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Synthesis of arbitrary, two-mode, high-visibility N-photon interference patterns
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Using coherent states, linear optics, and N -photon detection we demonstrate the synthesis of arbitrary
interference patterns and establish that neither the shape nor the visibility of N -photon interference patterns can
be used as a quantum signature in general. Specific examples include saw-curve and rectangle-curve interference
patterns and phase super-resolution with period shortening of up to 60 times compared to ordinary interference.
The former two have visibility close to 100% and the latter has visibility in excess of 57%.
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I. INTRODUCTION

The rapid development of experimental techniques has led
to the demonstration of many remarkable quantum interference
effects. A decade ago, it was shown that with specific N -photon
quantum states, one could break the Rayleigh diffraction
limit and make optical interference patterns with a smallest
feature size N times smaller than with ordinary light [1]. This
discovery laid the foundation for quantum lithography, and
as the name conveys, it was thought that this was manifestly
a quantum feature. However, superpositions and interference
also manifest themselves in the classical world. It is therefore
of interest to delineate what interference effects belong to
the realm of the classical world and which require quantum
states.

In different contexts limits arise for how large a visibility
one can obtain using classical and quantum light. For instance,
in the two-photon Hong-Ou-Mandel experiment, in principle
one can achieve 100% visibility with both the input state
|1〉 ⊗ |1〉 and the state |1〉 ⊗ |α〉, where |α〉 is a weak coherent
state. However, two mutually phase randomized classical input
states will never reach a visibility in excess of 50% [2].
Likewise, letting two classical states interfere in a Mach-
Zehnder interferometer and measuring the probability of
detecting m and N − m photons respectively in the two output
ports will never result in a visibility of the λ/N -period fringes
>50% [3]. For three- and four-photon visibility experiments
other limits to the obtainable visibility are 81.8% and 94.4%,
respectively [4,5]. However, all these limits are derived with
reference to a specific setup and a specific detection method.
Here, we consider the interference between two coherent states
using a general N -photon projection measurement (realized
with linear optics and coincidence detection). In this case
we show that there is no difference between classical and
quantum states neither regarding the visibility (that can be
100% in both cases) nor in the obtainable shape of the
interference curve. Only by restricting the measurements to
|m,N − m〉〈m,N − m| projectors will one regain the results
in Ref. [3]. The distinguishing quantum feature is instead the
success probability. Only with quantum states can one surpass
limits to, e.g., phase sensitivity of classical light [6,7]. This is
regardless of the detection method.
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II. METHOD

A general, two-mode, N -photon state can be written

|ψ〉 =
N∑

n=0

cn|n,N − n〉 =
N∑

n=0

bn(â†)n(b̂†)N−n|0,0〉, (1)

where bn = cn/
√

n!(N − n)!. If we formally divide∑
bn(â†)n(b̂†)N−n with (b̂†)N and make the substitution

(â†/b̂†)n = zn we get the complex polynomial

N∑
n=0

bnz
n = bN (z − z1)(z − z2) · · · (z − zN ), (2)

where we have used the fact that any complex N th degree
polynomial has exactly N complex roots. Hence, it is always
possible to express any two-mode, N -photon state

|ψ〉 = bN

�N
n=1Nn

N1(â† − z1b̂
†) · · ·NN (â† − zN b̂†)|0,0〉, (3)

whereNn are real numbers such thatN 2
n (1 + |zn|2) = 1. Thus,

any two-mode, N -photon state can be written as a direct
product of N two-mode, single-photon states. Hofmann [8]
made the important observation that to make a probabilistic
projection measurement onto |ψ〉〈ψ |, one could split the
state to be measured into N two-mode paths and, using
linear optics, unitarily transform the state in path n as
Nn(â† − znb̂

†)|0,0〉 → â
†
n|0,0〉. Then, in the case where one

detects one photon in the an mode of each path, one has in fact
projected the input state onto |ψ〉〈ψ |. It is convenient to use
polarization states and, e.g., take the two modes an and bn to be
horizontally and vertically polarized modes. Then any single-
photon polarization transformation can be achieved with two
wave plates: The first compensates the relative phase between
the an and bn mode by θn = −Arg(zn) so that the (in general
elliptically polarized) state Nn(â†

n − znb̂
†
n)|0,0〉 is transformed

to the linearly polarized state Nn(â†
n − |zn|b̂†n)|0,0〉, and the

second is a polarizer rotated to the angle �n = arctan |zn| so
that the linearly polarized state passes it but the orthogonal
polarization is blocked.

