
to be detected in this far-field position at time t is (h̄ = 1)

〈G,0|E(+)(R,t)
∑

k

ηk(t)|G,1k〉

=
∑

k

√
ωk

2ε0Vem

ê⊥
k ei(k·R−ωkt)ηk(∞)

:=
∫

dωke
−iωktBR(ωk), (22)

where

BR(ωk) = −iω2
egdeg

(2π )3c3ε0

ω2
k

ωk + ωeg

∑
j,n

Cnν
(n)
j

λn + i(ωeg − ωk)

×
∫

d�kê
⊥
k (d̂eg · ê⊥

k )eik·(R−rj ). (23)

Then the spectrum for the detector at position R is given by
Refs. [32,35]

SR(ωk) = |BR(ωk)|2. (24)

The integration of BR(ωk) in Eq. (23) over all emission
directions can be performed using [1]∫

d�kê
⊥
k (d̂eg · ê⊥

k )eik·(R−rj )

=
∫

d�k[d̂eg − k̂(k̂ · d̂eg)]eik·R(j )

≈ [d̂eg − R̂(j )(R̂(j ) · d̂eg)]
∫

d�ke
ik·R(j )

≈ 2πi

kR
[R̂ × (R̂ × d̂eg)]

(
eikR(j ) − e−ikR(j ))

. (25)

Here, R(j ) := R − rj := R(j )R̂(j ) with R(j ) ≈ R − R · rj , and
we have used

∫
d�ke

ik·r = −2πi(eikr − e−ikr )/(kr). In the
third line we have used the approximation that the optical
modes whose wave vectors are not parallel to R(j ) lead to
negligible contributions. Thus, we replaced k̂ by R̂(j ) and
further used R(j ) ≈ R and R̂(j ) ≈ R̂ in the last step, except
for the phases in the exponential function. As noted before, we
consider a single polarization and neglected the second one
normal to the d̂eg in the first line of Eq. (25). Alternatively, we
can consider both polarizations by replacing d�kê

⊥
k (d̂eg · ê⊥

k )
with

∑
s=1,2d�kê

(s)
k (d̂eg · ê

(s)
k ), which will lead to the same

results. Note that in the last line of Eq. (25), the terms
eikR(j )

and e−ikR(j )
represent the outward and incoming waves,

respectively, and we will therefore neglect the latter [32,35]
by imposing suitable boundary conditions.

Combining all steps, we obtain for the emission-angle-
resolved spectrum

SR(ωk) ∝ [R̂ × (R̂ × d̂eg)]2

∣∣∣∣∣∣
∑
j,n

Cnν
(n)
j exp[ikR(j )]

λn + i(ωeg − ωk)

∣∣∣∣∣∣
2

. (26)

In Eq. (26), the factor R̂ × (R̂ × d̂eg) is related to the direction
of the detector. The coefficient Cn represents the projection

of the initial state on the nth eigenstate, and ν
(n)
j = 〈ej ,0|ν(n)〉

is the product of the nth eigenstate and the j th single-atom
excited state |ej ,0〉. The denominator λn + i(ωeg − ωk) shows
the collective decay rate and collective Lamb shift for the nth
eigenstate. The factor exp[ikR(j )] denotes the phase acquired
by the light traveling from the position of the j th atom to the
detector position. Further, the total spectrum integrated over
all emission directions is given by

S(ωk) =
∫

d�RSR(ωk) =
∑
j,j ′

fj (k)f ∗
j ′(k)Tjj ′(k), (27)

where fj (k) = ∑
n Cnν

(n)
j /[λn + i(ωeg − ωk)] and

Tjj ′(k) =
∫

d�R[R̂ × (R̂ × d̂eg)]2eikR·rjj ′ (28)

evaluates to 8π/3 for j = j ′ and to

4π sin krjj ′

krjj ′
sin2 θjj ′

+4π (sin krjj ′ − krjj ′ cos krjj ′)

(krjj ′)3
(3 cos2 θjj ′ − 1) (29)

for j �= j ′. As noted before, θjj ′ is the angle between rjj ′ and
d̂eg .

