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In this article, the processes of energy absorption and coherent transfer in a dimer are studied. The dimer
includes two two-level pigments, donor and acceptor, where the donor is assumed to be excited by a control pulse
in the time domain. We investigate the dynamics of probability that the acceptor is in the excited state and the
total efficiency of energy absorption and transfer under different temporal shapes of the control pulse. Quantum
concurrence of the dimer is also discussed.
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I. INTRODUCTION

The primary processes in photosynthesis have been paid
much interest [1–7] from the broader physical community
in recent years, thanks to experimental observation via
electronic spectroscopy technology [8] demonstrating that
quantum coherence is involved in the excitation energy
transfer of the light-harvesting complexes [3] and Fenna-
Matthews-Olson complex [9]. In most of the photosynthetic
processes, photochemical excitation of an antenna molecule by
absorbing a pulse of light takes place first, and the absorbed
excitation energy is then transferred among molecules of the
photosynthetic systems until reaction centers where the energy
is converted into chemical energy [1–3].

According to the Förster theory [10], when the electronic
coupling between pigments is small in comparison to the
electron-environment coupling, the energy transfer between
different pigments takes place through incoherent hopping,
where the electronic coupling can be treated perturbatively. On
the contrary, when the electronic coupling between pigments
is similar or larger than the reorganization energy of the
pigments, electronic excitations then move coherently through
different pigments rather than by incoherent hopping motion
[11]. In the later case, the electron-environment coupling
can be treated perturbatively to obtain a quantum master
equation [12]. Recent experimental [13–17] and theoretical
works [18–39] support the coherent transfer case and indicate
that long-lasting electronic coherence can indeed influence
the excitation-transfer dynamics in photosynthetic complexes.
The process of energy transfer takes only a few hundred
picoseconds and is performed with extraordinarily high effi-
ciency [3]. In most of the above theoretical works, investigation
has been focused only on the energy-transfer processes, with
the assumption that the initial pigments are in their excited
states. However, this assumption is possible only when the
shape of light pulses is very sharp, i.e., nearly a δ-function
pulse. In this situation, the process of light absorption occurs
rapidly before excitation energy transferring starts. In fact, the
shape of the pulses that antenna molecules absorb may have
temporal width, which means that the processes of energy
transferring always take place at the same time with the
processes of absorbing light pulses. Therefore it is necessary
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to consider the effects of the shape of pulses on efficiency of
energy transfer. This is the key motivation of our present work.

To investigate how the shape of light pulses affects the
processes of energy absorption and transferring, instead of
considering a complicated network of pigments where the
practical transfer processes take place, we will study a basic
physical part to obtain the physical mechanism: a dimer system
which consists of a donor pigment and an acceptor pigment
modeled by two two-level systems. With the assumption that
the two pigments are both in their ground states initially,
we will study the dynamics of the dimer system after the
donor pigment is excited by a light pulse and absorbs the
energy of light. The efficiency of the energy absorption and
transfer will be discussed by calculating the probabilities of
the acceptor pigment in its upper state. Our study is suitable for
quantum control settings under artificial laser light conditions.
The previous studies in molecular dimers and excitation with
coherent pulses can be found in [40,41].

The paper is organized as follows. In Sec. II, a theoretical
model and simple analyses are presented. In Sec. III, numerical
results are shown. Conclusions and final remarks are presented
in Sec. IV.

