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Spontaneous emission from a medium with elliptic and hyperbolic dispersion
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We analyze the properties of spontaneous emission of a two-level atom in anisotropic media where the
geometry of physical dispersion relations is characterized by an ellipsoid or a hyperboloid. Within the framework
of quantum optics the rate of spontaneous emission in the above media is explicitly given with the orientation
of the dipole transition matrix element taken into account. It indicates that for the ellipsoid case the intensity of
the photons coupled into different modes can be tuned by changing the direction of the matrix element relative
to the optical axis. For the hyperboloid case it is found that spontaneous emission in the hyperbolic medium
(HM) can be dramatically enhanced compared with the case in the background medium. Moreover, in the HM
the spontaneous emission exhibits strong directivity and gets the maximum in the asymptote direction.
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I. INTRODUCTION

There have been many works devoted to the quantization
of the electromagnetic field and the spontaneous emission of
the atom in various media which may be inhomogeneous,
nonlinear, absorptive, anisotropic, or dispersive [1–11]. Many
of these works are especially concerned with the anisotropy
of the media besides some additional properties such as
bianisotropic, inhomogeneous, and dispersive [7–11]. When

the diagonal elements of permittivity tensor “
↔
ε ” are all positive

the geometry of the physical dispersion relation is an ellipsoid
[three-dimensional (3D)] or an ellipse [two-dimensional (2D)],
e.g., the uniaxial anisotropic media. However, the rate of
spontaneous emission of the atom in the media with elliptic
dispersion has not been given in detail with two factors taken
into account. The first is the orientation of the dipole matrix
element vector relative to the optical axis and the second is the
difference between the contributions to the decay rate from the
different permitted modes. On the other hand, metamaterials
which are composed of the periodic dielectric element arrays,
e.g., the split-ring resonators (SRRs), are realized experi-
mentally in a narrow microwave frequency region [12,13]
or in the near-visible light region [14]. The materials have
the left-handed property because of negative permittivity and
permeability simultaneously. It causes refocusing and phase
compensation [15], which provide a new manipulating space
for the design of quantum optical devices [16–18]. In the sense
of the effective medium, metamaterials are also anisotropic as
well as left handed [19–21]. When some diagonal elements of
the effective permittivity tensor are negative the geometry of
the dispersion relation in metamaterials is a hyperboloid (3D)
or a hyperbola (2D), which are called hyperbolic metamaterials
(HMM), as shown in the inset of Fig. 1. Note that for the HMM
hyperbolic dispersion only holds for the wave vectors k in a
small finite range due to the origin of the effective medium.
We define the hyperbolic medium (HM) as the medium where
hyperbolic dispersion holds for the full wave vector, which

*liuzheng@mail.sim.ac.cn

is used as the ideal model for the HMM. The HMM have
been recently found to have many novel properties such as
the superlens effect [22–24], broadband thermal emission
beyond the blackbody limit in the near field [25,26], the
slow-light effect [27], the “big flash” of the photons in the
HMM by an optical metric signature phase transition [28], or
an optical topological transition [29]. Moreover, the HMM
provide a new model for the study of the early universe
as an analog of vacuum in the strong magnetic field [30].
Besides the properties and applications in the framework of
classical electromagnetic theory, some interesting quantum
optical properties (QOPs) of the HMM have also been found
experimentally [31] and theoretically [32,33], for instance,
controlling spontaneous emission with the HMM [31], the
broadband Purcell effect [32], and the dipole radiation and its
enhancement near the surface of the HMM [34]. However,
the above theoretical analyses of spontaneous emission in
the HMM are within the framework of the macroscopic
electromagnetic wave theory where the atomic emission from
the quantum transition is approximated as a dipole radiation
[32,34,35] and the radiated power is exacted from the Green’s
function of the system. The rate of spontaneous emission
for a two-level atom in the anisotropic medium with elliptic
and hyperbolic dispersion has not been provided in detail
within the framework of the quantum optics. In this paper
we will explicitly give the expression of the decay rate for a
two-level atom in the foregoing media under the Weisskopf-
Wigner approximation. It indicates that for the ellipsoid
case the intensity of the photons coupled into the different
modes can be tuned by changing the direction of the matrix
element vector. For the hyperboloid case it is found that the
spontaneous emission in the HM can be dramatically enhanced
in comparison with the dielectric background; meanwhile, the
spontaneous emission exhibits strong directivity and gets the
maximum in the asymptote direction.