In the following numerical calculation, we will calculate
the total spectrum S(ω) for the initial Dicke state |D〉 and the
timed Dicke state |TkI

〉 with kI = kegk̂I = kegx̂ (and d̂eg ≡ ẑ).

V. NUMERICAL RESULTS FOR THE SPECTRA

A. The spectrum for N atoms in a sphere

First, we consider the spectrum of the collective sponta-
neous emission for an initial Dicke state |D〉 with N = 6000
atoms randomly distributed in spheres with different radii Ra .
Results are shown in Fig. 1. Figure 1(a1) shows a volume
with dimensions much smaller than the wavelength of the
emitted radiation. It can be seen that the spectrum essentially
consists of a single peak, which is shifted substantially towards
lower frequencies compared to the single-atom resonance
frequency, and which has a width of order Nγ0. These are
the results expected for the well-known case of standard
Dicke superradiance. In this case, the initial Dicke state is
approximately a radiative eigenstate of the system. The real
part of the eigenvalue of this eigenmode is about Nγ0/2 (half
of the spectral width), indicating accelerated collective decay.
Its imaginary part indicates a negative collective Lamb shift.
Note that we have neglected the single-atom Lamb shift during
all of the numerical calculations, such that only the collective
Lamb shifts are shown.

Next, in Fig. 1(a2), a larger ensemble volume is con-
sidered. While the spectrum still is dominated by a single
superradiantly broadened peak, the cooperative Lamb shift
has reversed its sign, such that the peak is shifted towards
higher frequencies compared to the single-atom resonance
frequency. On increasing the volume further [Ra = 2λ in
Fig. 1(a3)], again a single peak is found, but with reduced
(positive) cooperative Lamb shift and superradiance. Finally,
at Ra = 5λ in Fig. 1(a4), the spectrum starts to decompose into
multiple lines, which however in total still approximately lead
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FIG. 1. (Color online) Total emission spectrum S(ω + ωeg) (in arbitrary units) against ω (in units of γ0) for (a1)–(a4) N = 6000, (b1)–(b4)
N = 2000, and (c1)–(c4) N = 600 atoms for the initial Dicke state |D〉. The atoms are randomly placed in a sphere with radius (a1), (b1), (c1)
Ra = 0.05λ, (a2), (b2), (c2) Ra = 1λ, (a3), (b3), (c3) Ra = 2λ, and (a4), (b4), (c4) Ra = 5λ.

to a single peak in the spectrum. In this case, however, the width
of the total main peak is less than γ0, indicating subradiance.
In the limit of low volume density, starting from about
�1 atom/λ3, the spectrum reduces to that of a single atom
without a collective Lamb shift and with single-atom decay
rate γ0.

Next, we repeat the analysis for the initial state |TkI
〉 ≡ |T 〉

(with kI = kegk̂I = kegx̂). When the atoms are randomly dis-
tributed in a sphere with radius much smaller than the typical
wavelength, the spectrum of |T 〉 [Fig. 2(a1)] is similar to that
of |D〉 [Fig. 1(a1)], with enhanced collective decay rate and
large negative collective Lamb shift. The reason for this is that
in the limit of small ensemble volume, |T 〉 coincides with |D〉.

As the radius increases, the cooperative Lamb shift and the
superradiant line broadening decrease, as shown in Fig. 2(a2).
Eventually, a second major peak appears, which has a positive
cooperative Lamb shift; see the case of Ra = 2λ in Fig. 2(a3).
Thus, the spectrum cannot be interpreted as arising from a
single radiative eigenmode, but rather has two contributions
with opposite cooperative Lamb shifts. As the radius increases
further, the two peaks of the spectrum become closer and closer
and finally are reduced to one peak centered at 0. Note that
in this case the collective decay rate is still larger than that in
the single-atom case; see Fig. 2(a4). When the radius is large
enough, the spectrum will be reduced to that of independent
atoms. However, in comparison to the case of |D〉, we note that
initial |T 〉 states require larger volumes or smaller densities to
reduce to the single-atom case.

