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An analytical approach is used to describe the dispersion of phase resonances occurring between waveguide
cavity modes in compound transmission gratings. The strongly enhanced evanescent fields associated with the
phase resonances are used to derive an approximate closed-form equation for the dispersion of phase resonances.
The equation that is derived predicts the dependence of the frequencies and dispersion of the phase resonances
on structural feature sizes, material parameters, and the momentum of the phase resonance. This analytical
description is compared to results obtained by using a rigorous coupled wave algorithm. This equation allows
one to design a compound transmission grating that supports phase resonances with particular properties, such as
resonant frequencies and momenta. Applications of the phase resonances to high-finesse electromagnetic filters
and corrugated surface antennas are discussed.
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I. INTRODUCTION

Patterned materials have been shown to produce anomalous
optical effects, including extraordinary optical transmission in
periodically perforated metal films (produced either by surface
plasmons [1–5] or by waveguide cavity modes [6–8]), high
electromagnetic- (EM-) field enhancements near patterned
metal surfaces (i.e., plasmonic structures) [9], and unusual
light channeling properties of transformational optical materi-
als [10–12]. Included within this list of extraordinary optical
phenomena and structures should be phase resonances (PRs)
and the structures that support them. PRs are coupled cavity
modes within cavities in one-dimensionally periodic com-
pound reflection gratings (CRGs) [13,14], compound trans-
mission gratings (CTGs) [8,15–19], or in two-dimensionally
(2D) periodic cavity and hole arrays. Whereas, simple lamellar
gratings (SLGs) have only one groove in the infinitely repeated
unit cell, CRGs and CTGs have multiple grooves within the
unit cell with these multiple grooves having some difference or
dissimilarity between them (Fig. 1). These differences can be
different widths, dielectric filling materials, different distances
to neighboring grooves on their left-hand sides (LHSs) and
right-hand sides (RHSs), or some other aspect that makes
them not identical with respect to each other. For incident
light of particular frequencies and angles of incidence, these
structures can support PRs in which waveguide cavity modes
(WCMs) within the multiple grooves in the unit cell couple
strongly with each other as energy is transferred back and forth
between the cavities. This coupling results in an extraordinary
buildup of energy as the incident beam of light is captured
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by the PR. For some types of CTGs composed of lossless
materials, this buildup of energy and light concentration is
comparable to, or higher than, what is achievable with surface
plasmons, photonic crystals, and other optical modes [20].

PRs have been numerically modeled and experimentally
measured in numerous CRGs and CTGs [8,13,15–19,21,22].
However, there have been far fewer papers on theoretical
and analytical models of PRs that would provide valuable
information on the EM-field profiles, the frequency and
bandwidth of the resonances, the dispersion of the modes, the
phase and group velocities, and the EM-field enhancements
of the modes [21–23]. But there are two papers of merit
on analytical models of PRs. One paper is by Medina and
Mesa on a circuit model of extraordinary transmission and
PRs that predicts the optical properties of PRs once values
for capacitance parameters are determined by a 2D Laplace
equation solver [22]. Complementary to the circuit model is the
analytic model using a modal method, developed for particular
CTGs in Refs. [21,23] and further developed in this paper for
particular structures. In the papers by Fantino et al. [21] and
Skigin [23], a modal method is used in a very similar way
as used in the first part of this paper, yet they focus on CRGs
with many grooves in the unit cell (up to 19 in the case of
Ref. [21] and an arbitrary number in Ref. [23]) and show how
to use a modal method to numerically determine the EM fields
that compose PRs, the frequency at which PRs occur, and the
reflectance of the structure. In Ref. [23], the frequencies of
PRs in CTGs are approximately determined numerically by
solving for the frequencies at which particular functions go
to zero. At such frequencies, the amplitudes of the WCMs in
the grooves become large relative to the excitation beam (by
factors exceeding 106), this being one of the salient properties
of PRs.
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FIG. 1. The 2-groove CTG studied in this paper. The metal is
considered as a perfect electrical conductor (PEC). If the grooves are
identical and if s12 = s21, then the CTG converts to a SLG with a
period of x3 = �/2. There are two planes of mirror symmetry in the
physical structure, namely, the x-z and y-z planes. Mirror symmetry
about Plane A needs to be broken in order for the CTG to support
PRs.