II. THE THEORETICAL MODEL AND
THE ASSOCIATED DYNAMICS

The free Hamiltonian of the two pigments is

H1 = 1
2ω1σ

(1)
z + 1

2ω2σ
(2)
z , (1)

and the coupling Hamiltonian between the two pigments is
given by

H2 = J (σ (1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+ ), (2)

where ωi represents energy separation of the ith pigment, J is
the coupling strength, and σ (i)

z = |e〉i〈e| − |g〉i〈g| is the Pauli
operator for the ith pigment; σ

(i)
+ = |e〉i〈g| and σ

(i)
− = |g〉i〈e|

are the arising and lowering operators for the ith pigment,
respectively. If we assume that the donor pigment is excited
by an external pulse, the associated Hamiltonian is

H3 = E(t)σ (1)
+ + E∗(t)σ (1)

− , (3)

where E(t) = E�(t)ei�t is a time-dependent amplitude of the
external pulse. For example, for the Gaussian-type laser pulse,
E�(t) = E0√

2πτp

e−t2/2τ 2
p , and τp is the FWHM of the pulse.
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H1, H2, and H3 are the Hamiltonian of the two-level system,
which can be simply denoted by HM = H1 + H2 + H3. In
real photosynthetic systems, the effect of noise from the
environment (e.g., vibrational modes of protein molecules
in the environment) is unavoidable. Here, we naturally use
a Bose bath to denote the environmental modes, and the
coupling Hamiltonian of the system and the environmental
modes is

HMB =
2∑

j=1

σ (j )
z

∑
kj

gkj

(
a
†
kj

+ akj

)
, (4)

where a
†
kj

is the creation operator of the Bose bath with mode
kj , and gkj

is the coupling strength between the j th pigment
and the mode kj of the bath. The free Hamiltonian of the bath
is

HB =
∑
kj

νkj
a
†
kj

akj
, (5)

where νkj
represents the frequency of the mode kj .

To get the evolution of the system, we first write the Hamil-
tonian into its eigenspace. The eigenequation of the systems is
given by HM |εj 〉 = εj |εj 〉, where |εj 〉 is the corresponding
eigenvector for the j th eigenvalue εj . With solving the
corresponding secular equation |HM − εI | = 0, we obtain the
four eigenvalues ε1,2 = ∓ 1

2

√
ε1 + 2ε0, ε3,4 = ± 1

2

√
ε1 − 2ε0,

where ε0 =
√

4|E|2(J 2 + ω2
2) + (J 2 − ω1ω2)2, and ε1 = 2J 2 +

4|E|2 + ω2
1 + ω2

2. We notice that ε2 � ε3 � ε4 � ε1. For each
eigenvalue εi , the corresponding eigenvector |εi〉 is a linear
superposition of the four bare states |η1〉 = |ee〉, |η2〉 = |eg〉,
|η3〉 = |ge〉, and |η4〉 = |gg〉 of the two-level system. If we let
|ε〉 = [|ε1〉,|ε2〉,|ε3〉,|ε4〉]T , and |η〉 = [|η1〉,|η2〉,|η3〉,|η4〉]T ,
and use U = {uij } to denote the transform matrix from |ε〉
to |η〉, then we have a simple form between the original state
vectors and the eigenstate vectors,

|η〉 = U |ε〉. (6)

In the eigenspace, the diagonal form of the Hamiltonian is

HM =
4∑

i=1

εi |εi〉〈εi |. (7)

In the new basis, the Pauli operators σ (m)
z = |e〉m〈e| − |g〉m

〈g| = ∑4
i,j=1 s

(m)
ij |εi〉〈εj |, where s

(1)
ij = u1iu

∗
1j + u2iu

∗
2j −

u3iu
∗
3j − u4iu

∗
4j and s

(2)
ij =u1iu

∗
1j − u2iu

∗
2j+u3iu

∗
3j−u4iu

∗
4j .

Using these notations, we rewrite the coupling Hamiltonian
as

HMB =
2∑

l=1

∑
kl

4∑
i,j=1

s
(l)
ij gkl

|εi〉〈εj |
(
a
†
kl

+ akl

)
. (8)

To give an elementary view of the dynamics of our model,
we first consider a closed evolution based on the HM . With
assuming that the two pigments are both in their ground
states initially, |ϕ(0)〉 = |gg〉 = |η4〉 = ∑4

j=1 u4j (0)|εj 〉, and
after applying to the Schrödinger equation, we have the formal
solution of the system |ϕ(t)〉 = e−i

∫
HM (t)dt |ϕ(0)〉. We consider

two extreme cases: J−1 � τp and J−1 � τp.