This method was further developed in Ref. [9] for mea-
surement projection of NOON states, and demonstrated in
[10,11] to project out the NOON state components from
coherent states to demonstrate λ/N -period interference. In
Ref. [12] the method was shown to provide a means of
breaking the Heisenberg limit in interferometry when used
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with a |N/2,N/2〉 state input. A similar method was used in
Refs. [13,14] to demonstrate resolution beyond the Rayleigh
limit using independent light sources, such as thermal light.
A scheme to synthesize arbitrary filter functions from N

cascaded polarization “components,” based on a similar
factorization was suggested [15] in 1967. However, in this
proposal the individual components were frequency modes
and not single-photon states.

The stated factorization method can be taken further.
Suppose the input state is a two-mode, linearly polarized
coherent state

|α,α〉 = exp(−|α|2)
∞∑

m=0

∞∑
n=0

αm+n

√
m!n!

|m,n〉, (4)

where for simplicity we take α to be real. We want to detect
the interference between the phase-shifted input state and the
projector |ψ〉〈ψ | where |ψ〉 is given by Eq. (1). The unitary,
differential phase-shift operator is Û (φ) = exp[−iφ(â†â −
b̂†b̂)/2]. The detected N -photon coincidence probability then
becomes

P (φ) ∝ |〈α,α|Û †(φ)|ψ〉|2

= α2N exp(−2α2)

∣∣∣∣∣
N∑

n=0

bn exp(iφ[2n − N ]/2)

∣∣∣∣∣
2

= α2N exp(−2α2)

∣∣∣∣∣
N∑

n=0

bn exp(iφn)

∣∣∣∣∣
2

. (5)

The sum within the absolute sign can be identified as a trun-
cated Fourier series. Therefore, up to the highest “frequency”
Nφ/2 in the parameter φ, any function can be expanded
in the exponential function basis. This means that one can
synthesize any interference curve with coherent-state input.
That is, the N projector coincidence probability curve of N

weak coherent states can be made exactly proportional to the
N -photon coincidence probability curve of any quantum state.

However, splitting a polarization, two-mode coherent state
Û (φ)|α,α〉 spatially into N paths results in a product state of N

identical coherent states Û (φ)|α/
√

N,α/
√

N〉. The fact that
this is a product state makes each state’s projection probability
onto a certain single-photon projector, viz.,

Pn(φ) = |〈α/
√

N,α/
√

N |Û †(φ)Nn(â† − znb̂
†)|0,0〉|2, (6)

statistically independent of any other coherent state’s pro-
jection probability [16]. The total probability is simply the
product P (φ) = �N

n=0Pn(φ) of the N individual projection
probabilities. Thus, if one uses coherent input states it is not
necessary to measure the “clicks” in each path in coincidence.
Instead, each single-photon projector n can be measured
separately using a weak coherent state. The result Pn(φ)
is recorded, and the final probability P (φ) is subsequently
obtained by multiplying all the individual probabilities as
demonstrated for a NOON state in Ref. [11]. Hence, we
need to implement only one of the arms in Fig. 1 at a time
and reconfigure the bifrefringence θn and polarizer angle
�n between each run. Note that this is only possible for
coherent states. If, e.g., quantum states or thermal states
are used, as is the case in Refs. [12] and [14], respectively,
there are correlations between the different single-photon

x1( )

Det1 DetN-1 DetN

@ Pol 1

BS1 BSN-1
@ 45°Pol x( )

xN-1( )

