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Mechanical resonators for storage and transfer of electrical and optical quantum states
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We study an optomechanical system in which a microwave field and an optical field are coupled to a common
mechanical resonator. We explore methods that use these mechanical resonators to store quantum-mechanical
states and to transduce states between the electromagnetic resonators from the perspective of the effect of
mechanical decoherence. Besides being of fundamental interest, this coherent quantum state transfer could
have important practical implications in the field of quantum information science, as it potentially allows one
to overcome intrinsic limitations of both microwave and optical platforms. We discuss several state transfer
protocols and study their transfer fidelity using a fully quantum-mechanical model that utilizes quantum state
diffusion techniques. This work demonstrates that mechanical decoherence should not be an insurmountable
obstacle in realizing high-fidelity storage and transduction.
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I. INTRODUCTION

Recent experiments have demonstrated the ability to control
mesoscopic mechanical resonators near the quantum limit
[1–5]. This achievement provides novel opportunities for fun-
damental physics [6] and a technology for engineering quan-
tum systems [7,8]. The mechanical resonators are formally
equivalent to electromagnetic resonators, which form basic
elements of quantum optics but offer many new and unique
opportunities. Mechanical resonators are massive objects that
can be coaxed into interacting strongly with many different
systems. For instance, in experiments to date, mesoscopic
mechanical objects have been coupled to electrical and optical
photons in cavities, although not to both simultaneously. As
proposed in Ref. [9], it may be possible in the near future to
couple a mechanical resonator to both electrical and optical
cavities at the same time (Fig. 1). Such an interface would
provide a way to connect quantum resources that are more
suited for creating and manipulating quantum states (i.e.,
electrical circuits) [10] to resources that are more suited for
transmitting quantum states (i.e., optical platforms).

Given this emerging possibility, an important question is
how to harness mechanical resonators within electromagnetic
cavities to transduce and store quantum states. By trans-
duction, we mean the transfer of energy between distinct
degrees of freedom, in this case, between electromagnetic
oscillators whose frequencies are separated by many orders
of magnitude. The ability to strongly couple single photons
in optomechanical systems would open up a wide variety of
quantum protocols [11]. However, in order to achieve sufficient
coupling, experiments mainly operate the electromagnetic-
mechanical interface in an analogous way to three-wave
mixing in nonlinear optics [12,13]. A strong pump-tone red
detuned from the cavity is introduced to bridge most of
the energy gap between the electromagnetic and mechanical
oscillators. This produces an effective beam-splitter interaction
that can conveniently be turned on and off by varying the
pump-tone intensity. Single-photon states detuned from the
pump can then be transduced between mechanical excitations
and any number of electromagnetic modes.

The quantum optomechanics experiments envisioned here
are thus rooted in the well-developed toolbox associated with
two-mode quantum optics. However, when we introduce low-
frequency mechanical resonators, the presence of a thermal
bath damping and exciting the phonon resonances must be
accounted for in the theoretical analysis. To create a versatile
interface between microwave and optical photons, we consider
use of a megahertz membrane microresonator [1]. Despite
recent progress toward bringing such mechanical systems to
the quantum regime, the mechanical decoherence rate, which
is proportional to the product of the mechanical resonator
line strength and occupation number of thermal bath phonons,
remains a significant decay pathway.

In this paper, we consider the effect of decoherence on
the application of mechanical resonators to store quantum-
mechanical states and to transduce states between electro-
magnetic resonators. Our analysis is based on the quantum
state diffusion method (QSD) [14], which provides an exact
unraveling of the quantum master equation into parallel pure
state quantum trajectories. The reason we use this approach
is that when three different oscillators (mechanical, electrical,
and optical) are coupled, the size of the Hilbert space grows
rapidly with the maximum quanta considered, and the direct
solution of the ensemble evolution or quantum master equation
is intractable for all but the smallest system sizes. The scaling is
more favorable for simulation approaches, such as the quantum
trajectory solution we use here. Although multiple algorithms
are possible, the QSD method most closely corresponds to the
homodyne or heterodyne measurement of the microwave field,
which is the method used experimentally.