In the first case of J−1 � τp → 0, the input pulse is a
sharp wave packet, because a → 0, 1

a
√

π
e−x2/a2 → δ(x). This

means that for the Gaussian-type pulse, E�(t) → E0δ(t) with√
2τp → 0. We thus suppose that the whole dynamic process

has two steps: (1) the donor pigment is excited by the input
pulse; and (2) excitation energy transfers from the donor to the
acceptor. In the first step, we find HM ≈ H3 as E(t) ∼ δ(t);
thus we have the dynamic states at time t1 after the pulse
takes action, |ψ(t1)〉 = e−i

∫ t1
0 H3(t ′)dt ′ |gg〉 = eiγ0 |eg〉. After the

action of δ(t) pulse, as E(t) ∼ 0, we have HM ≈ H1 + H2,
which corresponds to the second step, i.e., energy transferring
from the donor pigment to the acceptor pigment starts when
the donor pigment is in its excited state, which is also the
common assumption in some of the published works about
quantum dynamics of photosynthesis [28–33].

The second extreme case associates to a near flat and
continuous action pulse, with assuming simply that E(t) ∼ Ec.
We then find that |ψ(t)〉 ≈ ∑4

j=1 u4j (0)e−iεj t |εj 〉. Normally,
the shape of a pulse absorbed by an antenna molecule is not
sharp—the pulse has width in the space and time domain.
Spatial and temporal coherence, and other effects coming from
its shape, should be considered, and the process of excitation
transfer is surely affected by these effects because the spatial
and temporal width of a control pulse is similar to the space
and time scale in excitation transfer processes [13–17]. On
the one hand, as the wave packet of the photons captured
by antenna pigments is always larger than or comparable
to the scales of multichromophoric molecules [6], the initial
excitation takes place coherently among the antenna pigments.
Thus the efficiency of energy transferring from the antenna
to the reaction center depends intimately on the quantum
superposition properties of the initial states [18], and this
initial spatial coherence will enhance or trap transfer of the
donor pigments at different conditions [18–22]. Similarly,
on the other hand, under a single excitation assumption, a
pulse with temporal width will induce excitation coherent at
different times, i.e., with different phase, the temporal shape of
an input pulse can also affect processes of excitation transfer.
For example, in a process of absorbing and transferring energy
with a flat input pulse, the donor is first excited from |gg〉 to
|eg〉 by the front part of the input pulse, and then coupling
between two pigments induces excitation transfer from |eg〉 to
|ge〉; the next part of the pulse will then coherently stimulate
the pigments from |gg〉 to |eg〉 and from |ge〉 to |ee〉. This
means the donor is then always in its excited states, which
will lead to saturation of energy absorbing and transferring,
thus increasing dissipation and reducing efficiency. Therefore,
in a more realistic pulse-absorbing process of photosynthesis,
one needs to not only consider efficiency of energy transfer
between different pigments, but also investigate the whole
efficiency, including pulse energy absorption. To investigate
the whole efficiency including pulse energy absorption and
energy transfer from the donor to the acceptor, we directly use
the area under the pulse figure in the time domain to denote
the total power of the pulse, and define a parameter of total
efficiency as follows:

ηtotal = ω2Tr[|e〉2〈e|]∫ |E(t)|2dt
. (9)
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FIG. 1. (Color online) Probability P that the acceptor is in the excited state and the parameter of total efficiency ηtotal versus time ωt are
plotted. We set ω1 = ω2 = ω, J = 1.5ω, κ1 = κ2 = 0.1ω, T1 = T2 = 0.1ω. The same parameters are also chosen in the following figures,
unless specially mentioned.