@ Pol N-1 @ Pol N

xN( )

FIG. 1. (Color online) Projection measurement setup. A weakly
excited two-mode coherent state, linearly polarized at 45 deg from
the vertical, impinges from the left a birefringent wedge imparting
the differential phase shift φ. It is subsequently divided by a sequence
of nonpolarizing beam splitters into N paths. In each path, a certain
single-photon state is projected out by preceding the detector with
a polarizer set at �n and a birefringent wedge set to the differential
phase θn. Finally the detection coincidences are recorded.

projection probabilities and a coincidence measurement is a
must, whereas for coherent states either method works.

III. RESULTS

We have used a linearly polarized HeNe laser (whose
polarization was further “cleaned” with a polarizer) with a
power of 15 mW, neutral density filters, two birefringent
wedges mounted on step-motor drive translators (with a
precision of 1 μm), a polarizer mounted on a rotation stage
(with a precision of 0.2 deg), and a single-photon sensitivity
avalanche photo diode (APD). The intensity of the laser was
adjusted by the neutral filters such that the mean time interval
between two photons was 20 times longer (≈1 μs) than the
dead time of the detector (45 ns). Thus, we ensure that
essentially each recorded “click” stems from a single photon.
The laser’s polarization was carefully adjusted to be 45 deg
from the horizontal, thus creating the desired input state |α,α〉,
where α 
 1 in the temporal mode basis of the detector. The
calibration of the wedges was found to give a 2π phase shift
with a relative translation of 0.215 mm.

To demonstrate the generality of the method, we first
synthesized a rectangular interference pattern. That is, we
would like to have

|〈α,α|Û (φ)|ψs〉|2 ∝ fRect (φ,π/2) =
{

0 |φ| � π/2,

1 otherwise.
(7)

To this end, for N = 30 which gives a reasonable rectangle-like
function, we compute the 31 lowest Fourier expansion coeffi-
cients of fRect and identify the coefficients with the expansion
coefficients bn in Eq. (5). Subsequently the expansion is
factored in single-photon projector terms by Eqs. (2) and (3)
(see the Appendix). The 30 single-photon projectors are then
measured and multiplied. The result is displayed in Fig. 2
where the only fitting is the amplitude of the theoretically
predicted coincidence probability. The experimental curve
represents raw data; no background subtraction or any other
data processing have been done. The maximum count rate
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FIG. 2. (Color online) Rectangular interference pattern. The solid
(black) line (215 data points) shows raw data and the dashed (red
[gray]) line shows the theoretically expected curve with the amplitude
chosen for best fit. At selected data points, error bars show the ±σ

statistical uncertainty.

employed in the experiments was around 5.2 MHz. A discus-
sion about the error bars will follow below.

Next, we synthesized a Saw-curve interference pattern. The
interference pattern is the square of the overlap between the
input state and the projector, and we want the (2π -periodic)
overlap between the input state and the measurement projector
to be

|〈α,α|Û (φ)|ψ〉| = |φ/π |1/2 (8)

in the interval {−π,π}. Again by finding the Fourier coeffi-
cients for N = 30, plugging them into Eq. (2), and factorizing
the polynomial to obtain the single-photon projectors (see the
Appendix), we finally get the raw data displayed in Fig. 3
where the only fitting is the amplitude of the theoretically
predicted curve. This interference pattern has the particular
feature that its derivative, which governs the phase sensitivity,
is almost constant over large intervals.