In order to interpret our findings, in the second and third
rows of Fig. 1 (Fig. 2), we show corresponding results with
N = 2000 in the second row and N = 600 in the third. The
separate variation of size and atom number allows effects of
the ensemble geometry and the atom number density to be
distinguished.

First, we analyze the spectra for different N , but with
fixed volume and geometry. As can be seen from Figs. 1(a1),
1(b1), and 1(c1) for Ra = 0.05λ and initial |D〉 state, in all
cases, a single peak with negative cooperative Lamb shift and
strong superradiance proportional to N is obtained. Only the
magnitude of the shift and the line broadening decrease with N .
For intermediate radii Ra = 1λ [Figs. 1(a2), 1(b2), and 1(c2)]
or Ra = 2λ [Figs. 1(a3), 1(b3), and 1(c3)], again the main
spectral features are qualitatively similar for different N . In
all cases, a single main peak dominates, which has a positive
collective Lamb shift proportional to N . Also, the linewidth
increases as N increases. There are, however, some differences
in the collective decay rates in these two intermediate cases. In
the former case, the collective decay rate is always larger than
γ0 (superradiance) for N ∼ 103. In the latter case, it is less
than γ0 (subradiance) for N = 600 and N = 2000, but larger
than γ0 for N = 6000. Finally, for radius Ra = 5λ shown in
Figs. 1(a4), 1(b4), and 1(c4), the spectrum for |D〉 resembles
the single-atom case, but with a small positive collective Lamb
shift and a subradiance [see N = 6000 and N = 2000 in
Figs. 1(a4) and 1(b4)]. Note, however, that this applies only to
N ∼ 103. When N becomes large enough, superradiance will
appear for this geometry.

We now turn to initial state |T 〉. Comparing the different
rows of Fig. 2, as for the |D〉 state, we find that the results
remain qualitatively similar for the different numbers of atoms,
with main features as discussed in the case of N = 6000.
Quantitatively, the magnitudes of the cooperative Lamb shift
and of the linewidth decrease with N . For the largest volume
with smaller N = 600 in Fig. 2(c4), the two peaks found for
larger atom number already have merged into a single line.

Note that next to the main features discussed so far, there are
narrow spikes in the discussed spectra. These will be explained
later in Sec. V D.
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FIG. 2. (Color online) Total emission spectrum S(ω + ωeg) (in arbitrary units) against ω (in units of γ0) for (a1)–(a4) N = 6000, (b1)–(b4)
N = 2000, and (c1)–(c4) N = 600 atoms for the initial timed Dicke state |T 〉 (:=∣∣TkI

〉
with kI = kegk̂I = kegx̂). The atoms are randomly

placed in a sphere with radius (a1), (b1), (c1) Ra = 0.05λ, (a2), (b2), (c2) Ra = 1λ, (a3), (b3), (c3) Ra = 2λ, and (a4), (b4), (c4) Ra = 5λ.

B. Radiative eigenmodes

The above phenomena in the spectra for the initial Dicke
state |D〉 can be understood from the radiative eigenmode
structure for the given ensemble. It manifests itself in the
distribution of coefficients Cn which contribute to the initial
state. As can be seen from Eq. (26), the coefficient Cn reflects
the importance of the nth eigenmode to initial-state decay, and
also to the spectrum of spontaneous emission of the initial state.
If the absolute value of one of the Cn’s is much larger than that
of all others, then only this mode dominates the dynamics,
and the spectra are dominated by only one peak. If there
are many Cn’s whose absolute values are of the same order,
then the spectrum receives contributions of many eigenmodes,
and in general is rather complicated. Each of the eigenmodes
contributes with thereal and imaginary parts of its eigenvalues
to the cooperative shift and line broadening. In Figs. 3 and 4,
we show the magnitude |C2

n| as a function of the real and the
imaginary parts of the corresponding eigenvalue, respectively.