Note that the parameter ηtotal is not a true efficiency because it
will be larger than 1 under some conditions. To compare the
case without considering absorption processes, we will also
draw figures of the probability that the acceptor is in its excited
state, i.e., P = Tr[|e〉2〈e|]. Generally, the population in the
donor pigment should be considered because the population
correlates with the whole efficiency. However, in the present
studies, the pigment-environment coupling is assumed smaller
than the coupling between pigments. There are only resonant
and near-resonant frequencies in the pulse to match the
eigenstates which overlap with the donor pigment. So we will
not consider the population in the donor pigment.

It is also important to study the dynamics of quantum
entanglement of typical dimer systems. We choose the concur-
rence C to quantify the entanglement [42], which is defined
C = max{0,ε0}, and ε0 = ε1 − ε2 − ε3 − ε4, where εi are the
square roots of the eigenvalues of ρρ̃ in decreasing order, and
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

III. THE MASTER EQUATION AND NUMERICAL
INVESTIGATION

In the eigenspace and under the second-order approxima-
tion of the coupling between the two-level systems and the
environment, the master equation is in the following form:

ρ̇(t) = −i[HM (t),ρ(t)] + Lρ(t), (10)

where the Lindblad operator is Lρ(t) = −∑12
μ=1 ξμ

({π+
μ πμ,ρ(t)} − 2πμρ(t)π+

μ ). The detailed parameters are
given by

ξm =
{

εij

∑2
l=1 κks

(l)
ij s

(l)
ji [Nl(εij ) + 1]; m � 6

εij

∑2
l=1 κks

(l)
ij s

(l)
ji Nl(εij ); 7 � m � 12

, (11)

where ξm corresponds to all six level gaps greater than zero:
ε21, ε23, ε24, ε31, ε34, and ε41, respectively, and π1 = π+

7 =
|ε3(t)〉〈ε2(t)|, π2 = π+

8 = |ε4(t)〉〈ε2(t)|, π3 = π+
9 = |ε1(t)〉

〈ε2(t)|, π4 = π+
10 = |ε4(t)〉〈ε3(t)|, π5 = π+

11 = |ε1(t)〉〈ε3(t)|,

π6 = π+
12 = |ε1(t)〉〈ε4(t)|, Nl(εij ) = 1/(eεij /KBTl − 1). In the

above deduction, the usual Born-Markov approximation
and the rotating-wave approximation are performed, and
an ohmic spectral density with infinite cut-off frequency is
also assumed for the heat bath. To evaluate the dynamic
features of the systems under dissipation, we let ρkl(t) =
〈εi(t)|ρ|εi(t)〉 and X(t) = [ρ11,ρ22,ρ33]T , with the relation
ρ11 + ρ22 + ρ33 + ρ44 = 1. Based on these notations, we get
the following dynamic equations that denote the process of
thermalization:

Ẋ(t) = −M(t)X(t) + R(t), (12)

and

ρ̇kl(t) = −(ηl + ηk − iεlk)ρkl(t), k �= l, (13)

where R(t) = 2[ξ9,ξ11, − ξ12]T , η1 = ξ9 + ξ11 + ξ12,

η2 = ξ1 + ξ2 + ξ3, η3 = ξ4 + ξ5 + ξ7, η4 = ξ6 + ξ8 + ξ10,

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τp (ω−1)

η t
ot

al 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

τp (ω−1)

P

J=1.5ω
J=2ω
J=3ω

FIG. 2. (Color online) The saturation values of ηtotal and P (inset)
with different J versus τp are plotted.
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FIG. 3. (Color online) Quantum concurrence between the two
pigments versus time ωt are plotted.

and

M(t) = 2

⎡⎢⎣ ξ9 + η2 ξ9 − ξ7 ξ9 − ξ8

ξ11 − ξ1 ξ11 + η3 ξ11 − ξ10

ξ12 − ξ2 ξ12 − ξ4 ξ12 + η3

⎤⎥⎦ . (14)

Based on these equations, we can obtain the elements of
the density matrix in the original space:

σij ≡ Tr[ρ|ηj 〉〈ηi |] =
4∑

k=1

4∑
l=1

ujku
∗
ilρlk. (15)

In the following section, we will show some numerical
results of the dynamical properties of the model based on
Eq. (15).