II. MODEL AND FORMULA

To deal with the problem some theories of the quantum
optics of dielectric media are needed. There are many schemes

053836-11050-2947/2013/87(5)/053836(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.053836


ZHENG LIU, WEI LI, XUNYA JIANG, AND J. C. CAO PHYSICAL REVIEW A 87, 053836 (2013)

ab

k

θ

φ
φ0

θ1

Eθ0

FIG. 1. (Color online) Schematic diagram of the three vectors
�Dab,�k, �E. Inset: The geometries of the dispersion relation in hyper-

bolic and elliptic mediums.

of the electromagnetic quantization for the different types of
media. One of them is that the physical quantities character-
izing the medium such as polarization field, magnetization
field, and their combinations are involved in the quantization
procedure where the interaction between their quanta and
the photon is taken into account [1–3]. Another scheme is
that the permittivity and permeability tensor are regarded as
the parameters in the field equation with different gauges
(gauge conditions) for the different media [4,5,8]. In our
case the medium is considered as anisotropic, homogeneous,
nondispersive, and lossless for simplicity. The quantization
scheme in Ref. [8] is used where the medium is characterized

by the constitutive equations D(r) = ↔
ε

(1)
(r) · E(r) + ↔

ε
(2)

(r) · B(r); H(r) = ↔
μ

(1)
(r) · E(r) + ↔

μ
(2)

(r) · B(r). For our

case
↔
ε

(2)
(r) = ↔

μ
(1)

(r) = 0;
↔
μ

(2)
(r) = 1 and

↔
ε

(1)
(r) ≡ ↔

ε = ε0

⎛
⎜⎝

εt 0 0

0 εt 0

0 0 εL

⎞
⎟⎠ , (1)

where εL > 0 and εt > 0 for the uniaxial anisotropic medium
or εL > 0 and εt < 0 for the HM. According to Maxwell’s
equations the dispersion relation for the medium characterized
by Eq. (1) in the principal axis coordinate system is expressed
as

k2
z

εt

+ k2
x + k2

y

εL

=
(ω

c

)2
. (2)

Equation (2) describes a hyperboloid or an ellipsoid, which
depends on the sign of εt with εL > 0 assumed. After the
photon is emitted from an atom it is subsequently coupled into
the field modes permitted by the dielectric environment. In
the dielectric system the photon propagates in the fashion of
the classical field modes of the system and inversely interacts
with the atom. In the spirit of Einstein’s original model the
total energy of the electromagnetic field mode in the dielectric
should be h̄ωk [36], which can be used to determine the field
amplitude included in the factor gk . According to Ref. [8] the
eigenvector field in the dielectric should satisfy the following
gauge condition and the eigenequations:

�∇ · [
↔
ε (r) · �Fk(r)] = 0, (3)

�∇ × �∇ × �Fk(r) =
(ωk

c

)2 ↔
ε (r) · �Fk(r). (4)

The quantized electric field can be expressed as �̂E(r,t) =∑
k �ekFk(r)e−iωkt âk + H.c. and the total Hamiltonian of the

photon and the atom under the rotating-wave approximation is

Ĥ =
∑

k

h̄ωkâ
†
kâk + 1

2
h̄νσ̂z + h̄

∑
k

gk(σ̂+âk + σ̂−â
†
k), (5)

where σ̂z = |a〉〈a| − |b〉〈b|, σ̂+ = |a〉〈b|, σ̂− = |b〉〈a|, and
|a〉,|b〉 are the excited and ground states of the atom with
eigenvalues Ea,Eb and

gk = −
�Dab · �ekFk(0)

h̄
. (6)

�Dab is the matrix element of the atom’s dipole between states
�Dab ≡ −〈a|e �̂R|b〉 = −〈b|e �̂R|a〉.

For simplicity the Hamiltonian equation (5) can be ex-
pressed as in the interaction [37] picture

HI = h̄
∑

k

[
g∗

k σ̂+âke
i[ω0−ω(�k)]t + gkσ̂−â

†
ke

−i[ω0−ω(�k)]t], (7)

where Ea − Eb = h̄ω0. The state vector of the compos-
ite system of the photon and the atom is expressed as
|ψ(t)〉 = ca(t)|a,0〉 + ∑

�k,s cb,�k(t)|b,1�k〉, where subscript s

denotes the different modes for a fixed k, e.g., the ex-
traordinary wave and ordinary wave. Solving the equa-
tion of the motion ih̄

∂|ψ(t)〉
∂t

= HI |ψ(t)〉 we get dca

dt
=

−∑
�ks |gk|2

∫ t

0 dt ′ ei[ω0−ω(�k)](t−t ′)ca(t ′). Change the summation
to the integration in spherical coordinate systems:

dca

dt
= − V

(2π )3

∑
s

∫
|gk|2k2 sin θei[ω0−ω(�k)](t−t ′)ca(t ′)