The main focus of this paper is the use of an analytic method
to study the properties of PRs and to calculate a closed-form
expression for the frequencies and momenta of the PRs (i.e.,
the dispersion relation) that occur as a structure undergoes a
transition from a SLG to a CTG as one introduces an infinitesi-
mally small difference in the geometry or composition of every
other groove in the structure. This perturbation in the structure
results in the breaking of a symmetry of the system that enables
the structure to support PRs. Thus, the CTG studied in this
paper will have two only slightly dissimilar grooves within the
unit cell, referred to as a 2-groove CTG. It is at this SLG →
CTG transition where the PRs have the most compelling
properties, i.e., extraordinarily narrow bandwidths and large
field intensities relative to the incident beams that excite them
(see Fig. 2). The existence of a simple closed-form equation
that predicts the frequencies of PRs (ωpr ) would be very useful
because the PRs in low-loss or lossless structures can have such
narrow bandwidths that resolving them with the finite-element
method (FEM) and finite-difference time-domain (FDTD)
algorithms can be difficult [23]. This equation can then be used
to design a CTG with PRs with desired properties, frequencies,
and momenta. The equation can also be used to determine
the frequency around which frequency sweeps using FEM
and FDTD models should be performed to capture the optical
effects of PRs. In this paper, all the details of the mathematics
of the analytical model and rigorous coupled wave algorithm
(RCWA) have been shown so as to allow the reader to
implement these methods, however, these lengthy calculations
reduce down to a simple closed-form expression from which
one can extract the frequencies (ωpr ) and momenta (kx)
of PRs,
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FIG. 2. (Color online) The PR supported by the 2-groove CTG
studied in this paper. The CTG has a thickness of h = 1.5 μm and
a period of � = 1.45 μm with the unit cell that includes the two
dissimilar vacuum-filled grooves through a PEC metal film; the left
groove has a width of w1 = 0.25 μm, and the right groove has a width
of w2 = 0.245 μm; the substrate and superstrate are vacuums. The
magnetic field Re(Hz) of the PR excited by 0.337 eV (λ = 3.681 μm)
normal incident TM polarized light of unit amplitude (I0 = 1) is
shown. It is seen that this PR has a highly enhanced field with field
amplitudes over 300 times greater than the incident beam that excites
the PR (yielding an intensity enhancement and Q of over 104). The
figure also shows that the enhanced fields in the two grooves have
π -rad relative phase differences.

with β±1 = (εsk
2
o − α2

±1)1/2, α±1 = kx ± K, γ0 = √
εgko,

and ko = ωpr/c, where K = 2π/�, � is the period of the
2-groove CTG (i.e., the length of the unit cell that contains
both grooves), εs is the dielectric constant of the superstrate
and substrate (both are composed of the same material), h

is the height of the grooves, w and εg are the widths and
dielectric constants, respectively, of both grooves before the
perturbation is introduced in either of these two values, and
the sinc function is sinc(x) = sin(x)/x. The solutions of
Eq. (1) for ωpr for a range of kx values can be obtained to
yield the full dispersion curve of PRs in 2-groove CTGs.

This paper is organized as follows: First, a RCWA is
summarized. Second, the resulting set of equations is simpli-
fied to obtain the relation describing the dispersion relation
of PRs [i.e., Eq. (1)]. Third, the results predicted by this
relation are compared with results obtained from a full RCWA
algorithm.

II. RIGOROUS COUPLED WAVE ALGORITHM

The RCWA in this paper has been described in several
prior papers [6,21,23] and has been used to model periodically
patterned metal-dielectric structures with and without optical
loss in the materials. Important aspects of the RCWA algorithm
will be described in this paper because numerous aspects of
the calculation and the EM-field expansion modes will be
discussed throughout the remainder of this paper; a more
thorough description of the RCWA can be found in Ref. [6].
For structures with optical loss, a surface impedance boundary
condition can be used to include loss and to describe the field
penetration into the metals [6]. For structures without loss, the
metals are treated as PECs. In either case of lossless or lossy
structures, the RCWA algorithm expresses the fields in the
semi-infinite homogeneous superstrate (i.e., the topmost layer)
and the substrate as a linear combination of Floquet modes and
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expresses the fields in the two dissimilar grooves in the unit cell
as linear combinations of WCMs. And because the metals are
assumed to be PECs, the fields within the metal are assumed to
be zero. In this RCWA algorithm, all the electromagnetic-field
components have a exp(−iωt) time dependence, and cgs units
are used throughout the calculation.