A. Excited by a single Gaussian-type pulse

We first suppose that the input pulse is a Gaussian-type
pulse, which has the same form as we mentioned previously. In
order to compare the input and output energy in our numerical
results, we assume that the amplitude of input pulse is
E0 = ω1.

In Figs. 1(a) and 1(b), we plot the probability P that the
acceptor pigment is in the excited state and the associated
ηtotal versus time, respectively. We let ω1 = ω2 = ω [43], and
set ω = 1 as the calculation unit. The largest width of the pulse
is chosen as τp = 10J−1 (solid blue line), in which J−1 is used
to valuate the time scale of state exchange between the two
pigments. We set τp = 0.01J−1 (solid brown line) to simulate a
δ pulse. We find from the figures that both P and ηtotal oscillate
with time and approach saturation. For the case that τp values
are small, oscillation represents that the excited states and
excitation energy transfer between the two pigments. But for
the case of τp = 10J−1, we easily find that the dynamics of P

is in connection with the processes of excitation. In the case of
inputting a δ pulse, the acceptor is always in the excited states
but the dimer has the smallest total efficiency ηtotal, which
means that higher probability of the acceptor being in the
excited state is not equivalent to successful energy absorbing
and transferring in a photochemical reaction process. Figure 2
shows that the saturation values of P are decreasing with
increasing τp, but there is an optimum of intervals of τp for
the saturation values of ηtotal.

We also draw the dynamics of quantum concurrence
between the two pigments in Fig. 3. We observe from the
figures that quantum entanglement can be produced in the
dimer when the donor is excited by a pulse, and find that a
shorter temporal pulse will induce larger entanglement.

B. Excited by sequential Gaussian-type pulses

In the above, we have studied the dynamics of a dimer being
excited by a single Gaussian pulse. In order to understand
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FIG. 4. (Color online) Probability P that the acceptor is in the excited state and the parameter of total efficiency ηtotal versus time ωt are
plotted. We set the width of the pulse at τp = 0.01J −1 and τp = 0.1J −1 in (a) and (b), respectively.
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FIG. 5. (Color online) Probability P that the acceptor is in the excited state and the parameter of total efficiency ηtotal versus time ωt are
plotted. We set the width of pulses as τp = 0.5J −1 and τp = J −1 in (a) and (b), respectively.

how temporal properties of an input pulse affect the quantum
dynamics of the dimer, we now consider some more complex
cases.

In the figures from Fig. 4(a) to Fig. 6(a), we consider the
case that the donor pigment is excited sequentially by two
of the same Gaussian-type pulses. The central time of the
first pulse is ωt = 0, and the central time of the second pulse
is ωt = 15. In Figs. 4(a) and Fig. 4(b), we set the width of
the pulse at τp = 0.01 and 0.1J−1, respectively. We find that
in both cases, compared with the associated Figs. 1(a) and
1(b), the probability P has only a sharp slip down during the
second acting pulse, and ηtotal has a sudden decrease. However,
when we set τp = 0.5J−1 and τp = J−1 in Figs. 5(a) and
Fig. 5(b), respectively, we find contrary phenomena, i.e., the