× dθ dφ dk dt ′

= − V

(2π )3

∑
s

∫
|gk|2k2 sin θ

∂ω

∂k

−1

ei[ω0−ω(�k)](t−t ′)

× ca(t ′)dθ dφ dω dt ′

= − V

(2π )3

∑
s

∫
G(ω,θ,φ)ei[ω0−ω(�k)](t−t ′)

× ca(t ′)dθ dφ dω dt ′, (8)

where the coordinate transformation in the second line is
ω = ω(k,θ,φ), θ ′ = θ, φ′ = φ, t ′ = t ′, and the Jacobian J =
∂(ω,θ ′,φ′,t ′)
∂(k,θ,φ,t ′) = ∂ω

∂k
. It is defined G(ω,θ,φ) ≡ |gk|2k2 sin θ ∂ω

∂k

−1
.

In the Weisskopf-Wigner approximation G(ω,θ,φ) is substi-
tuted by G(ω0,θ,φ) and the decay rate of the atom can be
expressed as the following integral:

� = V

2π2

∫
G(ω0,θ,φ)dθ dφ. (9)

Here the eigenmode of electric field components is assumed
as �Ek(r) = �Fk(r), �Hk = 1

iμ0ω
�∇ × �Ek . The consideration that

a single photon is coupled into the classical eigenmode of the

medium requires the total energy of the mode U = 1
2

∫
v( �Ek· ↔

ε

· �Ek + μ0| �Hk|2)d3x = h̄ω, which determines the amplitude
Fk(0) under the box normalization condition.
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A. Spontaneous decay rate in the medium with dispersion
geometry of ellipsoid

In order to check the validity of the formulism, the case
εt > 0 is first considered where the medium becomes uniaxial
anisotropic with an ellipsoidal dispersive geometry. In the
medium there are usually two types of eigenmodes, called
extraordinary waves and ordinary waves, which accommodate
the emitted photons from the atom. To this end we have
to explore the amplitudes and the energy of the two modes
in detail. The eigenmode of the electric field component
is supposed as the plane wave �Ek(r) = �Ek0e

i�k·�reiω(�k)t and
�Hk(r) = �Hk0e

i�k·�reiω(�k)t , where the complex vector amplitudes
are to be determined. Substituting the expression into the
Maxwell equations we get the two sets of dispersion and
polarization relations

k = ω

c

√
εt (10)

with Ez = 0 and kxEk0x + kyEk0y = 0, and

k2
x + k2

y

εL

+ k2
z

εt

=
(ω

c

)2
(11)

with Hz = 0 and Ek0x

Ek0y
= kx

ky
.

In the spherical coordinate system the dispersion relations
can be uniformly written as ω(k) = f (θ )ck, where f (θ ) = 1√

εt

for the transversal mode, Eq. (10), and f (θ ) =
√

sin2 θ
εL

+ cos2 θ
εt

for the longitudinal mode, Eq. (11). For the transverse mode the
total energy and the corresponding amplitude are, respectively,

UT = ε0
(
ET

k0

)2
εtV = h̄ω0/2, ET

k0 =
√

h̄ω0

2V ε0εt

. (12)

For the longitudinal mode the corresponding quantities are

UL = V ε2
0μ0ω

2
0

(
EL

k0

)2
ε2
Lε2

t

k2
z ε

2
L + ε2

t

(
k2
x + k2

y

) = ω0h̄/2,

(13)

EL
k0 =

[
ω0h̄

[
cos(2θ )

(
ε2
L − ε2

t

) + ε2
L + ε2

t

]
4f 2V ε0ε

2
Lε2

t

]1/2

,

where the factor ω0h̄/2 in right-hand side of the equation
occurs because there are two modes averagely carrying the
energy of the photon. In the principal axis system of the tensor
↔
ε there are three vectors which should be distinguished. They
are the vectorial transition matrix element �Dab = (Dab,θ0,φ0),
the electric field vector �Ek0 = (Ek0,θ1,φ1), and the wave vector
�k = (k,θ,φ), which is shown in Fig. 1. The factor in Eq. (9) is
explicitly given:

|gk|2 = D2
abE

2
k0 cos2 θ0,1

h̄2 , (14)

where θ0,1 is the angle between �Dab and �Ek0. Ac-
cording to the geometrical relations of the vectors
�Dab and �Ek0 and the gauge condition �k· ↔

ε · �Ek0 = 0,
we get the equations cos θ0,1 = sin θ0 sin θ1 cos(φ0 − φ1) +
cos θ0 cos θ1 and εL cos θ1 cos θ + εt sin θ1 sin θ cos(φ1 −
φ) = 0. It is noted that φ1 = φ + π