When the ensemble radius is small as in Figs. 3(a), 3(b),
4(a), and 4(b), then only one of the eigenstates dominates for
the initial state |D〉. This can be seen from the fact that a single

dot [marked as (i) in Figs. 3(a), 3(b), 4(a), and 4(b)] appears
in the figures with large |C2

n|, while the dots belonging to all
other modes have negligible contribution. This means that |D〉
is approximately a radiative eigenstate of the ensemble in this
case. Thus, the spectrum mainly consists of a single Lorentzian
peak with a Lamb shift corresponding to the imaginary part and
superradiance corresponding to the real part of the eigenvalue
of the dominating mode.

As already seen from the spectra, we find that with
increasing ensemble size, a single mode remains dominant,
but the imaginary part of the eigenvalue increases until it
turns positive, while the real part remains much larger than
1, indicating superradiance; see Figs. 3(b) and 4(b).

With intermediate radius Ra = 2λ, there are three eigen-
states which contribute most to the spectrum; see the dots (i),
(ii), and (iii) in Figs. 3(c) and 4(c). All of their imaginary
parts are about 1.8γ0 and all of their real parts are about
0.25γ0. Thus, in the spectrum, they can be expected to overlap,
and to lead to a combined peak with cooperative Lamb shift
1.8γ0 and width 0.5γ0 (corresponding to subradiance). This
prediction is in agreement with the spectrum in Fig. 1(b3).

FIG. 3. (Color online) Magnitude of the contribution of the different radiative eigenmodes (in arbitrary units) as a function of the real part
of their corresponding eigenvalue (in units of γ0). Results are shown for an initial standard Dicke state |D〉 for different ensemble radii with
number of atoms N = 2000, according to the second row of Fig. 1.
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FIG. 4. (Color online) Magnitude of the contribution of the different radiative eigenmodes (in arbitrary units) as a function of the imaginary
part of their corresponding eigenvalue (in units of γ0). Results are shown for an initial standard Dicke state |D〉 for different ensemble radii
with number of atoms N = 2000, according to the second row of Fig. 1.

When the radius of the atomic ensemble is large [e.g., larger
than 5λ as given in Figs. 3(d) and 4(d)], there are many
eigenstates having important contributions with average real
parts of their eigenvalues of about γ0/2, which corresponds to
the single-atom case. The average of the imaginary parts of the
eigenvalues is about 0, which indicates a vanishing cooperative
Lamb shift. This explains why the spontaneous emission of the
initial Dicke state |D〉 in this case reduces to the single-atom
case. In this case, the initial state does not correspond to any
of the radiative eigenmodes of the ensemble at all.

For the initial state |T 〉, the small-volume cases [see
Figs. 5(a) and 6(a)] are again similar to the case with initial
state |D〉. When the volume increases [Figs. 5(b)–5(d) and
6(b)–6(d)], usually there are many eigenstates with non-
negligible contributions. But in contrast to the other initial state
|D〉, here, some of them have large positive imaginary parts of
their eigenvalues, while others have large negative imaginary
parts of their eigenvalues. This explains why the spectrum
approximately consists of two peaks with opposite signs of
the cooperative Lamb shift. Note, however, that each of these
peaks consists of many different eigenmodes, which appear as
one peak, as they overlap in the spectrum. When the volume is
large, the imaginary parts of all eigenvalues are close to zero,
such that the spectrum again appears as a single peak; see
Fig. 2(c4).

It is interesting to note that for the intermediate-volume
cases as in Fig. 2(b3), the two peaks in the spectrum are
centered at about −6γ0 and 7γ0, respectively, which appears
inconsistent with the fact that the corresponding imaginary
parts of the relevant eigenmodes are in the range (−6,6). This
effect results from interference between different eigenstates.

C. Interpretation of the spectra

Next, we show that the results found in the previous sections
qualitatively can be understood already from the vacuum-

induced dipole-dipole interaction between two particles. For
this, we focus on cases in which the spectrum is dominated
by a single eigenmode, and thus restrict our analysis to the
mode with the largest eigenvalue. In the following, we denote
this mode as the dominant mode. We evaluate this dominating
eigenvalue for different cubic volumes with side length from
0.05λ up to about 2λ, and for N = 100 to N = 600 atoms.
For each configuration, we calculate 25 different realizations
in order to estimate the effect of the random placement of the
atoms in the volume.