probability P has an upward change during the second pulse
turning on and similar changes to ηtotal, decreasing finally.
There should be two physical mechanisms to understand the
phenomena in Figs. 4 and 5. In the first aspect, we observe
that probability P is always larger than 0.5 when the second
pulse is absent in the cases of τp = 0.01 and 0.1J−1, which
means that the acceptor pigment is always in its excited
state after the first pulse acting on, so the second pulse will
induce stimulated radiation with larger probability than that of
stimulated absorption. Second, one need also note the fact that
excited-state absorption can also deplete the population in the
single exciton manifold (i.e., population in the acceptor). This
means that the coherent effects from the sequential multipulses
in the acceptor pigment take place during a short time scale,
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FIG. 6. (Color online) Probability P that the acceptor is in the excited state and the parameter of total efficiency ηtotal versus time ωt are
plotted. In Fig. 6(b), four sequential pulses are initiated on the donor pigment, the width of pulses are all τp = 10J −1, and the central action
times are ωt = 0,25,35,and 45, respectively.
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FIG. 7. (Color online) Quantum concurrence between the two pigments versus time ωt are plotted. In Fig. 7(b), four pulses are turned on
sequentially, the width of pulses are all τp = 10J −1, and the central action times are ωt = 0,25,35,and 45, respectively.

and thus deplete population. It will induce contrary results in
the cases of τp = 0.5J−1 and τp = J−1, because the probability
P is always smaller than 0.5.

In Fig. 6(a), we set τp = 10J−1 and produce a near-constant
pulse during times from ωt = 0 to ωt = 15, which makes
a continuous enhancement of probability P compared with
Fig. 1(a), but the total efficiency ηtotal decreases at all times.
In Fig. 6(b), we show the case that four sequential pulses
are initiated on the dimer, widths of pulses are all τp =
10J−1, and the central action times are ωt = 0,25,35, and 45,
respectively. We increase the time intervals of the first and the
second pulses to 25ωt and produce a near constant P during
ωt =25–50, by which we realize controlling populations of
the acceptor pigment simply by adjusting the temporal shapes
of the input pulses. We also obtain an extreme value of ηtotal

near ωt = 20. But as we have mentioned previously, the values
of P are always not larger than 0.5.

Finally, we plot quantum concurrence between the two
pigments when the donor pigment is excited by multipulses
sequentially. In Fig. 7(a), we consider the case where two
sequential pulses are applied, where the central time of the first
pulse is at ωt = 0, the central time of the second pulse is at
ωt = 15, and τp = 0.1J−1. We find there is only a disturbance
of quantum concurrence when the second pulse is turned
on. However, in Fig. 7(b), quantum concurrence is largely
enhanced when the second pulse, the third pulse, and the fourth
pulse turn on sequentially, where we set τp = 10J−1 and the
central times of the four pulses are the same as those shown in
Fig. 6(b). Compared with the results shown in Figs. 4 and 5,
where the probability P can only be enhanced to a maximum
value 0.5, we find quantum concurrence can be enhanced to
very large values. This is because quantum coherence between
the two pigments can be continuously induced, no matter
whether the system is in the processes of stimulated emission
or stimulated absorption.

IV. CONCLUSIONS

In summary, we have studied controlling excitation and
coherent transfer in a dimer. In our model, energy transferring
from the donor to the acceptor takes place during processes
where the donor is being excited. The model can be applied
to find a physical mechanism of the basic processes of
energy absorption and transfer for photosynthesis. We mainly
investigated how temporal shapes of the input pulses affect the
population behavior of the acceptor and quantum concurrence
of the dimer. We find a high probability of the acceptor being
excited can be obtained with very sharp pulses but with a very
low total efficiency of energy absorption and transfer. The total
efficiency depends on the temporal shape of the input pulses.
When the dimer is excited by sequential multipulses, there
are two physical mechanisms to determine the probability of
the acceptor being excited. One is the coherent effects from
the sequential multipulses in the acceptor pigment during a
short timescale, and another is the population conditions of
the acceptor before being pumped again, i.e., the later pulses
will induce the acceptor pigment being stimulated emission
or stimulated absorption. Our results also show that a high
degree of quantum concurrence of the dimer can be obtained
by controlling the temporal shape of the input pulses. Our
studies may contribute to the fundamental research of artificial
photosynthetic units.
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