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Nonlocal interferometry using macroscopic coherent states and weak nonlinearities
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A method for performing nonlocal interferometry using phase-entangled macroscopic coherent states is
described. The required entanglement can be generated using weak nonlinearities while Bell’s inequality can be
violated using single photons as a probe. The entanglement is relatively robust against photon loss and Bell’s
inequality can be violated over a relatively large distance in optical fibers despite the fact that a large number of
photons are absorbed in the process.
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I. INTRODUCTION

Nonlocal interferometers can violate Bell’s inequality,
which is of fundamental interest in addition to being of
practical use in quantum communications. Here we describe
a macroscopic generalization of the nonlocal interferometer
previously introduced by one of the authors [1]. In this
approach, weak nonlinearities [2,3] are used to generate phase
entanglement between macroscopic coherent states while
single photons are used to probe the entanglement in such a
way as to violate Bell’s inequality. Large numbers of photons
can be absorbed from these macroscopic entangled states
with only a relatively small reduction in the visibility, which
should allow violations of Bell’s inequality over relatively
large distances.

There has been considerable interest recently in methods for
producing macroscopic entangled states using single-photon
displacement operations [4–6] or phase-covariant cloning
[7,8]. The degree of entanglement in those systems can be
measured in various ways, such as by using an entanglement
witness. The approach described here allows the nonlocal
nature of the macroscopic entanglement to be observed as
a violation of Bell’s inequality.

Under ideal conditions, the nonlocal interferometer de-
scribed here can produce a maximum violation of the Clauser-
Horne-Shimony-Holt (CHSH) form of Bell’s inequality as
described in Sec. II. Photon loss will produce some amount
of decoherence as a result of entanglement between the
macroscopic states and the environment. The loss in visibility
due to decoherence of that kind is analyzed in Sec. III, where it
is found that large numbers of photons can be absorbed by the
environment with a relatively small decrease in the nonlocal
interference. Photon loss will also increase the overlap of two
coherent states with different phase shifts, which can further
reduce the observed visibility as discussed in Sec. IV. These
effects are combined in Sec. V to calculate the expected
visibility of the interference pattern as a function of the
distance of propagation in optical fibers. A summary and
conclusions are provided in Sec. VI.

II. NONLOCAL INTERFEROMETER

Phase entanglement can be produced between two macro-
scopic coherent states using the single-photon interferometer
illustrated in Fig. 1. Cross-phase modulation from nonlinear
(Kerr) media located in each path through the interferometer

will produce a small nonlinear phase shift of 2φ in one of
two laser beams depending on the path taken by the single
photon [9–11]. A constant phase shift is applied to both beams
so that the coherent states will undergo a net phase shift of
±φ. Nemoto and Munro [2,3] showed that a single photon can
produce a nonlinear phase shift that is sufficiently large for the
phase-shifted coherent states to be nearly orthogonal if their
amplitudes are large, as illustrated in Fig. 2. A nonlinear phase
shift could be produced using the giant Kerr effect [12–14]
from electromagnetically induced transparency, for example.

The two coherent states at the output of the device shown
in Fig. 1 are only accepted if the single photon triggers
detector D, as indicated by the circle in the figure. It can
be seen that the phase shifts in the two coherent states are
anticorrelated, as illustrated in Fig. 2. This procedure creates a
coherent superposition of these two phase-shifted states, which
corresponds to an entangled Schrodinger cat state [9,10,15].
The ability of a Kerr medium with a third-order nonlinear
susceptibility χ (3) to create phase shifts of this kind is discussed
in Ref. [3].

The phase-entangled source of Fig. 1 can be combined with
two distant interferometers to form a nonlocal interferometer
as shown in Fig. 3. A second nonlinear phase shift is applied to
each beam depending on the path taken by photons B and C.
A constant phase shift is also applied once again so that beams
1 and 2 will undergo a shift of ±φ in all of the interferometers.
In addition, linear phase shifts σ1 and σ2 are applied to the
single photons in the paths indicated in Fig. 3.

The phases of the two coherent states are measured using
homodyne techniques after they interact with the single
photons. We will be interested in the probability P of a
coincidence event in which both homodyne measurements
indicate zero net phase shift and the single photons trigger
detectors 1, 3, and 5, as indicated by the circles in Fig. 3.