As a first step, we averaged over the 25 realizations for
each size and atom number, and plotted the obtained real
and imaginary parts of the eigenvalues against the number
of atoms; see Fig. 7. In the considered parameter range,
the eigenvalues depend linearly on the number of atoms,
as expected for the usual Dicke superradiance. The smaller
the volume is, the larger is the corresponding real part of
the eigenvalue, indicating stronger superradiance. But for the
imaginary part of the eigenvalue, it can be seen that starting
from a certain ensemble size, the cooperative Lamb shift
evolves from a large negative value to a positive value with
increasing ensemble size. This clearly resembles the results
found in Figs. 1 and 2. We further analyzed this analogy
by plotting the imaginary part of the dominant eigenvalue
for N = 600 atoms as a function of the ensemble size, as
shown in Fig. 8(a). Comparing this result with the vacuum-
induced dipole-dipole shift for two interacting two-level atoms
averaged over all orientations shown in Fig. 8(b), it can be
seen that the qualitative shapes of the results in (a) and (b) are
similar. We can thus trace back the fact that with increasing
volume size the cooperative Lamb shift changes its sign to the
distance dependence of the underlying interparticle interaction
induced by the vacuum. Note that the dependence on the
size of the volume in Fig. 8(a) does not exactly correspond
to the distance between the two atoms in Fig. 8(b). Rather,

FIG. 5. (Color online) Magnitude of the contribution of the different radiative eigenmodes (in arbitrary units) as a function of the real part
of their corresponding eigenvalue (in units of γ0). Results are shown for the initial timed Dicke state |T 〉 for different ensemble radii with
number of atoms N = 2000, according to the second row of Fig. 2.

053837-7
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FIG. 6. (Color online) Magnitude of the contribution of the different radiative eigenmodes (in arbitrary units) as a function of the imaginary
part of their corresponding eigenvalue (in units of γ0). Results are shown for the initial timed Dicke state |T 〉 for different ensemble radii with
number of atoms N = 2000, according to the second row of Fig. 2.

each volume size corresponds to an effective distance which
dominates the interaction shift. We would like to remark that a
similar phenomenon of oscillating shifts was observed in the
recent experiment [9] (see Fig. 4 in this reference). However, in
the experiment, the shift always remained negative, while our
results show the possibility of a sign change. The difference
could be due to the different geometry, or to the fact that we
focus on the dominant eigenmode only.

Figure 8(a) further shows that towards larger volume sizes,
the oscillations of the imaginary part with the size of the
volume cease, while they persist for two atoms in Fig. 8(b).
This can be understood from Fig. 9(a), which again shows
the imaginary part of the eigenvalue against the size of the
volume. But in contrast to Fig. 7, here the results for each of
the 25 realizations of the atom positions are shown separately.
For small volume sizes, each of the different realizations
leads to a similar cooperative Lamb shift. But from a certain
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FIG. 7. (Color online) Real and imaginary parts of the eigenvalue
(in units of γ0) of the dominant eigenmode as a function of the number
of atoms in the volume. The different lines show side lengths of the
cubic ensemble volume ranging from 0.05λ up to 2λ. The arrow
points in the direction of decreasing ensemble size. Each point is
obtained by averaging over 25 different realizations of the random
atom placement in the given volume.

volume size on, different branches for the imaginary part
become visible. These occur since, for a given size and
number of atoms, the exact placement of the atoms decides
whether the system has a positive or a negative cooperative
Lamb shift. Interestingly, despite the fact that the atoms are
placed randomly, the spectrum of possible imaginary parts is
not continuous, but decomposes into a small set of discrete
values. With increasing volume size, more and more of such
branches appear, which eventually merge into each other. The
appearance of different branches with opposite sign explain
why the imaginary part in Fig. 8(a) stops oscillating from a
certain system size onwards. The average performed to obtain
the results of Fig. 8(a) encompasses different branches with
opposite signs of the cooperative Lamb shift, which together
lead to a small and approximately constant average.