For the top superstrate, the fields for TM Floquet modes are
expressed in terms of downward (upward) incident (scattered)
beams with field expansion coefficients I t

n (Rt
n); and in the

bottom substrate, the TM modes are expressed in terms of
upward (downward) incident (scattered) beams with field
expansion coefficients I b

n (Rb
n),
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Also used in Eqs. (2) are the relations,

αn = kx + nK, (3)

βn = (
εsk

2
o − α2

n

)1/2
, (4)

with kx as the net momentum in the x̂ direction of the Floquet
modes, ko = ω/c, with ω being the frequency of the incident
light. Note that Eq. (4) applies to both the superstrate and the
substrate because it is assumed that they are composed of the
same material.

As for the fields in the cavities, they are expressed as a su-
perposition of upward propagating (or upwardly evanescently
decaying) waveguide cavity modes with expansion coefficients
a

g
m and downward propagating (or downwardly evanescently

decaying) waveguide cavity modes with expansion coefficients
b

g
m with g = 1 for groove 1 and g = 2 for groove 2,
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where x1
o = 0 and x2

o = x3 are the x coordinates of the
left vertical metal walls of grooves 1 and 2, respectively
(see Fig. 1) and w1 and w2 are their respective widths.
Additionally, for grooves with PEC sidewalls, μm and γm are
as follows:

μg
m = m

π

wg

, m = 0,1, . . . , (6)

γ g
m = [

εgk
2
o − (

μg
m

)2]1/2
. (7)

Note that, throughout the remainder of this paper, the
modes will be identified by their expansion coefficients
I t
n, Rt

n, I b
n , Rb

n, a1
m, b1

m, a2
m, and b2

m. Also note that, because
of the notation that has been chosen with the groove identifier
in the superscript, the squares of the groove-2 quantities
μ2

m, γ 2
m, φ2

m, and a2
m are denoted as (μ2

m)2, (γ 2
m)2, (φ2

m)2, and
(a2

m)2 to avoid confusion.
Two different calculations are performed in this paper.

One calculation uses the full RCWA algorithm with only one
incident beam, whose energy and angle of incidence are varied
to obtain the reflectance and transmittance as a function of
energy and incidence angle. From this reflectance curve, a PR
dispersion curve is identified and is used as a comparison for
the results obtained from the second calculation. The second
calculation is the focus of this paper and involves the derivation
and analysis of the PR dispersion relation.

III. RCWA AND ASYMMETRICAL EXCITATION

For the first calculation, all the symmetry of the system is
destroyed by applying an incident beam only from the top of
the structure and at off-normal angles of incidence. Thus, the
full RCWA algorithm is needed for this problem in which there
are no symmetry-enabled relations between the unknown field
expansion coefficients Rt

n, Rb
n, a1

m, b1
m, a2

m, and b1
m.

Similar to what is performed in Ref. [6], boundary condi-
tions (BCs) are imposed at the interfaces within the structure.
Namely, continuity of Hz across the top entrance of groove
1 and groove 2, continuity of Ex over the entire unit cell at
y = h/2, and three additional and similar BCs are imposed for
the interfaces at y = −h/2. The resulting equations are cast
into a matrix equation of the following form [6]:

M� = �, (8)

where M is the coupling matrix, � is the column matrix of
unknown field expansion coefficients, and � is the column
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matrix of initial conditions,

� = (R a1 b1 a2 b2 R̃)�, (9a)
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with Rt, I t , a1, b1, Rb, I b, a2, and b2 as column matrices
of the field expansion coefficients, and the other matrix
definitions are as follows:
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2, if m = p = 0,

1, if m = p �= 0,

0, otherwise,
(12)

φg
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{
eiγ

g
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0, if m �= p,
(13)

with Cnm(αn) = Amn(−αn) and Dnm(αn) = Bmn(−αn).
For the first calculation with only a single excitation beam,

incident from the top of the structure, one has

I t
n =

{
1, if n = 0,

0, if n �= 0,
(14a)

I b
n = 0 for all n. (14b)

The values of ω and kx of this incident beam will be
varied over all possible values below the onset of the far-field
diffraction. Once this incidence condition is given, the full
RCWA algorithm is used to solve for the reflectance |R0|2 and
the transmittance |R̃0|2.