The initial coherent state of laser 1 will be denoted by |α〉
while that of laser 2 will be denoted by |β〉. The output states
of the single-photon interferometers will be denoted by |0〉i
or |1〉i depending on the number of photons in path i. Since
each coherent state is phase-shifted twice before the homodyne
measurement, there are three possible final phases that the
coherent states can have. The positive-negative and negative-
positive phase shifts will cancel out to give zero net phase
shifts, and these will be denoted by |α+−〉 = |α−+〉 = |α〉 in
beam 1. The case of two positive phase shifts will be denoted
by |α++〉 while two negative phase shifts will be denoted by
|α−−〉. Similar notation will be used for beam 2.
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FIG. 1. (Color) Two macroscopic coherent states (laser beams)
pass through a Kerr medium and experience a nonlinear phase shift
of 2φ when a single photon also passes through the corresponding
medium. A constant phase shift is applied to both beams so that the
coherent states will undergo a net phase shift of ±φ. The dashed
lines represent beam splitters and the output of the interferometer
is postselected for those cases in which the single-photon detector
D registers a count. This produces a coherent superposition of phase-
entangled states as illustrated in Fig. 2.

After passing through all six beam splitters, the final state
|ψ〉 of the system is given by

|�〉 = 1

23
[eiσ2 |α++〉|β−−〉 − |α++〉|β−+〉

− ei(σ1+σ2)|α+−〉|β−−〉 + eiσ1 |α+−〉|β−+〉
− eiσ2 |α−+〉|β+−〉 + |α−+〉|β++〉
+ ei(σ1+σ2)|α−−〉|β+−〉 − eiσ1 |α−−〉|β++〉]
× |1〉1|0〉2|1〉3|0〉4|1〉5|0〉6 + |ψ⊥〉. (1)

This state includes a π/2 phase shift for reflections at a beam
splitter. Each beam splitter doubles the number of terms in the
state vector, giving a total of 64 terms in Eq. (1). We have
only shown those terms in which a single photon is present in
detectors 1, 3, and 5, while |ψ⊥〉 denotes the remaining terms
that are all orthogonal to the terms of interest.

FIG. 2. (Color) Phase-space diagram of the two coherent states
of Fig. 1 after their interaction with the nonlinear Kerr media. The
coordinates x and p are the arguments of the Wigner distribution
W (x,p) and they correspond to the real and imaginary parts of the
electric field in this case. The system is left in a superposition of
macroscopic states in which beam 1 has undergone a positive phase
shift while beam 2 has undergone a negative phase shift (solid circles),
or vice versa (dashed circles).

FIG. 3. Nonlocal interferometer based on phase-entangled
macroscopic coherent states. A Kerr medium applies a nonlinear
phase shift depending on the path taken by photons A, B, and C.
Constant phase shifts are applied in each beam so that laser beams
1 and 2 undergo a net phase shift of ±φ in each interferometer
as indicated by the + and − signs. Variable (linear) phase shifts
denoted by σ 1 and σ 2 are applied in interferometers B and C. We are
interested in the probability of a coincidence event in which all three
of the circled detectors (1, 3, and 5) are triggered and both homodyne
measurements show zero net phase shifts.

The homodyne measurements are intended to distinguish
between states with zero net phase shifts, such as |α+−〉,
and states with a phase shift of ±2φ, such as |α++〉. In
practice, there will always be a small error in this process
because two coherent states differing by a phase shift are never
completely orthogonal. The overlap between these coherent
states decreases exponentially as a function of αφ and it has
been shown that the error in distinguishing between them is
�erfc[|α| sin(2φ)/

√
2] when αφ > 1 [3]. For the time being

we will assume that αφ is sufficiently large that the overlap
between coherent states with different phase shifts can be
neglected. The more general case in which αφ has been
reduced as a result of photon loss will be analyzed in Sec. IV.