It should be emphasized that this numerical method is
not restricted to solving the dynamical evolution of only
Gaussian or classical states. The QSD method allows for any
quantum input state to be tested. In this paper, we compare the
memory and transduction fidelity for coherent states, squeezed
states, Schrödinger-cat states, and nonclassical superpositions
of Fock states. Such numerical approaches also allow for the
analysis of many types of coupling schemes. The simplest
scheme is the coherent swapping of the quantum state of
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FIG. 1. (Color online) A schematic diagram for an optical cavity
coupled to a thin dielectric membrane mechanical resonator, which
in turn is coupled to a resonant electrical LC circuit. The system can
be pumped or read out by both microwave and optical drives.

two oscillators at a transfer rate determined by the strength
of the coupling. This is the optomechanics analog of Rabi
flopping between internal states of a two-level atom. In
addition to this scheme [15], we explore several more diverse
swapping schemes and find them to be more robust against the
omnipresent mechanical decoherence [16–18].

As we will show, the basic system we consider formally
corresponds precisely to a set of adjustable beam splitters
and cavities as illustrated in Fig. 2. The optomechanical and
electromechanical coupling strength is represented by the
reflectivity of the effective beam splitters and can be adjusted
by variation of external parameters to be anywhere from
0 to 100%. We first look at the system from the perspective
of utilizing this beam-splitter interaction to facilitate the
storage and retrieval of an electromagnetic quantum state in a
mechanical resonator. Second, we look at the system from
the perspective of transduction of a quantum state from a
microwave to optical resonator, or vice versa. We investigate
the effect of different protocols on the population of the
mechanical state and, hence, the susceptibility to mechanical
decoherence.

In all cases, we set the decay of the optical and microwave
cavities equal to zero and consider the state preparation of
the optical and microwave modes as an initial condition.

Mechanical

Optical Electrical

FIG. 2. (Color online) An equivalent system of two coupled
adjustable beam splitters which can be a formal analog to the
two-mode optomechanical system in the linearized approximation.
In this open quantum system, each oscillator is also coupled to its
respective reservoir (not shown).

This simplifies the analysis and allows us to focus on the
role of mechanical decoherence. Nonetheless, the internal
and external Q of the optical and microwave cavities is also
an important topic and has recently been treated in both
the context of swapping [15] and itinerant photon schemes
[16,17,19].

II. THEORY

The coupled electro-opto-mechanical system [12,13] is
described by the Hamiltonian in the Schrödinger picture,
Ĥ = Ĥself + Ĥcoupling + Ĥpump, where

Ĥself = h̄ωo,c â†â + h̄ωμ,c b̂†b̂ + h̄ωmd̂†d̂ ,

Ĥcoupling = −h̄XZP

2
(d̂ + d̂†)(goâ

†â + gμb̂†b̂) ,

(1)
Ĥpump = h̄(âA∗

oe
iωot + â†Aoe

−iωot )

+ h̄(b̂A∗
μeiωμt + b̂†Aμe−iωμt ) .

Here the operators â, b̂, and d̂ are the annihilation operators
for a photon in the optical cavity, a photon in the microwave
cavity, and a phonon in the mechanical resonator, respectively.
The system is driven by classical pump fields with frequencies
ω(o,μ) and the bare (i.e., uncoupled) cavity resonance frequen-
cies are ω(o,μ),c, where o stands for optical and μ stands
for microwave. For the mechanical resonator, the resonance
frequency is ωm and the harmonic oscillator length is XZP.
The coupling constants go and gμ are physically determined
by the amount of the shift of the resonant frequency of each
cavity with respect to changes in the mechanical resonator
position.

The strong coherent pump amplitudes, Ao and Aμ, lead
to a buildup of large steady-state fields in the optical and
microwave resonators, whose purpose is to increase the op-
tomechanical coupling (a fact which we demonstrate below).
The resulting steady-state intracavity field amplitudes in turn
shift the equilibrium position of the mechanical resonator
through the radiation pressure force. We begin by finding
these steady-state semiclassical solutions. We remove the time
dependence of the Hamiltonian in Eq. (1) by transforming to
an interaction picture rotating at the drive frequencies, i.e.,
with eiĤ0t where

Ĥ0 = h̄ωo â†â + h̄ωμ b̂†b̂ . (2)

We define detunings as the difference of the drive frequencies
from their respective bare-cavity resonances,

�(o,μ) = ω(o,μ),c − ω(o,μ) . (3)

The interaction Hamiltonian then becomes

V̂0 = h̄�oâ
†â + h̄�μb̂†b̂ + h̄ωmd̂†d̂

− h̄XZP

2
(d̂ + d̂†)(goâ

†â + gμb̂†b̂)

+ h̄(âA∗
o + â†Ao) + h̄(b̂A∗

μ + b̂†Aμ) . (4)