Consider a lossless CTG shown in Fig. 1 that is composed
of lossless materials, has a period of � = 1.495 μm, a film
thickness of h = 1.5 μm, PEC as the metal, vacuum as the
superstrate and substrate, and two vacuum-filled grooves per
unit cell with groove 1 having a width of w1 = 0.25 μm
and with groove 2 having a width of w2 = 0.245 μm with
equal spacings between the grooves of s12 = s21 = 0.5 μm.
Thus, the only difference between the grooves is the small

5-nm difference in widths, but this slight difference is enough
to produce a PR that, at normal incidence (kx = 0), occurs
at Epr = 0.3375 eV. Note that, for a lossless structure, any

relative difference in the two grooves that breaks the mirror
symmetry about Plane A (Fig. 1), regardless of how small,
and will yield a structure that can support a PR [24]. The
transmittance as a function of energy (h̄ω) and kx is shown
in Fig. 3. The optical properties of PRs have been described
in Refs. [8,20,24], but one interesting thing to note at this
point is that this PR band has a negative group velocity for all
energies and momentum except for kx = 0; this predicts that,
when an incident beam has a momentum in the +x̂ direction,
the PR will have a flow of energy in the −x̂ direction [24]. As
stated before, the optical properties of the PRs in this structure
are numerically modeled and are described in Refs. [8,20,24];
thus, let us move on to the main focus of this paper, namely,
the derivation and analysis of the dispersion relation of PRs
using the analytic model.

FIG. 3. (Color online) The transmittance of the 2-groove
CTG with � = 1.495, h = 1.5, w1 = 0.25, w2 = 0.245 μm, εs =
ε1 = ε2 = 1, and equal wire widths s12 = s21 = 0.5 μm. There is a
broad bandwidth transmission peak centered about 0.375 eV due to a
WCM and a very narrow bandwidth PR band at 0.3375 eV for kx = 0
and with a negative group velocity. The otherwise high transmission
of the WCM is flipped by the PR to produce close-to-unity reflectance.
The inset shows an expanded view of the PR dispersion curve,
showing that the analytic equation provides a good approximation
to the result obtained from the full RCWA.
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IV. SYMMETRIC EXCITATION AND THE PHASE
RESONANCE DISPERSION RELATION

Consider the situation where the structure is excited by
beams incident from the top and bottom of the system. Due
to the mirror symmetry of the physical structure about the
x-z plane, if the incident beams have the same magnitude, kx ,
and phase, then using Eqs. (8) and (9), it is easy to show that
Rm = R̃m, a1

m = b1
m, and a2

m = b2
m and that Eqs. (8) and (9)

reduce down to two identical smaller sets of equations. This
smaller set of equations is expressed as

M̂�̂ = �̂, (15)

where M̂, �̂, and 
̂ are now

�̂ = (R a1 a2)�, (16a)

� = (−AI −BI − �β
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)�
, (16b)
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B 0 −N [φ2 + (φ2)−1]
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ε1ko
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ε2ko
[φ2 − (φ2)−1]

⎞⎟⎟⎠ .