Neglecting the small overlap with states such as |α++〉,
the homodyne measurements can be modeled as projective
measurements onto those states with zero net phase shift [3].
The corresponding projection |p〉 onto the final state of interest
is then given by

|p〉 = 1

23
[eiσ1 |α+−〉|β−+〉 − eiσ2 |α−+〉|β+−〉]

× |1〉1|0〉2|1〉3|0〉4|1〉5|0〉6 (2)

while the probability P of obtaining such an event is given by

P = 〈p|p〉 = 1

26
|eiσ1 − eiσ2 |2. (3)

Here we have made use of the fact that |α+−〉 = |α−+〉 = |α〉
and |β+−〉 = |β−+〉 = |β〉. The relatively small magnitude of
P reflects the fact that we are looking at a small subset of the
possible events.

It should be noted that P is defined here as the joint
probability that a photon will be found in detectors 1, 3, and 5
and the homodyne measurements will yield a net phase shift of
zero. If we were to instead calculate the conditional probability
that the homodyne measurements indicate zero phase shifts
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FIG. 4. Nonlocal interference pattern in the absence of loss or
decoherence. (a) A plot of the normalized coincidence counting rate
RN as a function of σ2 with σ1 = 0. (b) A plot of RN as a function of
σ2 with σ1 = π . (Dimensionless units.)

given that detectors 1, 3, and 5 have fired, then Eq. (2) would
become a postselected state with a different normalization as
is discussed in the Appendix.

Equation (3) can be reduced to

P = 1

16

[
sin2

(
σ1 − σ2

2

)]
. (4)

The nonlocal dependence on the difference of the two phase
shifts leads to a predicted interference visibility of 100%,
which violates the Bell inequality limit of 70.7% [16,17] as
illustrated in Fig. 4. These results correspond to the case in
which the interferometers are located near the source and there
is negligible loss. The effects of loss and decoherence are
included in the following sections.

These results have a simple interpretation if we realize
that the only way that zero net phase shifts can occur in
both beams is if photons B and C both traveled through
the right path of their respective interferometers or if both
photons traveled through the left path. This is analogous to
the long-long and short-short path interference that occurs in
the nonlocal interferometer previously proposed by one of the
authors [1]. Rice et al. [18] proposed a different form of
nonlocal interference for coherent states that was based on
the use of a self-phase nonlinearity to produce an approximate
state-dependent phase shift.

III. PHOTON LOSS AND DECOHERENCE

The decoherence due to photon loss can be analyzed
in several different ways. It is commonly assumed that all
loss mechanisms are equivalent to inserting beam splitters
in the optical paths and we will first analyze the effects of
decoherence based on that assumption. We will also analyze
the situation in which NA resonant two-level atoms are located
in both paths between the source and the interferometers. It will
be found that the decoherence due to atomic absorption of that
kind is equivalent to beam-splitter loss in this interferometer
arrangement. Our earlier work on entangled photon holes [19]
showed that beam-splitter loss is not in general equivalent to
absorption by resonant atoms, which illustrates the need to
evaluate the effects of decoherence both ways.

First consider a single beam splitter with a small reflectivity
coefficient r located in the path to interferometer B, as
illustrated in Fig. 5. The coherent states |α+〉 and |α−〉 will
produce slightly different coherent states in the output port of

FIG. 5. Decoherence due to a beam splitter (dashed line) with a
small reflectivity coefficient r inserted into the path to interferometer
B. A coherent state |α+〉 with a small positive phase shift will produce
a weak coherent state |γ+〉 in the output port of the beam splitter with
the corresponding phase, while a coherent state |α−〉 with a negative
phase will produce an output state |γ−〉. The fact that the coherent
states arriving at interferometer B are entangled to slightly different
beam-splitter states produces a small amount of decoherence.

the beam splitter given by

|γ+〉 = |rα0e
iφ〉,

(5)
|γ−〉 = |rα0e

−iφ〉,
where α0 is the amplitude of the original coherent state.
This causes the coherent states that propagate towards the
interferometer to become entangled with the field in the output
port of the beam splitter, so that in the overall state of the system
those terms are replaced by

|α+〉 → |α′
+〉|γ+〉,

(6)|α−〉 → |α′
−〉|γ−〉.

Here the primes denote the fact that the beam-splitter loss will
also reduce the amplitude of the coherent states as discussed
in more detail in the next section.

If we assume that a similar beam splitter is also included in
the path to interferometer C, then Eq. (2) becomes

|p〉 = 1

23
[eiσ1 |α′

+−〉|β ′
−+〉|γ+〉|δ−〉

− eiσ2 |α′
−+〉|β ′

+−〉|γ−〉|δ+〉]|1〉1|0〉2|1〉3|0〉4|1〉5|0〉6.