From this we derive coupled equations of motion for the
macroscopic fields, α = 〈â〉, β = 〈b̂〉, and δ = 〈d̂〉. These
equations are found by writing the Heisenberg operator
equations and directly substituting for each operator its
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corresponding classical amplitude:

i
dα

dt
=

(
�o − i

κo

2

)
α − goXZP

2
(δ + δ∗)α + Ao,

i
dβ

dt
=

(
�μ − i

κμ

2

)
β − gμXZP

2
(δ + δ∗)β + Aμ, (5)

i
dδ

dt
= ωmδ − XZP

2
(go|α|2 + gμ|β|2),

where κ(o,μ) is the damping of each electromagnetic oscillator.
We introduce damping to ensure the system relaxes to steady
state. We find the steady-state solution by setting the time
derivatives on the left-hand side of each equation to zero.
Solving the last equation shows that the equilibrium position
of the mechanical oscillator is shifted due to the force exerted
on it by the radiation pressure in the cavities, with steady-
state value δs = XZP(go|α|2 + gμ|β|2)/(2ωm). Note that this is
purely real, indicating no shift in the equilibrium momentum
of the mechanical oscillator as expected.

Substituting the steady-state result for δ into the remaining
two equations for α and β produces two coupled algebraic
equations that contain cubic terms in the field amplitudes.
These equations have multiple roots for small κ(o,μ), corre-
sponding to the well-known steady-state solutions for two-
mode optical bistability. For both the optical and microwave
cavities, we are interested in the stable solutions on the high-
intensity branch, which we denote by αs and βs, respectively.

Having determined the semiclassical solutions, we now
proceed to consider the fluctuations about these solutions. We
linearize all three fields:

â → αs + â, b̂ → βs + b̂, d̂ → δs + d̂, (6)

and substitute these into Eq. (4). We may then identify the
mean-field energy shift that contains no operators:

E = h̄�o|αs|2 + h̄�μ|βs|2 + h̄ωm|δs|2 − h̄XZPδs(go|αs|2
+ gμ|βs|2) + h̄(αsA

∗
o + α∗

s Ao) + h̄(βsA
∗
μ + β∗

s Aμ).

(7)

Using this, the final step in the derivation is to subtract the
energy offset E in Eq. (7) from the Hamiltonian in Eq. (4) and
transform the resulting interaction into an appropriate rotating
frame. Since at this point we are working in the interaction
picture rotating at the drive frequency, we now need to make
a second interaction picture transformation, that is, on top
of the previous one, to transform into a rotating frame at the
cavity frequencies for all oscillator modes; optical, microwave,
and mechanical. In doing this we must take careful account
of the radiation pressure shift that we have just derived for
the electromagnetic resonant frequencies. We thus perform a
second transformation into an interaction picture rotating with
eiĤ1t where

Ĥ1 ≡ h̄�̃o â†â + h̄�̃μ b̂†b̂ + h̄ωmd̂†d̂, (8)

and we have defined �̃o = �o − XZPδsgo and �̃μ = �μ −
XZPδsgμ in order to account for the aforementioned shift in
the cavity frequency due to radiation pressure. Keeping all
terms to second order in the fluctuations, this leads to the

interaction Hamiltonian

V̂1 = −h̄XZPgo

2
(d̂â†αse

i(�̃o−ωm)t + d̂ âα∗
s e

−i(�̃o+ωm)t

+ d̂†â†αse
i(�̃o+ωm)t + d̂†âα∗

s e
−i(�̃o−ωm)t )

− h̄XZPgμ

2
(d̂b̂†βse

i(�̃μ−ωm)t + d̂ b̂β∗
s e−i(�̃μ+ωm)t

+ d̂†b̂†βse
i(�̃μ+ωm)t + d̂†b̂β∗

s e−i(�̃μ−ωm)t ) . (9)

From this result, we can see that in order to maximize the beam-
splitter couplings, the strong pump fields should be detuned to
the red of their respective microwave or optical cavity by

�̃o = �̃μ = ωm. (10)

We assume from now on that this choice has been made for the
detunings. In the resolved sideband limit where the frequency
ωm of the mechanical resonator is much larger than the me-
chanical decay rate as well as the effective coupling constants,
we can then employ the rotating wave approximation where all
the rapidly oscillating time-dependent terms that contain e2iωm

average to zero. Putting all this together leads to the following
effective Hamiltonian,

Ĥeff = h̄ωm(â†â + b̂†b̂ + d̂†d̂) − h̄
�o

2
(â†d̂ + â d̂†)

− h̄
�μ

2
(b̂†d̂ + b̂ d̂†), (11)

where the modified coupling constants are now

�o = goXZPαs, �μ = gμXZPβs. (12)

Without loss of generality, we have taken both αs and βs to be
real. The largest values that have been achieved in experiment
to date are about �o ∼ 0.1ωm and �μ ∼ 0.1ωm [3,20].