As the final step, we relate the different cooperative Lamb
shift branches found in Fig. 9(a) to the corresponding decay
rates. Figure 9(b) shows that the decay rate and the Lamb shift
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FIG. 8. (Color online) (a) Plot of the imaginary part of the
eigenvalue (in units of γ0) of the dominant eigenmode for N = 600
against the ensemble size (in units of λ). Each point is obtained by
averaging over 25 different realizations of the random atom placement
in the given volume. (b) Level shift induced by the dipole-dipole
interaction for two two-level atoms as a function of the interatomic
distance.
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FIG. 9. (Color online) (a) Imaginary part of the eigenvalue (in
units of γ0) of the dominant eigenmode VS the size of the volume
(in units of λ) for N = 600 atoms. (b) Imaginary part against the real
part of the eigenvalue (in units of γ0) for N = 600 atoms for different
volume sizes. The arrow indicates the direction of decreasing size.
In contrast to Fig. 7, here the result of each of the 25 realizations
is shown separately, such that there is a set of points for each
volume size.

of the different branches are indeed linked. The first branch on
the right-hand side for small volume sizes starts with large
superradiance and strong negative cooperative Lamb shift.
With increasing volume size, the Lamb shift reverses its sign,
and the superradiance is reduced. The second branch has a
qualitatively similar shape and dependence on the volume size,
and sets in at real parts of about 60γ0. Towards larger volume
sizes, a multitude of branches contributes, which however have
similar small real and imaginary parts of the eigenvalues, such
that they appear as a single line in the spectrum.

In summary, we thus showed that the main spectral features
found for the cooperative emission of smaller ensembles
of atoms can be explained by considering the dominant
eigenvalue only. In this case, the emission spectrum essen-
tially consists of a single spectral line, which allows easy
determination of the effective cooperative Lamb shift and
cooperative decay rate. Furthermore, part of the results can
qualitatively be understood from the properties of the vacuum-
induced dipole-dipole interaction between two particles. This
is consistent with the fact that we found a strong dependence
of the qualitative properties of the emission spectra on the
sample geometry, which translates into an effective distance
in the two-atom system.

D. Convolution spectrum and average spectrum

In the spectra shown in Figs. 1 and 2, next to the main
spectral peaks, a number of narrow spikes are visible. In the
following, we analyze their significance. First, we analyze to
what extent the spikes depend on the microscopic realization

FIG. 10. (Color online) Emission spectrum S(ω + ωeg) (in arbi-
trary units, against ω in units of γ0) averaged over 100 realizations of
the random atom placement in a sphere with Ra = 0.05λ for initial
state (a) |D〉 and (b) |T 〉.

of our ensemble. For all calculations, we randomly place a
certain number of atoms in a given volume. Therefore, the
results in principle could vary from realization to realization,
as the atoms are placed at different positions. In an experiment
it is likely that results of multiple measurements would
have to be averaged, such that only structures could be
observed which persist under such an ensemble average.
We therefore calculated the average spectrum over 100
realizations of random atom distributions. The result is shown
in Fig. 10, and it can be seen that the results are very
similar to the single realizations reported in Figs. 1 and 2.
This shows that our numerical calculations are stable in the
sense that the spikes are not an artifact of the specific atom
distribution.

Next, we consider the finite detector resolution. Each of the
spikes corresponds to a radiative eigenmode of the system, and
one way of judging the significance is by the area covered by
the respective spike in the spectrum. If a mode has very low
decay rate, then it leads to a structure with low width in the
spectrum, which can appear prominent even if the total weight
of the structure is low.

Thus, we convolute the spectra via

Scon(ω) =
∫

d�S(ω)F (� − ω), (30)

where F (ω) = exp[−ω2/(4σ 2)]/
√

2π with σ the half-width
of the convolution function. This width corresponds to the
finite frequency resolution of the detection in an experiment.
Figure 11 shows examples with σ = 10 and σ = 100, respec-
tively. It can be seen that the narrow spikes disappear, such
that the underlying structure becomes visible.