(7)

Here |δ+〉 and |δ−〉 denote the corresponding coherent states in
the output port of the beam splitter in the path to interferometer
C. When we evaluate P = 〈p|p〉, the cross terms that are
responsible for the interference effects will be reduced by a
factor of f 2 where f is given by

f = 〈γ− | γ+〉 = 〈δ− | δ+〉 . (8)

The magnitude of the inner product of the two coherent states
in the output port of one of the beam splitters is given by [20]

|f |2 = | 〈γ+ | γ−〉 |2 = exp[−|γ+ − γ−|2], (9)

where γ+ − γ− = rα0(eiφ − e−iφ) from Eq. (1). If φ � 1 then
a Taylor series expansion of the exp[±iϕ] terms can be inserted
into Eq. (9) to give

|f | = exp[−2(rα0φ)2] = exp[−2NLφ2]. (10)

Here NL = (rα0)2 is the mean number of photons lost in each
beam. The imaginary part of f corresponds to a small phase
shift that can be compensated experimentally if necessary by
adjusting the phases of the relevant interferometers. This has
no effect on the visibility of the nonlocal interference and
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|f | determines the effects of decoherence. If multiple beam
splitters are included in the two paths, then Eq. (10) is still
valid with NL equal to the total loss in each path due to the
multiplicative properties of exponentials.

The decoherence due to atomic absorption can be analyzed
in a similar way if we assume that NA resonant two-level
atoms are located in the path between interferometers B and
C instead of beam splitters. The interaction between the atoms
and a beam of light whose phase has been shifted by φ will
produce a small probability amplitude for a transition between
the ground state |Gj 〉 and excited state |Ej 〉 of atom j as
described by

|Gj 〉 → (1 − ε2/2)|Gj 〉 + iεeiφ |Ej 〉. (11)

Here ε is a small parameter related to the atomic matrix
elements in a perturbative treatment. With the inclusion of the
atoms, the first term on the right-hand side of Eq. (2) should
include an outer product with an atomic state |A〉 given by

|A〉 =
NA∏
j=1

[(1 − ε2/2)|Gj 〉 + iεeiφ |Ej 〉]. (12)

The second term in Eq. (2) should include the same factor with
the sign of φ reversed.

This entanglement between the field and the state of the
atoms contains which-path information that will reduce the
visibility of the nonlocal interference. Including the factors of
|A〉 in Eqs. (2) and (3) will reduce the magnitude of the cross
terms responsible for the quantum interference by a factor f

that is now given by

|f | =
NA∏

j,k=1

Re{[(1 − ε2/2)〈Gk| − iεeiφ〈Ek|]

× [(1 − ε2/2)|Gj 〉 + iεeiφ |Ej 〉]}. (13)

In the limit of large NA and small ε and φ this reduces to

|f | = exp[−2NAε2φ2] = exp[−2NLφ2], (14)

where NL is the total number of photons absorbed on average
in each of the beams. This result can be seen to be equivalent
to the effects of beam-splitter loss when expressed in terms of
the total number of photons lost in the two beams.

The visibility v of an interference pattern is defined as

v = Rmax − Rmin

Rmax + Rmin
, (15)

where Rmax and Rmin are the maximum and minimum counting
rates. By inserting the appropriate factors of f into the cross
terms in Eq. (3) it is straightforward to show that the visibility
is reduced to v = |f |2.

It can be seen that a large number of photons can be
absorbed with only a modest loss in visibility if the magnitude
of φ is sufficiently small. Additional insight can be obtained
by writing NL in the form

NL = gN0 = gα2
0 . (16)

Here N0 is the initial number of photons and g is the fraction
of photons that are lost as a result of beam splitters or atomic
absorption. Equations (10) and (14) then become

|f | = exp[−2g(α0φ)2]. (17)

FIG. 6. Nonlocal interference pattern including the decoherence
due to a total loss of 4000 photons. (a) A plot of the normalized
coincidence counting rate RN as a function of σ2 with σ1 = 0. (b) A
plot of RN as a function of σ2 with σ1 = π . These results correspond
to φ = 0.01 radians and an initial value of α = 100. The effects of
the reduction in the magnitude of α have not been included here and
these results illustrate the effects of decoherence only. (Dimensionless
units.)