As noted earlier, this bilinear Hamiltonian is analogous to
three quantized single-mode fields coupled to each other by
beam splitters. The beam splitters are adjustable by adjusting
the �’s. A pulse area of

∫
dt� = π/2 will be like a 50:50

beam splitter. A pulse area of π will be like a mirror, swapping
the states perfectly. If we turn the coupling off, the oscillators
will propagate freely as if there is no beam splitter. Thus, by
varying the coupling constants, we can change from 0 to 100%
reflection and transmission. It is important to note that the
quantum-mechanical systems described by the field operators
â, b̂, and d̂ are really fluctuations of the bare fields around
their stationary values at each of their respective resonator
frequencies.

In addition to the Hamiltonian in Eq. (11), the resonators are
subject to dissipative processes that stem from their coupling
to the environment. In fact, the decay rates κo and κμ in Eq. (5)
are due to the coupling to the environment. The mechanical
resonator is coupled to a thermal bath. Thermal phonons are
absorbed into the mechanical resonator at a rate γmn̄ where n̄

is the average Bose occupancy of the resonator and phonons
are lost at a rate γm(n̄ + 1). The optical and microwave cavities
are taken to be at zero temperature, and we set the loss rates
given by γo and γμ, respectively, to zero.

We use the quantum state diffusion (QSD) method to
simulate the fully quantum evolution of this open system
[14,21–23]. The QSD method is well suited for this problem
because it yields the conditional evolution of an open quantum
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system subject to homodyne measurements of the output
fields. In this way, we may obtain amplitude and phase
information about the decay channel. In the QSD approach, we
stochastically evolve each resonator subsystem as if we were
performing a continuous fictitious homodyne measurement of
the photons or phonons coming out of each resonator. Even
though an actual experiment cannot measure the phonons in the
mechanical resonator, the numerical simulation gives us access
to this information in the spirit of a “Gedanken” measurement.

For the scenarios we explore, the decay rates of the
optical and microwave resonators are set to zero so that
only the mechanical resonator is coupled to the environment.
Thus, in those cases, the stochastic evolution only applies to
the mechanical resonator subsystem, while the optical and
microwave resonators evolve according to the Schrödinger
equation. In actual experiments, the optical and microwave
resonators are also coupled to the environment and actual
homodyne measurements can be performed on those output
fields. The QSD method works for the fully open system as
well. But here we are reducing the fully open system to focus
only on the mechanical decoherence.

In the QSD method, the evolution of the total density matrix
of the system is unraveled into an ensemble of stochastic
parallel pure state trajectories. Each trajectory is evolved
according to a stochastic differential equation. The trajectories
are then averaged in the ensemble sense to recreate the total
density matrix. In the limit of a large number of trajectories,
the ensemble average of the stochastic trajectories goes to a
state diffusion evolution. Each trajectory evolves according to
the stochastic differential equation [14]:

|�̃(t + dt)〉=
{

1 −
[

i

h̄
Ĥeff + γm(2n̄ + 1)

2
d̂†d̂

+ 2γm(2n̄ + 1)〈d̂† + d̂〉d̂
]
dt + d̂

√
γmn̄ dWd̂ (t)

+ d̂†√γm(n̄ + 1) dWd̂† (t)

}
|�(t)〉, (13)

where dWd̂ (t) and dWd̂† are the continuum limits of a
Wiener increment �W , which satisfies the ensemble average
〈(�W )2〉 = �t of a Gaussian random distribution with a width√

�t . There are two Wiener increments, one for each noise
process in the mechanical oscillator where there are two
types of decay channels, one for phonons entering the system
dWd̂† (t), and one for phonons leaving the system dWd̂ (t). We
numerically integrate these stochastic differential equations
using a second-order scheme [24].

III. QUANTUM STATE MEMORY

One of the possible applications of this system is to store a
quantum state in the mechanical resonator. One could prepare
the microwave resonator in any of a variety of quantum states.
This can be done with superconducting quantum circuits
or other experimental setups such as those described in
[10,25–27]. Then the states of the microwave and mechanical
resonators could be swapped using a “π pulse,” effectively
storing the quantum state in the mechanical resonator. At
some later time, another swap could be done to put the state
back into the microwave resonator where it can be retrieved

0

ΔT

Ω

Time

FIG. 3. (Color online) A schematic diagram of the coupling π -
pulse sequence for quantum state memory tests. The sign of the
coupling constant for retrieval must be the opposite of the sign for
storage in order to cancel the phase accumulation during the pulses.