Finally, a NOON state

|ψNOON〉 = 1√
2

(|N,0〉 − |0,N〉) , (9)

can give an interference pattern with the smallest feature size
≈λ/(2N ), where λ is the wavelength of the light [1]. This
feature size reduction can be explained in terms of maximizing
a state’s dynamical evolution speed [17–20] or in terms of
N -photon quasiparticles having N times the linear momentum

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

FIG. 3. (Color online) Saw-curve interference pattern. The solid
(black) line shows raw data and the dashed (red [gray]) line shows
the theoretically expected curve with the amplitude chosen for best
fit. At selected data points, error bars show ±σ statistical uncertainty.
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FIG. 4. (Color online) NOON-state coincidence patterns. In the
figures on the left, the solid (black) lines represent raw data points
connected by straight lines. No background subtraction has been
done. The dashed (red [gray]) curves are the expected A sin2(Nφ/2)
with A chosen for best fit. The figures on the right show a magnified
part of the data points with error bars and the fit curve. Error bars
show ±σ statistical uncertainty. (a) N = 10. (b) N = 15. (c) N = 30.
(d) N = 60. The boxed area shows the portion with highest visibility,
with the maximum of 88.1% occurring at 1.98π . The circles show the
points used for calculating maximum visibility. The triangles show
the points with a more probable high visibility of 86.2% at 1.75π .

of the photons making up the quasiparticles and thus having
a de Broglie wavelength N times smaller [21–24]. Up to
now, there have been many proposals and demonstrations
[2,9–11,22–28] of NOON-state interference with N = 2 to
N = 30. The N = 6 to N = 30 experiments [10,11] were
made with coherent light with the same method we now
generalize. There has also been other demonstrations and pro-
posals of multiphoton (i.e., using coincidence measurements)
interference using nonentangled, classical states also showing
a period shortening, but at the expense of a reduced interference
visibility. In, e.g., Ref. [3] periods down to 1/4 of the “regular”
interference period were measured, but with a visibility of only
about 29%. Using the method above, we obtained interference
patterns for projection of a coherent state onto N = 10, 15,
30, and 60 NOON state projectors, shown in Fig. 4. We see
that for N = 10 we get an excellent fit with the predicted
pattern. The poorest visibility, where the visibility of a fringe
is defined by the adjacent local minimum and local maximum
of the interference pattern, is 99.5% in this case. Even for
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N = 60 we get a reasonable fit with the theory and minimum
and maximum visibilities of 57.5% and 86.2%.

The visibility is limited by five effects. The first one is
the smallest step with which we can vary φ. It is set by
the combination of birefringent material (quartz in our case),
the birefringent wedge angle which is 19 deg, and the linear
motorized stage minimum step size 1 μm. This leads to a
minimum phase difference resolution of 29 mrad, which for
N = 60 is too poor (one period of the pattern, occupying
2π/60 rad, is probed by less than four measurement points). As
seen in Fig. 4(d), we simply “miss” many minima and maxima
of the pattern, yielding a lower visibility than that set by other
measurement errors and noise. For N � 30, the dominant
source of error is the stochastically varying quantum efficiency
of the detector. The measured coincidence probability is
P (φ) = �N

n=1ηnPn(φ), where ηn is the quantum detector effi-
ciency for the single-photon projector n. In our case, we use the
same detector for each projector, and therefore ηn → η(nτ ),
where τ = 480 s is the time it took between measuring the
point φ of one projector to the same point for the next projector.
Assuming that the variation in quantum efficiency η(nτ ) =
η(nτ ) − 〈η(τ )〉 is uncorrelated between one projector and
another, the expected standard deviation due to this error is

〈[P (φ)]2〉1/2 =
√

NP (φ)
〈[η(nτ )]2〉1/2

η
. (10)

This equation shows two important features. First, due to the
multiplication of detection events the error will grow with the
square root of the projector’s photon number. This sets an upper
limit to the method’s applicability. Second, the absolute error is
proportional to the coincidence probability; stated otherwise,
the relative error is constant. This is clearly seen in our data
as an excellent fit between experiment and theory as long as
P (φ) is small. Another error source, but less important for our
measurements, is small errors in the phases θn. For a rapidly
oscillating function, the exact position of each single-photon
projector’s minimum has a substantial impact, as predicted in
Ref. [29]. In addition, for the NOON state interference, one
should ideally be able to get all the light in and out of one linear
polarizer. At best, we manage a perpendicular polarization
suppression ratio of 46 dB, and typically the suppression rate
is >40 dB. Finally, the detector dark count also sets a limit. For
our NOON-state interference this error source is negligible as
the dark count rate is <2 Hz and the maximum count rate is
1.02 MHz. The detector efficiency (if it were constant) does not
matter in the experiment as the detected state is a coherent state
irrespective of n and φ. A low detector efficiency (about 20%
for our detector) can easily be offset by a higher input intensity.