FIG. 11. (Color online) Emission spectrum Scon(ω + ωeg) (in
arbitrary units, against ω in units of γ0) convoluted with a finite
detector resolution for N = 2000 atoms in a sphere with Ra = 0.05λ

for initial states |D〉 and |T 〉. The convolution width is (a) σ = 10γ0

and (b) σ = 100γ0.
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VI. CONCLUSION

In conclusion, we investigated the spectrum of collective
spontaneous emission for N multilevel atoms in vacuum. A
particular unitary transformation has been used to include the
counter-rotating terms in our analysis. Following the unitary
transformation method, the system Hamiltonian assumes the
simple RWA form for N two-level atoms, even though the
RWA was not applied, and even though multilevel atoms are
considered. We focused on the case with only one excitation
initially in the atomic ensemble. The decay dynamics can then
be studied by finding all eigenstates as well as their complex
eigenvalues for an effective non-Hermitian matrix.

We analyzed the spectra of spontaneous emission for the
initial single-atom-excitation states |D〉 and |T 〉 (≡|TkI

〉 with
kI = kegk̂I = kegx̂), based on vector field theory including
the directions and polarizations of the wave vectors for all
the vacuum modes. In the case of small volume, the timed
Dicke state reduces to the standard Dicke state, which is
approximately a radiative eigenmode of the system. In the
intermediate-volume case, neither the standard Dicke state nor
the timed Dicke state is an exponentially decaying radiative
eigenmode of the system. However, nevertheless, the spectrum
for |D〉 is dominated by a single peak, which is composed of
multiple radiative eigenmodes with similar imaginary parts.
In contrast, the spectrum for |T 〉 usually has two main peaks
in intermediate-volume cases, with one of them shifted to
lower and one to higher frequencies by the cooperative Lamb
shift. Thus, in this case, the dominating radiative eigenmodes
have different eigenvalues. In very-large-volume cases, both
|D〉 and |T 〉 will reduce to the single-atom case without
any collective effects. By separately analyzing the spectra as
functions of the ensemble volume size and the number of atoms
in the ensemble, we found that the structure of the spectra
is predominantly determined by the system geometry. For
smaller volume sizes, the system properties can be understood
by analyzing the eigenvalue of a single dominant radiative
eigenmode only, which as a function of the system volume

size decomposes into different discrete branches. Finally, we
showed that the qualitative dependence of the cooperative
Lamb shift can readily be linked to the vacuum-induced
dipole-dipole shift of two interacting atoms.
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APPENDIX: THE EXACT FORMS OF EQ. (4)

The zeroth-order term of Hamiltonian HS in Eq. (4) reads

HS
0 =

∑
k

ωkb
†
kbk +

∑
j

∑
l

ω′
l |l〉jj 〈l| , (A1)

where the effective state energies are ω′
l = ωl + δl with the

single-atom nondynamic Lamb shift

δl = −
∑
m,k

|gk,lm|2
ωk

(
2ξk,lm − ξ 2

k,lm + ωlm

ωk
ξ 2

k,lm − 1

)
. (A2)

The first-order term is

H1 =
∑
j,k

∑
l>m

2gk,lm|ωlm|
ωk + |ωlm| (|l〉jj 〈m| bke

ik·rj + H.c.), (A3)

and the second-order terms are

HV 1 = −
∑
j,k

∑
l,m,n�=l

gk,lmgk,mnξk,lmξk,mn

2ω2
k

|l〉jj 〈n|

×(2ωk + 2|ωlm| + 2|ωnm| + ωlm + ωnm), (A4)

HV 2 = −
∑

j �=j ′,k

∑
l,l′,m,m′

gk,lmgk,l′m′ξk,lm

2ωk
(2 − ξk,l′m′ )

× (eik·rjj ′ + c.c.) |l〉jj 〈m| ⊗ |l′〉j ′j ′ 〈m′|. (A5)
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[27] T. Bienaimé, N. Piovella, and R. Kaiser, Phys. Rev. Lett. 108,
123602 (2012).