(16c)

When modeling the type of structures studied in this paper,
namely, 2-groove CTGs with the two grooves in the unit cell
having only a slight relative difference, it is seen that only
particular modes in the superstrate, cavities, and substrate
contribute to the PR. For this structure, just slightly perturbed
away from being a SLG, the first-order Floquet modes (i.e.,
R±1 and R̃±1) and the zeroth-order WCMs (i.e., a1

0, b1
0, a2

0 , and
b2

0) primarily compose the PR, and these expansion coefficients
are much larger than all other field expansion coefficients,
including the incident beams that excite the PR (i.e., I0 and
Ĩ0) (Fig. 4). Thus, we can reduce the set of equations given
by Eq. (15) to a much smaller set of equations when a PR
occurs. And once we let the perturbations in geometry and
composition of the second groove relative to the first groove
go to zero, namely, having ε2 → ε1 = εg, w2 → w1 = w, as
well as having x3 → �/2, then γ 2

0 → γ 1
0 = γ0 and Eqs. (16)

yield the relations,

a2
0 = −eikx (�/2)a1

0, (17)

FIG. 4. The magnitudes of the Floquet modes (i.e., |Rn|) when
the 0.3375-eV PR is excited. It is seen that, of the infinite number of
possible Floquet modes, it is primarily the R±1 Floquet modes that
compose the PR.
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along with the equation that describes the dispersion of the
PR,
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(20)

V. DISCUSSION

Equation (20) provides a description on the frequencies of
PRs as a function of structural geometry, composition, and
momentum. The values that Eq. (20) predict, along with the
values obtained using the full RCWA algorithm, are shown
in Fig. 3. It is seen that there is good agreement between the
two methods, yet there are some slight differences between the
values predicted by Eq. (20) and the RCWA values. However,
the analytic model and Eq. (20) provide a way to quickly obtain
a good approximation for the full dispersion curve of PRs that
would otherwise require long computing times to generate by
using FEM, FDTD, modal methods, or other methods. Once
the approximate properties are obtained, these other methods
can be used to obtain more accurate values for the frequencies
of PRs.

To assess the accuracy of Eq. (20) and its range of
applicability, 14 variations of the 2-groove CTG are modeled
with the full RCWA, and the energies of the PRs are compared
with the results obtained from Eq. (20). The aspect of the
structure that is expected to most affect the accuracy of Eq. (20)
is the width of the grooves relative to the total width of the
unit cell, i.e., �. Thus, the 14 structures all have a period of
� = 1.495 μm, a film thickness of h = 1.5 μm, with vacuum
in the grooves, superstrate, and substrate; but the widths of
the grooves and wires change such that the fractional area
of the unit cell occupied by both grooves (f ) varies from
f = 6% to f = 93%. Showing the full dispersion curves for
all 14 structures is not necessary because they all show similar
results, namely, a high degree of agreement between the full
RCWA and Eq. (20), yet, particular situations are shown in
Figs. 3 and 5–7. Figures 3, 5, and 6 show the complete
PR dispersion curves for three structures with medium (f =
66.5%), low (f = 6.4%), and high (f = 93.3%) values of f .
Two angles of incident light are investigated further, namely,
0◦ (i.e., normal incidence) and light incident at a glancing
angle to the structure, namely, ∼90◦. In Fig. 7, it is seen
that the accuracy of Eq. (20) in predicting the energies of
PRs excited by ∼90◦ incident light is comparable to the
accuracy of Eq. (20) for normal incident light. Thus, in all 14
structures, for structures with narrow grooves and structures
with wide grooves, for normal incident light and for glancing
light, Eq. (20) predicts, to a high degree of accuracy, the values
of energies of the PRs of particular momenta and accurately
predicts the general shape of the dispersion curve.
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FIG. 5. (Color online) The transmittance of the 2-groove CTG
with � = 1.495, h = 1.5, w1 = 0.05, w2 = 0.0495 μm, εs = ε1 =
ε2 = 1, and equal wire widths s12 = s21 = 0.697 75 μm. The inset
shows an expanded view of the PR dispersion curve, both the energies
of the PRs and the shape of the dispersion curve are accurately
predicted by Eq. (20) when compared to the results obtained from the
full RCWA.

There is one important caveat to the proceeding discussion
on the accuracy of Eq. (20) and an additional restriction on the
use of the equation. Equation (20) assumes that there are no
other electromagnetic modes with energies close to those of the
PRs. If there are, then these modes can produce “anticrossing,”
pushing the dispersion curve of the PR up or down in the ω-k
plot as is seen in many other photonic structures.