IV. CONCLUSIONS

With the Hofmann-Guo method [8,9], it is possible to syn-
thesize any interference pattern to, in principle, the precision
given by N . The method does not limit the obtainable visibility,
and we have shown that in practice, even N = 60 NOON-state
interference patterns can be recorded with >50% visibility.
We have also demonstrated that unusual (nonsinusoidal)
interference patterns can arise from multiphoton interference
of coherent states. Hence, it is neither the shape nor the
visibility of multiphoton interference patterns that delineate

a general border between classical and quantum interference,
although in special cases limits do apply.

However, with a coherent state input it is not possible to
get quantum phase sensitivity [6,7,26] (i.e., break the standard
quantum limit [30,31]). On the contrary, as discussed in some
detail in Ref. [11], for a given mean photon number, e.g., the
NOON state, interference curves have a lower phase sensitivity
than ordinary (single-fringe) interferometry with a coherent
state.

It is possible to directly scale up the demonstrated method
to the classical regime using ordinary photo detectors, and
perhaps it is here the method will find applications. In this case
the single-photon detector can be replaced by, e.g., an ordinary
Si photodiode and the photon number could be increased to
the classical regime, i.e., millions or billions of photon per
mode. Both Eqs. (5) and (10) would still be valid with P (φ)
now being proportional to the photocurrent. The limit on N

imposed by Eq. (10) still holds. It simply does not matter if it
is a classical or a quantum detector’s efficiency that fluctuates.
Despite this, one reason we have stuck to working at the single-
photon detection level is to show that the coincidence method
is very flexible in that it allows the synthesis of any two-mode,
multiphoton projector, albeit at the expense of exponentially
decreasing probability of coincidence events with increasing
N . Another reason is to explore what practical limits (i.e., the
influence of various sources of errors) one encounters when
one scales single-photon coincidence measurements to large
numbers.

When using coherent-state input, the switch from obtaining
the interference curves by coincidence measurements to
multiplication of single-photon projection probabilities allows
considerable savings in time and equipment. In our case,
the maximum probability of detecting a photon in a single
temporal mode, defined by the response time of the detector,
is about 0.1 for each single-photon projector. Hence, as the N

single-photon projectors give statistically independent results,
the probability of detecting, say, 10 photons in coincidence
would be around 0.110 = 10−10. With our detectors with a
response time of 45 ns it would thus take at least 45 × 10−9 ×
1010 = 450 s to get a single coincidence click, on average.
When detecting each (temporal) mode sequentially, instead of
detecting N (spatial) modes in parallel, it took about 900 s to
measure the 60 projectors for a single phase shift φ. Thus, by
taking 215 steps to cover the range of phase shifts from 0 to
2π rad, a whole N = 60 interference curve was obtained in
about 8 h, which is long but feasible.
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APPENDIX: FOURIER EXPANSION COEFFICIENTS

Consider a 2π -periodic rectangle function defined by the
two conditions

fRect (φ,π/2) =
{

0 |φ| � π/2,

1 otherwise.
(A1)

053821-4



SYNTHESIS OF ARBITRARY, TWO-MODE, HIGH- . . . PHYSICAL REVIEW A 87, 053821 (2013)

and fRect (φ,π/2) = fRect (φ + 2lπ,π/2), where l is an ar-
bitrary integer. Since fRect is even, it is advantageous (and
natural) to use an even number of projectors to synthesize
the function, implying that N should be chosen even. (The
function can also be expanded for odd N but with a less
pleasing result.) The Fourier expansion of this function can
hence formally be written

fRect (φ,π/2) =
N/2∑

n=−N/2

b(2n+N)/2 exp(iφn), (A2)

where the expansion coefficients are

b(2n+N)/2 = 1

2π

∫ π

−π

fRect (φ,π/2) exp(−iφn)dφ (A3)