2 for the transversal mode

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5
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1.5

Θ0

0

T

L

FIG. 2. (Color online) The decay rate of the atom in the medium
with εt = 2.5, εL = 3.5 relative to the case for the vacuum �̃ =
�/�0. Dotted line: the decay rate for the transverse mode. Dashed
line: the decay rate for the longitudinal mode. Solid line: the total
decay rate.

and φ1 = φ for the longitudinal mode. With these conditions
we get the factor cos2 θ0,1 ≡ cT (L)

q for the different modes

cT
q = sin2 θ0 sin2 (φ0 − φ) , (15)

cL
q = [εt cos θ0 − εL sin θ0 cot θ cos (φ0 − φ)]2

ε2
L cot2 θ + ε2

t

. (16)

After the implementation of Eq. (9) we get the decay rate
for the two modes:

�T = 3
√

εt sin2 θ0

4
�0, (17a)

�L = εL + 4εt − cos (2θ0) (εL − 4εt )

8
√

εt

�0, (17b)

� = cos (2θ0) (εt − εL) + εL + 7εt

8
√

εt

�0, (17c)

where �0 = D2
abω

3
0

3πc3ε0h̄
. When εL = εt > 0, Eq. (17c) reduces

as
√

εt�0 = �(εt ), which gives the decay rate of the atom
in the homogeneous isotropic medium with permittivity εt .
The decay rate relative to the vacuum �/�0 ≡ �̃ in the case
εt = 2.5, εL = 3.5 is shown in Fig. 2 for the different modes.
From Fig. 2 it follows that when the matrix element vector �Dab

is parallel to the optical axis (θ0 = 0) the maximal coupling
between the atom and the longitudinal mode of the system
where Ez �= 0 can be obtained, and many more photons emit-
ted from the atom are coupled into the mode. Meanwhile, the
transverse mode gets the no coupling with �Dab for Ez = 0 and
�̃T = 0. In this case, �̃ = �̃L = 1.58 = √

εt , the anisotropic
medium behaves as the isotropic medium with permittivity
εt for the atom’s spontaneous emission. With the increase
of θ0, �̃T increases due to the enhancement of the coupl-
ing with the transverse mode and �̃L decreases due to the
reduction of the coupling with the longitudinal mode. When
θ0 = π

2 where �Dab is perpendicular to the optical axis �̃T

gets the maximum and �̃L gets the minimum. According to
Eq. (17c), � gets the maximum (εt < εL) or the minimum

(εt > εL): �m = D2
abω

3
0(2εL+6εt )

24πc3ε0h̄
√

εt
at θ0 = π

2 . These results can be
used to control the intensity of the different modes from the
spontaneous emission by tuning θ0.
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FIG. 3. (Color online) Thick solid line: the equifrequency contour
for the one-dimensional periodic system with parameters ε1 =
−92.4, ε2 = 2.34, d1 = 0.05a, d2 = 0.95a, ω = 0.03 2πc

a
, where a

is the lattice constant. Dashed line: the perfect hyperbolic dispersion

curve in the long wavelength limit k2
x

εL(0) + k2
z

εt (0) = ( ω

c
)2. Inset: The

schematic diagram of the integration range for the cutoff in Eq. (18)
with upper and lower limits ±xc(= ± cos θc)

B. Spontaneous decay rate in the medium with dispersion
geometry of hyperboloid

When εt < 0, εL > 0, Eq. (1) indicates the hyperboloid
geometry of the dispersion relation. Due to εt < 0, the branch
k = ω

c

√
εt corresponds to the evanescent wave. The mode

cannot carry the energy away from the atom. The contribution
to the decay rate from the branch k = ω

c

√
εt is ignored. For

the branch
k2
x+k2

y

εL
+ k2

z

εt
= (ω

c
)2 the decay rate � is proportional

to the following expression:

� = β

∫ 1

−1
dx

x2ε2
L sin2 θ0 − 2(x2 − 1)ε2

t cos2 θ0

(x2 − εu)5/2
, (18)

where x = cos θ , εu = εt

εt−εL
, and β = D2ω3( εLεt

εL−εt
)5/2

8πc3ε0h̄ε2
Lε2

t

.