[12,15]. The objective would be to maintain high fidelity of
the quantum state involved. These swaps are achieved by
varying the coupling constant �(o,μ), which behaves like a
Rabi frequency in the beam-splitter Hamiltonian in Eq. (11).
The coupling constants can be changed by modulating the
bare coupling constants g(o,μ) or the complex pump amplitude
A(o,μ), or the detuning �(o,μ). For this problem, it is sufficient
to consider just a pair of resonators. We reduce the system to
one electromagnetic resonator and one mechanical resonator
by setting one of the coupling constants to zero.

A “π pulse” in this context is a pulse where the time
integral over the coupling constant in frequency units is π . For
the Gaussian coupling pulses, �(t) = �e−(t−tc)2/(w2π), that we
employ, the pulse area is wπ�, where wπ is the width of the
Gaussian and the peak amplitude is �. The pulse sequence is
schematically shown in Fig. 3.

To see how well the system is able to store classical
and quantum states, we study a variety of initial states with
the same pulse sequence for storage and retrieval. Recall
that these states in fact represent the phonon or photon
fluctuations around the stationary value of each resonator, as
we have previously described in the derivation of the linearized
effective Hamiltonian in Eq. (11).

We use coherent states |α〉|n〉m, squeezed coherent states
|α,ξ 〉|n〉m, cat states |ψcat 〉, and a superposition of Fock states
|ψSF 〉 as inputs to the microwave resonator. The squeezed
coherent state [28] is a displaced squeezed vacuum state,
|α,ξ 〉 = D̂(α)Ŝ(ξ )|0〉, where α is the mean value and ξ is the
squeezing parameter. The displacement operator is D̂(α) =
eαâ†−α∗â and the squeezing operator is Ŝ(ξ ) = e

1
2 (ξ∗â2−ξ (â†)2).

The cat state is |ψcat 〉 = N (|α〉 + | − α〉)|n〉m, where N is a
normalization constant. The input state for the superposition of
Fock states that we will study is |ψSF 〉 = 1√

2
(|0〉μ + |1〉μ)|n〉m,

where |i〉μ indicates the photon fluctuations around the
stationary value inside the microwave cavity and |n〉m indicates
the phonon fluctuations around the stationary value inside the
mechanical resonator.

The initial Fock state for the mechanical resonator for
all input states |n〉m is randomly chosen according to the
probability distribution for a thermal state,

Pn = n̄n

(n̄ + 1)n+1
, (14)
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in order to sample the thermal density matrix at a temperature
corresponding to n̄.

To measure the success of this scheme, we look at the
fidelity [15] of retrieving the input state as a function of the
mechanical quality factor Qm = ωm/γm. The fidelity [29] is
defined as

F (ρi,ρf ) = [Tr(
√√

ρiρf

√
ρi)]

2, (15)

where ρi and ρf are the reduced density matrices for the input
and output states, respectively. The fidelity for pure states
reduces to the overlap between the initial and final states.

At zero temperature, in the case where the pulse duration is
short compared to the decay time of the mechanical resonator,
we can neglect the decay during the swapping pulses and
assume that the swaps happened perfectly. In that case, the final
state will only have decayed exponentially at the mechanical
decay rate γm during the time �T between the two π pulses
to become |ψf 〉 = |e−γm�T/2α〉. Thus we can analytically find
the fidelity for a pure final state to be

F = |〈e− ωm�T
2Qm α|α〉|2 = e−|α|2(1−e−ωm�T/(2Qm ))2

. (16)

However, for nonzero temperatures or large decay rates the
final state will thermalize quickly and this formula will no
longer be valid. The state does not decay to the vacuum as
Eq. (16) suggests. Rather it decays to a thermalized value.
Thus the final fidelity for pure states will saturate at low Q to
the overlap between a thermalized state and the initial state.
Thus the coherent state fidelity takes on the form

F (Q) = F (0) + [1 − F (0)]e−|α|2(1−e−ωm�T/(2Qm ))2
. (17)

We take the overlap between the thermal state given by Eq. (14)
and the coherent state in the number basis to obtain the thermal
saturation overlap value,

F (0) = e−|α|2/(1+n̄)

1 + n̄
. (18)

Further complicating matters, the full density matrix, which
is pure, must be reduced to the resonator subsystem that is
being read out before taking the fidelity overlap with the
reduced input density matrix. This makes the reduced density
matrices impure. Consequently, we need to employ the more
general formula to find the fidelity that is valid for states that
are not pure.