If the two exciting beams are of normal incidence such that
kx = 0, then (20) can be set into the form

4iεs

πεgβ1
γ0 tan(γ0h/2) = 1

πw
�

sinc2(πw/�)
, (21)

where β1 and γ0 are given by

β1 =
√

εs

ω2

c2
−

(
2π

�

)2

= i

√(
2π

�

)2

− εs

ω2

c2
, (22)

γ0 = √
εg

ω

c
, (23)

with the radicand in the right-most side of Eq. (22) being
positive (i.e., 2π/� <

√
εsω/c).

FIG. 6. (Color online) The transmittance of the 2-groove
CTG with � = 1.495, h = 1.5, w1 = 0.7, w2 = 0.695 μm, εs =
ε1 = ε2 = 1, and equal wire widths s12 = s21 = 0.05 μm. The inset
shows an expanded view of the PR dispersion curve using RCWA
and Eq. (20).

FIG. 7. The percent difference between the energies of the PRs
computed using the full RCWA and the derived dispersion curve
[Eq. (21)] for 14 structures with the same film thickness (h =
1.5 μm), period (� = 1.495 μm), and materials (vacuum and PEC)
but with progressively larger groove widths and smaller wire widths
and for angles of incidence of 0◦ and 89.9◦. It is seen that the errors
are small for normal incidence and wider groove widths but become
larger for higher angles of incidence.

Concerning the task of designing a CTG with PR properties
suitable for particular applications, it is useful to note that the
left-hand side of Eq. (21) is dependent on many aspects of
the structure, but most importantly, it is dependent on the
frequency ω and not dependent on the width w, whereas, the
right side is dependent on the width w but not on ω (Fig. 8).
This provides an easy way to tune the wavelength of the PR
by plotting the left side of the equation and then choosing
the width necessary for Eq. (21) to be satisfied at the desired
wavelength.

Another interesting aspect of Eq. (21) is what it predicts for
the relationship between the wavelength of the transmission
peak of the WCM and the wavelength of the PR (i.e., λpr =
2πc/ωpr ). With the type of SLG and CTG studied in this paper
with vacuum in the superstrate and substrate, the wavelength of
normal incident light that excites the WCM is approximately
equal to twice the optical height of the groove (i.e., λWCM =
2
√

εgh). As is seen in Fig. 3, the transmission peak of the

FIG. 8. The plot of the LHS and RHS of Eq. (21). The LHS is
independent of groove width w, whereas, the RHS is independent
of the wavelength or frequency. Thus, for a grating with a fixed
period, thickness, and dielectric materials, the frequency of the PR
ωpr = 2πc/λpr can be tuned by adjusting the width of the groove
while keeping constant all other parameters (e.g., period �, thickness
h, and dielectric of the groove material εg).
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WCM occurs at λ = 3.25 μm (0.382 eV); the slightly higher
wavelength of the WCM compared to 2

√
εgh is attributed to

the fact that the fields of this resonant mode are not entirely
confined to the cavity but can extend out into the superstrate
and substrate by a certain amount dependent on the Q of
the WCM, making for a larger effective groove height than the
actual geometric height [25]. Now, when looking at the LHS of
Eq. (21), one sees that the tangent term produces a singularity
at ν0h/2 = π/2 (corresponding to the wavelength of normal
incident light of λ = 2

√
εgh) with the LHS diverging to −∞

when approaching λ = 2
√

εgh from smaller values of λ and
diverging to +∞ when approaching λ = 2

√
εgh from larger

values λ (Fig. 8). The RHS of Eq. (21), however, is independent
of wavelength, always positive, and goes to infinity as w → 0.
Thus, the smallest wavelength for which the LHS and RHS
intersect occurs when the RHS goes to infinity (when w → 0)
and occurs at λ = 2

√
εgh. This value of λ = 2

√
εgh is then

the minimum wavelength that any PR can have in a lossless
CTG of height h and groove dielectric εg . The maximum value
of λpr can be significantly larger than 2

√
εgh as the groove

widths are increased towards the maximum possible value of
�/2.