The fractional loss g has a maximum value of 1 and it can be
seen that the decoherence factor approaches a constant value
in the limit of large propagation distances rather than dropping
off exponentially to zero.

A nonlinear phase shift of 0.28 radians has been demon-
strated at the single-photon level using a resonant cavity and a
single atom [21], and comparable results have been predicted
using an atomic vapor [12–14]. If we conservatively assume
that φ = 0.014 radians and take α = 100, for example, then
a total loss of 500 photons would reduce the visibility to
82%. This is still sufficient to violate Bell’s inequality and
would allow this approach to be used to implement quantum
communications protocols of several kinds.

The effects of larger photon loss are illustrated in Fig. 6,
which corresponds to a total loss of 4000 photons. These results
neglect the fact that the overlap of coherent states with different
phase shifts will increase as their amplitude decreases, as is
taken into account in the next section. Thus Fig. 6 illustrates
the effects of decoherence alone. The effects of decoherence
on superpositions of coherent states have also been studied by
Jeong [22] within the context of quantum computing.

IV. OVERLAP OF COHERENT STATES

It is well known that a coherent state that undergoes linear
loss will remain a coherent state but with a reduced amplitude.
Consider a superposition of coherent states with different
phases that are nearly orthogonal initially as illustrated in
Fig. 7. As the coherent states undergo loss they will move
towards the origin and begin to overlap each other. The inner
product of two such coherent states will become appreciable
and it is no longer valid to ignore terms such as 〈α+− |α−−〉
in Eqs. (2) and (3). It is interesting to note that the process
illustrated in Fig. 7 would violate unitarity if it were not for the
fact that the coherent states are also becoming entangled with
the environment; the factors of f maintain the inner product
of any two terms in the state vector.

A more detailed treatment of the homodyne measurements
is required when coherent states with different phases begin
to overlap. In particular, the probability to obtain a specific
result from a homodyne measurement will now show quantum
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FIG. 7. Reduction in the amplitude of two coherent states with
different phases. The two states are nearly orthogonal initially but
they begin to overlap as their amplitudes are reduced by a linear loss
mechanism such as a series of beam splitters.

interference between the contributions from the overlapping
coherent states.

We first consider the usual description of a balanced
homodyne measurement on a single coherent state with no
entanglement or decoherence. The local oscillator used in
the homodyne measurement will define a single mode of
the incident electromagnetic field that is to be measured. A
single mode of the second-quantized field is mathematically
equivalent to a harmonic oscillator, where the displacement
and momentum operators q̂ and p̂ correspond to the usual
linear combinations of the annihilation and creation operators
â and â†. Physically, q̂ and p̂ correspond to two phase
quadratures of the field and the phase of the local oscillator can
be chosen to provide a direct measurement of q̂, for example.

The probability distribution for the measured value of q̂ can
be obtained from the usual probability amplitude ψ(q) in the
coordinate representation given by [20]

ψ(q) = 〈q | α〉 = e|α|2/2
∞∑

n=0

αn

√
n!

〈q | n〉

=
( ω

πh̄

)1/4
e|α|2/2e−ωq2/2h̄

∞∑
n=0

αn

n!

1

2n/2
Hn

[(ω

h̄

)1/2
q

]
.

(18)

Here Hn is a Hermite polynomial of degree n, the coordinate
q corresponds to the result of the homodyne measurement for
an appropriate choice of local oscillator phase, and ω is the
frequency of the field.

Equation (18) can be simplified using the generating
function Hk(z) for Hermite polynomials defined by [23]

∞∑
k=0

Hk(z)νk

k!
= e2zν−ν2

. (19)

This allows Eq. (18) to be rewritten as

ψ(q) =
( ω

πh̄

)1/4
exp

{
−ω

2h̄
q2 +

(
2ω

h̄

)1/2

αq

−1

2
|α|2 − 1

2
α2

}
. (20)

In dimensionless units with x = √
ω/h̄q this becomes

ψα(x) =
(

1

π

)1/4

exp

{
−x2

2
+ 2xα√

2
− 1

2
|α|2 − 1

2
α2

}
. (21)

Here a subscript α has been added to indicate the dependence
of the function on α.