=
{

1/2 n = 0,

− sin(nπ/2)
nπ

n �= 0,
(A4)

By using Eq. (1), the associated polynomial for this state for,
e.g., N = 10, is hence

z5

2
− z4 + z6

π
+ z2 + z8

3π
− 1 + z10

5π
= 0, (A5)

with the roots

z1 = z∗
2 = 0.967612 + i0.252442,

z3 = z∗
4 = 0.723141 + i0.6907,

z5 = z∗
6 = 0.313207 + i0.949685, (A6)

z7 = z∗
8 = −0.463687 + i0.29332,

z9 = z∗
10 = −1.54027 + i0.974347.

The fact that fRect is an even function leads to the result that all
the roots of the associated polynomial come in complex conju-
gate pairs. By inserting these roots into Eq. (3) it is evident how
to implement the 10 single projectors. For example, the n = 1
projector is implemented by introducing a birefringence of
−Arg(z1) ≈ −0.255 rad = −14.6 deg between the horizontal
and vertical directions. This birefringence should be followed
by a polarizer set at the angle arctan |z1| = π/4 rad. In Table I
we list the settings of the birefringence and the polarizer angle
for the 10 projectors in degrees.

It is seen in Fig. 2 that the resulting function is not
a perfect rectangle, but the Gibbs phenomenon makes the
interference curve overshoot on the steep flanks. This effect
can be reduced by the use of a Lanczos-Fourier expansion or

TABLE I. The experimental parameters for N = 10
fRect projectors.

Root n �n θn

1 45.0 − 14.6
2 45.0 14.6
3 45.0 − 43.7
4 45.0 43.7
5 45.0 − 71.7
6 45.0 71.7
7 28.7 − 147.7
8 28.7 147.7
9 61.2 − 147.7
10 61.2 147.7

a Cesàro approximation of the Fourier series, at the expense
of getting less steep flanks in both cases. By going to higher
photon numbers one could in principle reduce the wiggles
in the interval {π/2,3π/2}, but the overshoot height would
remain the same; only the width of the overshooting peak
could be decreased.

In a similar manner, an N = 10 expansion of fSaw
1/2 is

f
1/2
Saw(φ,2π ) =

N/2∑
n=−N/2

b(2n+N)/2 exp[−iφn]. (A7)

By computing the expansion coefficients in the same manner
as before, one arrives at

b(2n+N)/2 =
√

2n sin(nπ ) − fFS(
√

2n)√
2πn3/2

, (A8)

where fFS is the Fresnel sine function. Numerically, the
coefficients are

b5 = 2/3, b4 = b6 = −0.1607,

b3 = b7 = −0.0273, b2 = b8 = −0.0272, (A9)

b1 = b9 = −0.0109, b0 = b10 = −0.0121.

The polynomial associated to the expansion is thus

2z5

3
−0.1607(z4 + z6) − 0.0273(z3 + z7) − 0.0272(z2 + z8)

− 0.011(z + z9) − 0.012(1 + z10) = 0 (A10)

with the roots

z1 = 1.49215, z2 = 0.670175,

z3 = y∗
4 = 0.637336 + i2.22359,

z5 = y∗
6 = 0.119116 + i0.415582, (A11)

z7 = y∗
8 = −0.311654 + i0.245907,

z9 = y∗
10 = −1.97752 + i1.56034.

The settings, in degrees, for the birefringence and the polarizer
angle are given in Table II.

TABLE II. The experimental parameters for N = 10 fSaw

projectors.

Root n �n θn

1 56.2 0.0
2 33.8 0.0
3 66.6 − 74.0
4 66.6 74.0
5 23.4 − 74.0
6 23.4 74.0
7 21.7 − 141.7
8 21.7 141.7
9 68.3 − 141.7
10 68.3 141.7
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