Figure 4(a) shows the memory fidelity at zero temperature
for the input states |α〉, |ψSF 〉, and |ψcat 〉 for �T = 64ω−1

m . The
coherent state fidelity agrees well with our analytical result in
Eq. (17) except at very low Q. At low Q values, the input state
thermalizes quickly to a thermal state. For these low Q values,
the decay time is smaller than the pulse width. Even though
there is almost no time between the pulses for these cases, the
state still thermalizes during the pulse width. A thermal state
has a constant fidelity overlap with the initial state. Thus
the fidelity for low-Q mechanical resonators levels off to a
constant value. This causes the actual fidelity to deviate from
the analytic formula. Across the range of Qm values considered
in Fig. 4, the nonclassical states have lower fidelities than the
coherent state.

The fidelities for a finite temperature corresponding to
n̄ = 3 are shown in Fig. 4(b). As expected, the fidelities are
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FIG. 4. (Color online) Memory fidelity as a function of mechan-
ical resonator quality. (a) For n̄ = 0. Input states |α〉 (red circles)
with α = 1, |ψSF 〉 (black diamonds), |ψcat 〉 (blue squares). The solid
line is the analytic formula for the coherent fidelity from Eq. (17).
(b) For n̄ = 3. (c) For squeezed states |α,ξ〉 with α = 1 and n̄ = 0
for various squeezing parameters ξ . In all cases, �T = 64ω−1

m and
the peak coupling is �μ = 0.1ωm. The horizontal dotted black line
indicates 95% fidelity for reference.

consistently reduced by the thermal noise. At the current
experimental values for the mechanical quality [20] (far
right-hand side of the plots), all the fidelities are above 99%
and there is little difference between the various input states.

For the squeezed states |α,ξ 〉, shown in Fig. 4(c), we varied
the squeezing parameter ξ , keeping α constant at α = 1. For
ξ = 0 the input state is just the coherent state, so the data
is similar to the coherent state data. The solid red line is
the analytic formula from Eq. (17), showing good agreement
with the no-squeezing, ξ = 0, input state. As the squeezing
increases, the input state becomes more and more nonclassical.
For low-Q cavities, the mechanical resonator quickly decays
to a thermal state that is farther and farther away from the
initial squeezed state. This causes the fidelity for these highly
squeezed states to go to zero.

Next, we look at how long the mechanical oscillator can
store a quantum state before significant degradation occurs.
Figure 5(a) shows the memory fidelity of |ψSF 〉 for increasing
wait times as a function of Qm for n̄ = 0. As expected, the
fidelity decreases with increasing wait time, but we can still
achieve above a 95% fidelity for the higher Qm values. At the
current experimental Q values of about Qm = 360 000 [20],
the quantum state can be stored in the mechanical resonator
for longer than �T = 160ω−1

m at low temperatures.
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FIG. 5. (Color online) (a) Memory fidelity of |ψSF 〉 as a function
of mechanical resonator quality for various wait times for n̄ = 3. The
fidelity decreases exponentially with decreasing Q and with increased
wait times. At low Q, the fidelity saturates to the thermalized value.
(b) The memory fidelity versus scaled wait time for n̄ = 0. (c) The
memory fidelity versus scaled wait time for different temperatures,
showing how all the curves collapse onto one universal curve. In all
cases, the peak coupling is �μ = 0.1ωm.

For the coherent case, we have a universal curve for the
zero temperature fidelity,

F = e−|β(0)|2(1−e−ζo/2)2
, (19)

where we have rescaled the fidelity data by a dimensionless
variable scaled by the thermal average occupation number n̄,

ζo = ωm

(
�T − π

�μ

)/
Qm, ζ = ωm

(
�T − π

�μ

)
n̄/Qm.

(20)

For the Fock states, the exponential dependence on ζ is similar,
although we no longer have an analytic formula. We subtract
the width of the π pulses to more accurately reflect the actual
storage time. Figure 5(b) shows the same memory fidelity
as for subplot A versus ζo for n̄ = 0. Figure 5(c) shows the
memory fidelity versus ζ for finite n̄ in order to remove the
dependence on the temperature. As we increase the wait time
before the second π pulse, the fidelity decreases exponentially
as expected. By removing the dependence on the temperature,
the fidelity curves all collapse onto one universal curve. Even
though we are running our simulations at low n̄ values, these
results can be scaled up to more experimentally practical n̄

values while keeping ζ constant.
All the input states in Fig. 4 reach above a 95% fidelity for