It can be seen that the probability amplitude ψα(x) is
a Gaussian as is well known. The function ψα(x) is often
used to calculate the Wigner distribution, but it will be more
convenient here to use ψα(x) itself, as was done in Ref. [15], for
example. The probability density ρ(x) for obtaining the value
x from a single homodyne measurement is then given [10] by

ρ(x) = ψ∗(x)ψ(x). (22)

We will now generalize this approach to consider the
phase entangled coherent states described above with the
initial parameters chosen so that |αφ| < 1, which will give
some degree of overlap between coherent states with different
phases. In order to illustrate the effects of nonorthogonal
coherent states, it will be assumed initially that no loss
or decoherence has occurred. Under these conditions we
can generalize Eqs. (18)–(22) by considering the combined
probability amplitude ψ(x1,x2) defined by

ψ(x1,x2) = 〈x1,x2; 1,3,5 | �〉 . (23)

Here x1 and x2 represent the values of the homodyne measure-
ment in beams 1 and 2. The state |x1,x2; 1,3,5〉 corresponds
to using the coordinate representation for the modes of the
coherent states and the number basis for the single photons in
detectors 1, 3, and 5. The joint probability density ρ(x1,x2) for
the corresponding results of the homodyne measurements is
then given by

ρ(x1,x2) = ψ∗(x1,x2)ψ(x1,x2). (24)

The first eight terms in Eq. (1) must all be retained now
with the result that

ψ(x1,x2) = 1

23
[eiσ2ψα++(x1)ψβ−−(x2) − ψα++(x1)ψβ−+(x2)

− ei(σ1+σ2)ψα+−(x1)ψβ−−(x2)

+ eiσ1ψα+−(x1)ψβ−+(x2)

− eiσ2ψα−+(x1)ψβ+−(x2) + ψα−+(x1)ψβ++(x2)

+ ei(σ1+σ2)ψα−−(x1)ψβ+−(x2)

− eiσ1ψα−−(x1)ψβ++(x2)]. (25)

Subscripts such as α + + denote a coherent state that has un-
dergone two positive phase shifts, for example, and Eq. (21) is
to be evaluated accordingly. Once again, ρ(x1,x2) corresponds
to a joint probability distribution and the normalization of
Eq. (25) would be different for a postselected state as discussed
in the Appendix.

The expression for ρ(x1,x2) contains a total of 64 terms
and was evaluated numerically. Figure 8 shows a plot of the
probability distribution of x1 and x2 for the case where αφ =
2.0, which is sufficiently large that there is negligible overlap
between the coherent states. Various peaks corresponding to
coherent states whose phases were shifted by ±2φ can be
seen. The interferometer protocol selects only those events in
the vicinity of x1 = x2 = 0, which corresponds to zero net
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FIG. 8. (Color) Plots of the probability density ρ(x1,x2) as a
function of the quadrature measurements x1 and x2 from balanced
homodyne measurements on beams 1 and 2. These results correspond
to the ideal case with negligible overlap between the coherent states
and no decoherence. (a) Setting the interferometer phases to give σ1 −
σ2 = 0 produces nearly zero probability of obtaining x1 = x2 = 0.
(b) Setting the interferometer phases to give σ1 − σ2 = π produces
the maximum probability of obtaining x1 = x2 = 0. These results
correspond to α = 100 and φ = 0.02. (Dimensionless units.)

phase shift. Figure 8(a) corresponds to interferometer phase
settings with σ1 − σ2 = 0, which is expected to minimize
the probability of obtaining values of x1 = x2 = 0. It can
be seen that the probability of such an event is nearly zero
when there is minimal overlap between the coherent states.
Figure 8(b) shows the corresponding probability distribution
for interferometer settings of σ1 − σ2 = π which maximizes
the probability of obtaining a result near x1 = x2 = 0 as
expected. Once again, these results do not include any
decoherence due to photon loss.

In Fig. 9, the value of αφ was reduced to 0.3, which gives a
significant overlap between the different coherent states. The
peaks in the probability distribution all move closer to the
origin as would be expected from Fig. 7. In addition, quantum
interference between the superposition of coherent states is
evident near the origin. The overlap of the coherent states
reduces the amount of true nonlocal interference and it adds
some amount of local single-photon interference that tends to
mask the nonlocal effects of interest.