It is noted that under the Weisskopf-Wigner approximation
the integration Eq. (9) is actually calculated on the equal
frequency surface. For an ellipsoid the variable θ in Eq. (9)
integrates over the range [0,π ], while for the hyperboloid θ

integrates over the range [θa,π − θa], as shown in the inset
of Fig. 3 where θa is the polar angle of the asymptote. In
terms of Eq. (18) there are two poles ±√

εu, of which the
position on the axis depends on the parameters εt ,εL. When
εt > εL > 0, εu > 1 and εL > εt > 0, εu < 0 the poles ±√

εu

are out of the range [−1,1] or on the imaginary axis. This
fact enables Eq. (18) to be calculated out and the result is
given in Eq. (17). However, in the hyperboloid case where
εt < 0, εL > 0, 0 < εu < 1 the poles lie in the range [−1,1]
which cause the integral to diverge. This divergence is the
manifestation of the change of the topology from the ellipsoid
to the hyperboloid [29]. To this point, we can also understand
the mechanism from the point of view of the density of states.
The spontaneous emission process is the transition of the
combined atom and field system from the initial state |ψi〉 =
|a〉⊗ |0〉 with energy level Ei = Ea into a continuum of final
states |ψf 〉 = |b〉⊗ |1k〉 with energy level Ef = Eb + h̄ω0.
Because the final energy level Ef is highly degenerate and
the conservation of probability |ca|2 = e−�t = 1 − ∑

k |cb,k|2,
the decay rate � can be approximately represented by � ∝
ln[1 − tPif ρ(Ef )]−1, where Pif = |〈ψf |ĤI |ψi〉|2(≈ |cb,k|2)
is the transition probability between the states |ψi〉 and |ψf 〉.
For the homogeneous medium with the dispersion relation
ω = ω(�k) the photon density of states is obtained by a surface
(line) integral on an isofrequency surface (contour) for the
three- (two-) dimensional case. ω(�k) = ω0: ρ(ω0) ∝ ∫

dS(dl)
|∇�kω(�k)| .

Due to the different topological characteristics from the
ellipsoid (ellipse) the integral ρ(ω0) diverges for the hyperbolic
geometry, which leads to the divergence of �H . It also indicates
that the medium in which the dispersion relation geometry is
characterized by a hyperboloid is the perfect approximation
for some composite materials such as photonic crystals,
metamaterials in the long-wavelength limit. Therefore, some
kinds of cutoff have to be introduced for the calculation of
Eq. (18) in the case εt < 0, εL > 0. To this end it is defined
that xa = cos θa = √

εu and cos θc = xc ≡ αxa , where ±xc

are the new integral limits for Eq. (18) with condition xc < xa .
The integral range of the variable θ for the cutoff limits ±xc

is marked by the shadowed region in Fig. 3. When α = 1, the
integral limit approaches the two polar poles ±xa . Under the
cutoff approximation we get the decay rate � for the hyperbolic
medium:

�H = �0
α3

[
ε3
L − εL cos2 θ0

(−4εLεt + ε2
L + 6ε2

t

)] − 6αεLεt cos2 θ0(εL − εt )

4(α2 − 1)3/2 (εL − εt ) 2
√

εLεt

εL−εt

. (19)

In Fig. 4 we give the �̃H = �/�0 vs the parameter α

for the different θ0 with εt = −2.5, εL = 3.5. It is obviously
found that when θc approaches θa(α → 1) �̃H increases
monotonously; in particular, �̃H increases more sharply for
the α in the neighborhood of unit. This is because the
larger α, the more modes with high k vectors are involved

in the spontaneous emission. In the HM the modes with
large k usually have a high density of states and more
photons emitted from the atom can be accommodated by
these modes. Moreover, since the photons are mainly coupled
into the longitudial mode, �̃H increases when the matrix
element vector �Dab gets the small angle θ0 with optical

053836-4



SPONTANEOUS EMISSION FROM A MEDIUM WITH . . . PHYSICAL REVIEW A 87, 053836 (2013)

0.0 0.2 0.4 0.6 0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Α

0

Θ0 0

Θ0 300

Θ0 600

Θ0 900

FIG. 4. (Color online) The relative decay rate of the atom in the
medium with εt = −2.5, εL = 3.5 relative to the case for the vacuum
according to parameter α for different angles θ0.

axis, which enhances the coupling factor gk . According to
Eq. (19) there are limα→1 �̃H = ∞, which implicates that
the perfect hyperbolic medium is an idealization model of
some real composite materials; arbitrarily large �̃H can be
achieved theoretically only if α is sufficiently large in spite
of the difference of θ0, which means that the more like the
strict hyperbolic medium the real materials behave, the more
enhancement of the spontaneous emission can be obtained.
However, the strict hyperbolic medium is the ideal model
for the real medium such as metamaterials, photonic crystals.
Therefore an estimation of spontaneous emission for the real
case is necessary for understanding the physical meanings
of hyperbolic medium approximation. Let us consider a
one-dimensional multilayer periodic composite (also called
metamaterials) based on the two-layer unit cell where the fre-
quency, the permittivity, and the thickness of the sublayers are
chosen as ω = 0.03 2πc