ζo values below about 0.26 for coherent states, 0.11 for Fock

0.8 0.85 0.9 0.95 1
0

20

40

60

80

N
um

be
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

N
um

be
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

N
um

be
r

Fidelity

(a)

(b)

(c)

FIG. 6. (Color online) Distribution of fidelities for |ψSF 〉 for
Qm = 10 000 (a), Qm = 1000 (b), and Qm = 500 (c) for 1000
independent QSD trajectories. In all cases, �T = 64ω−1

m , n̄ = 3, and
the peak coupling is �μ = 0.1ωm. Note the different horizontal axis
in each plot.

states, and 0.04 for cat states for n̄ = 0. The fidelity is above
95% for ζ values below 0.03 for coherent states, 0.02 for Fock
states, and 0.01 for cat states for n̄ = 3 with the peak coupling
set to �μ = 0.1ωm.

The distribution of the fidelities over the individual stochas-
tic QSD trajectories is not Gaussian and thus the mean and
variance are not representative of the outcome of a single run.
In an experiment, many runs must be performed to get good
statistics about the memory transfer fidelity. However, as the
mean fidelity increases, the distribution becomes more and
more narrow and thus more repeatable. Figure 6 shows the
fidelity distribution for |ψSF 〉 for Qm = 10 000, Qm = 1000,
Qm = 500, where the wait time is �T = 64ω−1

m , n̄ = 3, and
the peak coupling is �μ = 0.1ωm for 1000 trajectories.

IV. QUANTUM STATE TRANSDUCTION

We turn now to the problem of transducing the quantum
state from the microwave domain to the optical domain
via the mechanical resonator or vice versa. This situation
is formally equivalent to the quantum memory case if the
electromechanical coupling pulse and the optomechanical
coupling pulse do not overlap. This is because transduction can
be realized by two sequential steps from one resonator to the
mechanical resonator and then to the second resonator, playing
the same roles as storage and retrieval in the previously studied
case of quantum memory. However, with three resonators,
more varied protocols are possible. Although we specialize our
analysis to the case where the initial state is in a superposition
of Fock states, which now also contains the optical vacuum
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state, |ψt 〉 = 1√
2
(|0〉μ + |1〉μ)|n〉m|0〉o, these procedures could

be similarly applied to consider other quantum states.
The coupling parameters can be of similar orders of

magnitude for optical and microwave cavities. So, to simplify
the analysis, we set the respective optical and microwave
coupling parameters equal to each other, �o = �μ = 0.1ωm.
In addition, we set both optical and microwave detunings equal
to the mechanical resonator frequency.

For transduction, we want to minimize the decay and
thermal effects caused by leaving the state in the mechanical
resonator for any appreciable time period. The simplest method
to accomplish this is to move the quantum state through the
mechanical resonator as quickly as possible. This method
would be good for applications such as quantum information
processing where speed is desirable.

Another method is to adiabatically move the state from the
microwave to the optical resonator or vice versa without fully
populating the mechanical resonator. Naturally, adiabaticity
requires longer times, but it is also less susceptible to variations
in the pulse profiles. We will discuss this method in more detail
in the next section.

We begin by using a similar protocol to the quantum
memory scheme. We set the first π pulse to swap the state
from the microwave cavity to the mechanical resonator. Then,
we set the second π pulse to occur right after the first one
to swap the state from the mechanical resonator to the optical
cavity. This pulse sequence is shown schematically in Fig. 7(c).

The resulting fidelity is shown by the red dots in Fig. 7(a)
as a function of the Q of the mechanical resonator. As this
is formally equivalent to the memory scheme, we see similar
behavior. The separation between the peaks of the π pulses
used here is the same as the wait time we used for the quantum
memory scheme. Thus, the numerical data are similar. Just
as for the quantum memory case, as the mechanical quality
decreases, the thermal noise and decay processes become more
significant and the fidelity exponentially decays down to the
fully thermalized value.

A natural extension of this scheme is to move the two π

pulses closer together, which could allow for faster transfer.
Taking this to its logical extreme, we study a scheme where
both coupling pulses occur simultaneously. This allows for the
state to move from the microwave to optical cavity, or vice
versa, without fully occupying the mechanical resonator, but
note that this in not in the adiabatic regime.