[28] Y. Li, J. Evers, H. Zheng, and S.-Y. Zhu, Phys. Rev. A 85, 053830
(2012).

[29] J. T. Manassah, Adv. Opt. Photon. 4, 108 (2012).
[30] H. Zheng, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett. 101,

200404 (2008).

[31] D.-w. Wang, A.-j. Li, L.-g. Wang, S.-y. Zhu, and M. S. Zubairy,
Phys. Rev. A 80, 063826 (2009); D.-W. Wang, L.-G. Wang,
Z.-H. Li, and S.-Y. Zhu, ibid. 80, 042101 (2009).

[32] D.-w. Wang, Z.-h. Li, H. Zheng, and S.-y. Zhu, Phys. Rev. A 81,
043819 (2010).

[33] Z.-H. Li, D.-W. Wang, H. Zheng, S.-Y. Zhu, and M. S. Zubairy,
Phys. Rev. A 80, 023801(R) (2009); 82, 050501 (2010).

[34] S. Yang, H. Zheng, R. Hong, S.-Y. Zhu, and M. S. Zubairy,
Phys. Rev. A 81, 052501 (2010); Q. Ai, Y. Li, H. Zheng, and
C. P. Sun, ibid. 81, 042116 (2010); X. Cao, Q. Ai, C. P. Sun, and
F. Nori, Phys. Lett. A 376, 349 (2012); J. Xu, S. Yang, X.-M. Hu,
and M. S. Zubairy, ibid. 376, 297 (2012); Y. B. Dong, Z. H. Li,
Y. Li, and S.-Y. Zhu, Phys. Rev. A 85, 013832 (2012).

[35] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[36] J. P. Hannon and G. T. Trammell, Hyperfine Interact. 123/124,
127 (1999).

[37] C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903
(2003).

053837-11

http://dx.doi.org/10.1103/PhysRevA.61.063814
http://dx.doi.org/10.1103/PhysRevA.61.063814
http://dx.doi.org/10.1088/0953-4075/40/6/F01
http://dx.doi.org/10.1103/PhysRevLett.96.010501
http://dx.doi.org/10.1103/PhysRevLett.100.160504
http://dx.doi.org/10.1103/PhysRevLett.100.160504
http://dx.doi.org/10.1103/PhysRevA.77.043833
http://dx.doi.org/10.1103/PhysRevA.77.043833
http://dx.doi.org/10.1103/PhysRevA.81.053821
http://dx.doi.org/10.1103/PhysRevA.81.053821
http://dx.doi.org/10.1016/j.physleta.2007.11.064
http://dx.doi.org/10.1016/j.physleta.2010.02.012
http://dx.doi.org/10.1103/PhysRevLett.108.123602
http://dx.doi.org/10.1103/PhysRevLett.108.123602
http://dx.doi.org/10.1103/PhysRevA.85.053830
http://dx.doi.org/10.1103/PhysRevA.85.053830
http://dx.doi.org/10.1364/AOP.4.000108
http://dx.doi.org/10.1103/PhysRevLett.101.200404
http://dx.doi.org/10.1103/PhysRevLett.101.200404
http://dx.doi.org/10.1103/PhysRevA.80.063826
http://dx.doi.org/10.1103/PhysRevA.80.042101
http://dx.doi.org/10.1103/PhysRevA.81.043819
http://dx.doi.org/10.1103/PhysRevA.81.043819
http://dx.doi.org/10.1103/PhysRevA.80.023801
http://dx.doi.org/10.1103/PhysRevA.82.050501
http://dx.doi.org/10.1103/PhysRevA.81.052501
http://dx.doi.org/10.1103/PhysRevA.81.042116
http://dx.doi.org/10.1016/j.physleta.2011.11.045
http://dx.doi.org/10.1016/j.physleta.2011.10.052
http://dx.doi.org/10.1103/PhysRevA.85.013832
http://dx.doi.org/10.1023/A:1017011621007
http://dx.doi.org/10.1023/A:1017011621007
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevLett.91.147903