a
, ε2 = 2.34 (glass), ε1 = −92.4, d1 =

0.05a, d2 = 0.95a [38]. a is the lattice constant. The case
(ε1 = −92.4, ω = 0.03 2πc

a
) corresponds to the wavelength

λ = 1600 nm for silver with a = 48 nm [39]. According
to the Bloch wave and effective plane-wave theory [38]
[φ(z) = uK (z)eiKz+ikxx] we get the equifrequency contour of

the system and the dispersion curve in the long-wave limit k2
x

ε0
L

+
K2

ε0
t

= (ω
c

)2, where the Bloch wave vector K corresponds to kz

in Eq. (2) and ε0
L = aε1ε2

d1ε2+d2ε1
= 2.47 (harmonic mean), ε0

t =
d1ε1+d2ε2

a
= −2.40 (arithmetic mean) which is obtained by

keeping the second-order terms in the Taylor expansion of
the dispersion relation of the periodic system. In Fig. 3
the equifrequency contour and the hyperbola in the long-
wavelength limit are given with a solid line and a dashed line,
respectively. It is noted that the contour has no asymptote but
the latter does. To estimate the rate of spontaneous emission in
the composite with Eq. (19) it is reasonable that the overlapped
part between the curves should be employed to evaluate the
parameter α which provides a measure of the comparability
between the metamaterials and the hyperbolic medium. It
follows from Fig. 3 that in the range kx < 0.065 2πc

a
the

two curves are coincident and the point kc
x = 0.065 2πc

a
gives

α = cos θc/ cos θa = 0.9. Substituting ε0
L,ε0

t ,α into Eq. (19)
the typical rates of spontaneous emission of the atom in
the above metamaterials are �H |θ0=0 = 6.9�0 = 4.4�(ε0

L) and
�H |θ0=π/2 = 2.2�0 = 1.4�(ε0

L). It is noted that the above
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FIG. 5. (Color online) The amplitude of the integrand γ (θ )
corresponding to θ with parameters εt = −2.5 + 0.5i, εL = 3.5.

results are not the exact value of the decay rate �H but
the lower limit. In fact there are surely emitted photons,
the wave-vector component kx of which falls into the range
kx > 0.065 2πc

a
as shown in Fig. 3. What is different is that

the wave vectors with kx > 0.065 2πc
a

are on the contour not
on the dashed line. In Fig. 3, the point of intersection of
the contour and the asymptote is denoted by (kcro

x ,Kcro). If
we ignore the difference between the two curves for the part
where 0.065 < kx < kcro

x , the parameter α can reach 0.99 when
kc
x = 0.11 2πc

a
, where kc

x < kcro
x . The corresponding decay

rates are �H |θ0=0 = 92.7�0 = 59.1�(ε0
L) and �H |θ0=π/2 =

36.4�0 = 57.1�(ε0
L). The hyperbolic tendency of the com-

posite dramatically enhances the spontaneous emission of the
atom. Besides the enhancement of the spontaneous emission
the directivity of the emission is also worthy of being noted.
Equation (18) can be rewritten as � = β

∫ π

0 γ (θ )dθ . To
prevent the divergence of the integral we add a small imaginary
part to εt . Figure 5 gives the amplitude of the integrand γ (θ )
with εt = −2.5 + 0.5i, εL = 3.5. There are obviously two
peaks which correspond to the directions of the asymptotes.
This strong directivity of the spontaneous emission has been
noted experimentally and used to design the single gun [23,40].

III. LOCAL-FIELD CORRECTION

The analysis in the above sections is based on the assump-
tion λ � a � l, where l is the dimension of the quantum
system and a is the lattice constant. When the dimension
l of the system is comparable to the lattice constant a, the
correction of the mode by the scattering cannot be ignored.
The excited atom is assumed to feel the local electric field
inside the an empty spherical cavity which is cut out of
the homogeneous dielectric medium. The cavity is assumed
to have a radial dimension R0 and R0 � λ(= 2πc/ω0).
According to the scheme in Ref. [4] the eigenfunction �Fk(r)
satisfies the wave equation

�∇ × �∇ × �Fk(r) − k2
0

↔
ε · �Fk(r) = (

↔
I − ↔

ε )�(R0 − r)k2
0

�Fk(0),

(20)

where the unit step function �(R0 − r) describes the cavity
at r = 0 and k0 = ω0/c, �(R0 − r) �Fk(r) � �(R0 − r) �Fk(0)

due to R0 � λ, and
↔
I is the unix matrix.
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The solution of Eq. (20) is expressed as