For example, say that one wants to minimize λpr in a CTG
by adjusting the groove width w while keeping the period
� and all other aspects of the grating the same. Based on
this analysis, one would minimize w. In doing so, the Q of
the WCM would be increased (because it is proportional to
h/w), and the transmission peak of the WCM would converge
to 2

√
εgh, the same value that λpr is approaching. Thus, for

a 2-groove CTG with two very narrow grooves with only a
small dissimilarity, the PR will bisect the WCM transmission
peak, yielding a narrow bandwidth transmission null within a
larger bandwidth WCM-produced transmission peak as noted
in Ref. [18].

It is clear that phase resonances are a type of Fano
resonance (FR) with the three types of line shapes possible
that are typical of FRs, including the asymmetric line shape
typically associated with Fano resonances [26]. With FRs,
one is interested in not only predicting the frequency of the
resonance, but also predicting the line shape. A full discussion
of the calculation of the bandwidths and line shapes of the
FRs is outside the scope of this paper, but Ref. [26] details
how the line shapes of the transmittance and reflectance can
be calculated by using the detuning factor of the system,
which itself is determined by the frequencies and bandwidths
of the two slightly dissimilar and coupled cavities. Yet, one
should exercise caution when attempting to use the line-shape
equations described in Ref. [26] with the phase resonances
described in this paper. This is because the individual cavity
modes that compose the phase resonances can have very large
bandwidths, and the equations in Ref. [26] would yield a small
detuning factor, a small transmission, and a large reflectance
when the FR (PR in this paper) is not excited. However, this is
counter to what is observed with the phase resonances studied
in this paper.

PRs can be used for high-finesse high-Q electromagnetic
(EM) filters and for a new type of corrugated surface antenna
(CSA). The Q of the PRs can be extraordinarily high
(exceeding 106); as the relative differences of the grooves
within the unit cell go to zero, the Q of the PRs goes to infinity

for lossless structures [24]. With the ability to “dial in” the
Q and frequencies of PRs [using Eq. (21)], EM filters can
be designed that are only single-layer structures. Additionally,
these filters can also serve as an antenna structure, similar to
how CSAs are used and are configured [24]. CSAs that use PRs
may provide benefits in terms of a wider range of properties,
achievable through the appropriate design of the structure, as
opposed to conventional CSAs that use TEM modes in the
grooves.

Lastly, the aspect of competition between structural per-
turbation and loss and how it effects the dispersion curve
is highly important for Fano resonances [27]. In an earlier
paper of ours on the time-dependent excitation and decay of
PRs, an analysis is performed on how loss affects PRs [24].
In Ref. [24], it is discussed that the more similar the two
grooves are to each other (i.e., the smaller the perturbation),
the stronger the enhanced EM fields of the PR and the
narrower the bandwidth of the PRs are. It is then shown that,
for particular structures with real metals (i.e., aluminum),
PRs in the infrared spectral range (λ = 8–12 μm) can exist
and can cause a strong inversion in the transmissivity or
opacity of the film, however, there is a certain amount of
dissimilarity of the two grooves that is necessary to lower
the enhancement of the EM fields associated with PRs such
that the PR is not overdamped. In other words, if the two
dissimilar grooves in the unit cell are not different enough,
the PRs cannot be established because of prohibitively large
optical losses in the metal wires. Yet, if the two grooves have a
greater dissimilarity than this minimal necessary amount, the
general trend is for decreasing absorption and increasing PR
bandwidth for greater dissimilarity between the two grooves
in the unit cell. The reader is referred to Ref. [24] for a
more thorough discussion on the matter of loss and phase
resonances.

VI. CONCLUSION

An analytic model was developed to describe the properties
of phase resonances and to calculate their dispersion relation.
It was found that these highly resonant light-concentrating
modes are composed of particular electromagnetic modes in
the grooves of the structure and in the layers above and below
the structure. The dispersion relation of phase resonances was
derived, providing a convenient tool to design compound trans-
mission gratings that support phase resonances with particular
properties, frequencies, and momenta. The analytical approach
can be extended to calculate the dispersion relation for more-
complicated compound grating structures that include more
than two grooves in their unit cells. Applications of phase
resonances include high-finesse electromagnetic filters and
corrugated surface antennas that can be conformal to curved
surfaces, light weight, and robust.
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