The effects of decoherence due to photon loss can be
included in this analysis by adding entanglement with the
states at the output port of a beam splitter as in Eq. (7) or
atomic states as in Eq. (12). This has the effect of adding

FIG. 9. (Color) A plot of the probability density ρ(x1,x2) as in
Fig. 8(b), but with αφ reduced to 0.3 to give a significant overlap
between coherent states with different phase shifts. Here σ1 − σ2 = π

as in Fig. 8(b) but now the effects of quantum interference between
the coherent states is apparent. These results correspond to α = 100
and φ = 0.003 and it was assumed once again that there is no
decoherence. (Dimensionless units.)

factors of f 2 to some of the 64 terms in ρ(x1,x2), which
was also evaluated numerically. Figure 10 shows a plot of the
probability distribution for σ1 − σ2 = 0, which would produce
zero probability of obtaining homodyne measurements with
x1 = x2 = 0 in the ideal case. It can be seen that photon
loss decreases the amplitude of the coherent states and will
eventually cause them to overlap. In addition, the decoherence
due to entanglement with the environment reduces the visi-
bility of the nonlocal interference effects. As the decoherence
increases, the magnitude of the central peak increases from its
ideal value of zero.

These numerical calculations can be used to determine the
accuracy of the approximation made in Sec. II that the overlap
of the coherent states can be neglected when αφ > 1 [3]. It was
found that the visibility calculated using that approximation
and Eq. (2) was the same as that obtained when the overlap
was included (as in this section) to within 1% when αφ � 1.
This justifies the approach used in Sec. II for αφ � 1.

V. RANGE IN OPTICAL FIBERS

The ability to violate Bell’s inequality with a total sep-
aration D between the two interferometers was determined
by calculating the parameter s that appears in the Clauser-
Horne-Shimony-Holt form of Bell’s inequality [16]. A value
of |s| > 2 cannot be achieved by any local hidden-variable
theory and is an indication of nonlocal interference. As
discussed in Sec. III, it is expected that a value of φ = 0.01
could be routinely achieved in a cavity-based approach. In that
case a coherent state amplitude of α ∼ 100 would be sufficient
to limit the initial amount of overlap between the phase-shifted
coherent states.

Figure 11 shows a plot of s as a function of φ for several
different values of the separation D while α was held fixed at
a value of 100. It can be seen that there is an optimal value
of φ for any given value of D and that the optimal value of
φ increases with increasing range. If φ is too large then the
decoherence factor f will become very small at large distances.
On the other hand, if φ is too small then the coherent states will
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FIG. 10. (Color) A plot of the probability density ρ(x1,x2) with
σ1 − σ2 = 0 as in Fig. 8(a). These results include the combined effects
of decoherence and the overlap of the coherent states due to photon
loss. (a) Effects of decoherence and overlap after the loss of 100
photons. (b) Effects of decoherence and overlap after the loss of 5800
photons. All of these results correspond to an initial value of α = 100
and φ = 0.02. It can be seen that photon loss moves the coherent
states closer to the origin and reduces the visibility of the interference
pattern. (Dimensionless units.)

overlap and the nonlocal interference will be reduced. It can be
seen that Bell’s inequality can be violated up to a distance of

FIG. 11. (Color) A plot of the CHSH parameter s as a function
of the nonlinear phase shift ϕ for an initial coherent state amplitude
of α = 100 and an assumed loss in optical fibers of 0.15 dB/km. The
flat blue line corresponds to zero separation (no loss) while the purple
line corresponds to a separation of 1 km. It can be seen that Bell’s
inequality can be violated for separations up to 8.2 km (yellow line).
Positive values of s persist out to larger separations of 20 km (green
curve) and 50 km (lower blue curve). (Dimensionless units.)

approximately 8.2 km for this example. The CHSH parameter
s continues to have a positive value at distances of at least
50 km although Bell’s inequality is no longer violated, which
suggests that some degree of correlation may persist at these
longer ranges.