�Fk(r) = Ek0e
ikr + k2

0

∫ ↔
G (r,r ′)(

↔
I − ↔

ε )

×�(R0 − r ′) �Fk(0)d3r ′. (21)

Solving Eq. (21) with the Green’s function
↔
G (r,r ′) in the

uniaxial anisotropic medium we get the corrected local field
�Fk(0) at r = 0 which the atom feels in the cavity:

�Fk(0) = �Ek0+ lim
R0,r→0

lim
δ→0

∫ ∫ ↔
G (k,εt + iδ,εL + iδ)eik(r−r ′)

×�(R0 − r ′) · (
↔
I − ↔

ε ) �Fk(0)d3k d3r ′

= �Ek0 + ↔
M · k2

0(
↔
I − ↔

ε ) �Fk(0), (22)

where
↔
M = lim

R0,r→0
lim
δ→0

∫ ∫ ↔
G (k,εt + iδ,εL + iδ)eik(r−r ′)�

(R0 − r ′)d3k d3r ′. After completing the integral and the limit
process we get

↔
M= −k−2

0

⎛
⎜⎝

1
2εt

1
2εt

1
εL

⎞
⎟⎠ . (23)

Substituting Eq. (23) into Eq. (21) we get the corrected
local field �Fk(0):

�Ecorr(0) = 2εt

εt + 1
�ET

k0 + εL
�EL

k0, (24)

where �ET
k0, �EL

k0 are the transverse and longitudinal components
of the amplitude �Ek0, respectively. For the transverse mode
Ez = 0, the modified decay rate �T

corr can be directly obtained
by substituting Fk(0) in Eq. (6) with 2εt

εt+1Fk(0) and it follows

that �T
corr = ( 2εt

εt+1 )2�T . For the longitudinal mode in the
anisotropic medium where Ez �= 0 we can also get the
modified �L

corr(�
H
corr) after instituting Eq. (24) into Eq. (6). In

Fig. 6 the local-field corrected decay rate �H
corr is given with the

same parameters as in Fig. 4. By comparing Fig. 4 with Fig. 6
it follows that because of the enhancement of the local-field
Ek(0) the corresponding decay rate increases largely due to the
enhancement of the interaction and the rule in which the decay
rate varies when the relative parameter changes are invariant
despite the local-field correction.
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FIG. 6. (Color online) The local-field corrected decay rate �H
corr

with the same parameters as in Fig. 4.

IV. DISCUSSION

In the framework of quantum optics we investigate
the spontaneous emission of the two-level atom in the
homogeneous anisotropic medium where the dispersion
geometry exhibits an ellipsoid or a hyperboloid. Under the
Weisskopf-Wigner approximation the corresponding decay
rate � is derived in detail. For the ellipsoid case, there are two
kinds of modes that contribute to the decay rate � and to some
degree the medium with ellipsoid dispersion provides two
types of “mode spaces” to accommodate the emitted photons.
Moreover, the polar angle θ0 can also be used to change the
intensity of the photons coupled into the different modes.
When εL = εt the obtained formula (17c) reduces to the case of
the isotropic medium, which justifies the validity of our model.

When the above model is applied to the hyperboloid case the
divergence is encountered and the cutoff of the wave vector
k is introduced for the approximation of the real materials.
When the topology of the dispersive geometry changes from
ellipsoid to hyperboloid the transverse radiating wave mode in
the ellipsoid case degenerates into the evanescent wave mode.
The enhanced spontaneous emission relative to the background
medium εL can still be obtained only if the dispersion
geometry of the real materials is sufficiently close to the
strict hyperboloid. This means that more high-k modes which
correspond to a larger parameter α get involved in the coupling
of the photons. In practice the HM is used as the ideal model for
some real materials with periodic microstructure, whose band
structure exhibits the approximative hyperbolic geometry in
a small range of k, e.g., the hyperbolic metamaterials. In the
long-wavelength limit the above materials can be approxi-
mated as the hyperbolic medium within the effective medium
theory. It is expected that the smaller the lattice a, the closeer
to the HMM the materials are. Therefore, more enhancement
of the spontaneous emission can be achieved. The perspective
of the density of states provides a physical explanation for
the mechanism of the spontaneous emission enhancement.
When the geometry of the physical dispersion relation of
the medium changes from ellipsoid to hyperboloid, due to
the change of the topological property the density of states
diverges in the lossless continuous hyperbolic medium limit:

ρ(ω) ≈ K3
cut

12π2 | εL

εt
( 1
εt

dεt

dω
− 1

εL

dεL

dω
)|, where Kcut is the momentum

cutoff [28]. Kcut is defined by either metamaterial structure
scale or by losses. It is the occurrence of the large ρ that enables
the transition probability to be increased dramatically. Even
when the loss and the dispersion of the ε(ω) in the materials is
taken into account the spontaneous emission is expected to be
largely enhanced.
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APPENDIX A: DERIVATIONS OF EQ. (5)