Based on the detection loophole [24], one might suspect that
the use of postselection on the single-photon and homodyne
measurement results may allow a hidden-variable theory to be
contrived in such a way as to reproduce the results predicted
by the quantum theory [25]. This possibility can be ruled out
by supposing that the homodyne measurements have been
postselected before the phase shifts σ1 and σ2 are chosen at
random. In that case, the initial interferometer combined with
the homodyne measurements can be viewed as an effective
source that generates an entangled state of photons B and
C [26]. Bell’s inequality can then be violated with no further
postselection, which shows that no hidden-variable theory can
reproduce these results.

If the system is operated at high data rates using short
pulses, then the correspondingly large bandwidth may cause
dispersion in the optical fibers to become a concern. If neces-
sary, the effects of dispersion could be minimized by limiting
the bandwidth and by operating near the zero-dispersion
wavelength of the optical fibers. These dispersion effects are
essentially the same as in a classical communications system
and methods for controlling the effects of dispersion in optical
fibers already exist.

Dispersion within the nonlinear medium that is used to
produce the nonlinear phase shift can pose problems that are
inherently quantum mechanical, however. Shapiro and Razavi
[27] have used the Kramers-Kronig relation to show that the
production of a single-photon nonlinear phase shift of π must
also produce a significant amount of loss and phase noise,
which may limit the use of techniques of this kind for quantum
computing applications. Effects of that kind are not expected
to be significant in our approach because small nonlinear phase
shifts can be produced with correspondingly small amounts of
loss. In addition, our approach can tolerate a significant amount
of loss and still violate Bell’s inequality, which is less stringent
than the error threshold for quantum computing. Finally, the
use of a resonant cavity with a mode spacing that is larger than
the spectral bandwidth of the medium would eliminate the
possibility of decay into spurious modes, which is the physical
mechanism responsible for the issues raised by Shapiro and
Razavi [27].

VI. SUMMARY AND CONCLUSIONS

In summary, a technique for performing nonlocal in-
terferometry using macroscopic coherent states has been
described. A single-photon interferometer combined with a
weak nonlinearity (the Kerr effect) can be used to create
a macroscopic phase-entangled state [9,10,15]. Two single-
photon interferometers at two distant locations can then be
used as a probe of the entanglement in such a way that Bell’s
inequality is violated. The latter procedure also makes use of a
weak Kerr nonlinearity, which is used for both the generation
and detection of the entanglement [28].

Macroscopic entangled states of this kind can undergo
the loss of many photons and still violate Bell’s inequality.
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Nevertheless, photon loss will reduce the amplitude of the
coherent states and eventually cause them to have a significant
amount of overlap. In addition, photon loss entangles the
coherent states with the environment, which produces decoher-
ence and a loss of visibility. Despite these effects, we estimate
that macroscopic phase entangled states can violate Bell’s
inequality over relatively large distances in commercially
available optical fiber.

In addition to being of fundamental interest, these results
may have applications in quantum key distribution and other
forms of quantum communications. Those possibilities remain
an area for further investigation.
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APPENDIX

The probability P that is calculated in the text corresponds
to the joint probability that detectors 1, 3, and 5 will detect
a photon while at the same time the two homodyne measure-
ments register a net phase shift of zero. The normalization

constant in front of Eq. (1) does not change as the system
evolves and the probability P is correspondingly small.

An alternative way of looking at the data is to postselect
those events in which detectors 1, 3, and 5 have registered
a photon. The state vector is then projected onto the corre-
sponding subspace of Hilbert space and renormalized. One
can then calculate the conditional probability PC that the
homodyne measurements will register a net phase shift of
zero given that the appropriate detectors have fired. In general,
PC �= P , although we are obviously describing the same
physical phenomenon.

If the system is postselected in this way, the normalization
constant cn in front of Eq. (1) should be replaced with

cn = 1√
8 − 2 cos(σ1 − σ2)

. (A1)

This result assumes that coherent states with different phase
shifts are very nearly orthogonal. It can be seen that cn is now
dependent on the phase settings of the interferometers and that
it oscillates around an average value of 1/(2

√
2) = 1/

√
8 in

this case.
When there is a significant overlap between the coherent

states as in Sec. IV, the postselected version of Eq. (25)
would require a more complicated normalization that involves
the inner product of 64 cross terms. This constant can be
evaluated but it is simpler to use joint probabilities as was
done throughout the text.
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