In the homogeneous isotropic medium where the permit-

tivity is
↔
ε = ε0( εt εt εL

), according to the minimal coupling
principle the Hamiltonian of the atom in the electromagnetic
field is written as

Ĥ = V (�r) + 1

2m
( �̂P − q �̂A)2

= V (�r) +
�̂P

2

2m
− q

2m
( �̂P · �̂A + �̂A · �̂P )

= V (�r) +
�̂P

2

2m
− q

m
�̂P · �̂A − iq

2m
h̄

(
1 − εL

εt

)
∂Az

∂z

= Ĥatom + ĤI + ĤII , (A1)

where Ĥatom = V (�r) + �̂P
2

2m
, ĤI = − q

m
�̂P · �̂A, ĤII = − iq

2m
h̄

(1 − εL

εt
) ∂Az

∂z
, and q is the charge of the particle. For the third

line in Eq. (A1) the conditions [ �̂P , �̂A] = −ih̄ �∇ · �̂A and �∇ · (
↔
ε

· �A) = 0 are used. For the electron q = −e, ĤI = e
m

�P · �A =
e�r · �̂A(−iω) = e�r · �̂E. Under the rotating-wave approximation
the term reads [37]

ĤI = h̄
∑

k

gIk(σ̂+âk + σ̂−â
†
k), (A2)

where the quantized field �̂E = ∑
k �ekEkâke

ik·re−iωt + H.c.

and gIk = − �Dab ·�ekEk

h̄
. �Dab is the matrix element of the dipole

between states �Dab ≡ −〈a|e �̂R|b〉 = −〈b|e �̂R|a〉.

For ĤII = ie
2m

h̄(1 − εL

εt
) ∂Az

∂z
, �Ek = �ekEke

ik·re−iωt , �E =
− ∂ �A

∂t
; ∂Az

∂z
= kz

ω
Ez. After field quantization �̂E =∑

k �ekEkâke
ik·re−iωt + H.c. the term is expressed as

ĤII = h̄gIIk

∑
k

(â†
k + âk), (A3)

where gIIk = ie
2m

kz

ω
(1 − εL

εt
)Ekz. Because the term â

†
k + âk

in ĤII means the field fluctuation process, which is a
small quantity compared with the spontaneous emission
and gIk/gIIk ∼ 2mcr/h̄ � 1, ĤII can be ignored under the
rotating-wave approximation.

APPENDIX B: GREEN’S FUNCTION FOR ANISOTROPIC
MEDIA AND THE LOCAL-FIELD CORRECTION

The Green’s function G for the uniaxial media is defined to
satisfy the wave equation

�∇ × �∇× ↔
G (�r ′,�r) − k2

0
↔
ε · ↔

G (�r ′,�r) = δ3(�r − �r ′) (B1)

and the Fourier transform of Eq. (B1) is[
�i(k)2 − k2

i

]
Gij (k) −

∑
n�=i

knkiGnj (k) = δij (2π )−3, (B2)

where k0 = ω0/c,
↔
ε = ( ε1 ε2 ε3

), and �2
i = k2 − εik

2
0 ≡ k2 −

ki2
ε .

Solving Eq. (B2) we get the symmetric matrix Gij (k) =
(Aij + Bij )/C, where Aij = (�2

l �
2
n/2 − klkn)(−1)pεilnδij ,

Bij = kikj�
2
n(−1)pεijn, and C = (2π )3[(�1�2�3)2 −

(−1)pεijn�i�j�n/2]. The symbols εijn and δij are the Levi-
Civita symbol and the Kronecker symbol, respectively. p is the
number of permutations in εijn and the repeated indices mean
Einstein summation. For the uniaxial media ε1 = ε2 = εt ,
ε3 = εL, the matrix Gij (k) is expressed explicitly as

↔
G (k) = 1

8π3C2

⎛
⎜⎜⎝

(
�2

L − k2
3

) − �2
L

�2
t

k2
2

�2
L

�2
t

k1k2 k1k3

�2
L

�2
t

k1k2
(
�2

L − k2
3

) − �2
L

�2
t

k2
1 k2k3

k1k3 k2k3 �2
t − k2

1 − k2
2

⎞
⎟⎟⎠ , (B3)

where C2 = �2
t (�2

L − k2
3) − �2

L(k2
1 + k2

2), �2
t = k2 − εtk

2
0, and �2

L = k2 − εLk2
0.
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