The overlap in the coupling modifies the optimal pulse area
of both couplings. The effective Rabi frequency for the beam
splitter Hamiltonian in Eq. (11) is

�̃ =
√

�2
o + �2

μ . (21)

When the optical coupling is turned off, as in the quantum
memory case of the last section, the effective Rabi frequency
reduces to �̃ = �μ and the pulse area for each swapping
pulse is π . However, when both couplings are on and equal
in magnitude, the effective Rabi frequency becomes �̃ =√

2�o = √
2�μ. Then the pulse areas of both pulses increase

to
√

2π . This is shown schematically in Fig. 7(e).
This scheme achieves significantly higher fidelities than

the separated pulse scheme for all Q values. The fidelity is
shown in Fig. 7(a) by the blue squares. In the low-Q regime,
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FIG. 7. (Color online) (a) Transfer fidelity vs mechanical res-
onator quality for |ψt 〉 for the separated pulse scheme (red dots),
the simultaneous pulse scheme (blue squares), intuitive pulse scheme
(green diamonds), and counterintuitive pulse scheme (black stars)
with n̄ = 3. (b) Number of photons or phonons in each resonator
for intuitive, separated coupling pulses for zero temperature where
�T = 64ω−1

m . (c) The pulse profile for separated pulses. (d) Number
of photons or phonons in each resonator for simultaneous coupling
pulses for zero temperature. (e) The pulse profile for simultaneous
pulses. In all cases, the peak couplings are �o = �μ = 0.1ωm.

the decay and thermal noise processes become increasingly
more significant. However, the population going through the
mechanical resonator is smaller, so the effect is lessened. Also,
there is no waiting time between the pulses for decay and
thermal noise processes to occur. The only decay happens
during the time associated with the width of the pulse. Thus
the simultaneous pulse scheme is more robust against these
dissipative processes.

In order to illustrate the differences between the separated
and simultaneous pulse schemes, we examine the populations
in each of the three resonators throughout the swapping
process. Figure 7(b) shows how the populations change for
the separated π -pulse scheme. As expected, the state in
the electrical resonator moves into the mechanical resonator
and then into the optical resonator. In contrast, Fig. 7(d)
shows populations for the simultaneous π -pulse scheme.
Here, the state transfers from the electrical resonator to the
optical resonator without ever fully populating the mechanical
resonator.

As the pulses move closer together, the pulse area needed
to make the swap smoothly changes from π to

√
2π . Also,

in real experiments there may be slight imperfections in the
pulse preparation that would result in varying pulse areas and
peak separations. We have performed simulations over a range
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FIG. 8. (Color online) The fidelity versus pulse area and pulse
separation for Qm = 100 000, n̄ = 0, and �o = �μ = 0.1ωm. The
negative horizontal axis values represent the peak separation for
counterintuitively ordered pulses, while the positive horizontal axis
values represent the peak separation for intuitively ordered pulses.

of varying pulse areas and separations to investigate the effect
this has on the fidelity.

Figure 8 shows the transduction fidelity versus the pulse
area and the peak separation between the two coupling
pulses for n̄ = 0 and Qm = 100 000 for the superposition
of Fock states, |ψt 〉. The horizontal axis represents the
separation between the peaks of the two coupling pulses as
a percentage of the total transduction sequence time as shown
in Fig. 7(c). The zero on the horizontal axis is the point where
the two coupling pulses occur simultaneously. The positive
horizontal axis represents peak separations that are “intuitive,”
i.e., the electromechanical coupling pulse occurs before the
optomechanical coupling pulse.

As the intuitive Gaussian pulses move farther apart, they
eventually become effectively separated and the distance be-
tween them no longer matters, since this is at zero temperature
with very low decay rates. This is the area on the far right-hand
side of Fig. 8, where the regions of high fidelity level off at
odd integer multiples of π . Pulses that are π pulses or an odd
integer multiple of a π pulse will swap the state completely
from the microwave resonator to the optical resonator. Any
other pulse area will not perfectly swap the states. Thus we see
the oscillatory behavior we expect in that region of the plot.

At zero pulse separation, the pulses are identical and the
Rabi swapping pulse area is

√
2π . Thus the peak fidelity

oscillations are at odd integer multiples of
√

2π . For partially
overlapping intuitive pulses, the peak fidelity oscillations
smoothly drop from the simultaneous values to the separated
values.

The fidelity for a representative partially overlapping
intuitive coupling pulse configuration is shown in Fig. 7(a)
by the green diamonds. For this case, the pulse area is 1.2π ,
the peak separation is 10%, and n̄ = 3. In the next section we
will discuss the counterintuitive half of the plot.
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Δ
P Δ

S
|3〉γ ←

Pump Laser
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Stokes Laser
ω

b

FIG. 9. Schematic of a three-state system as conventionally used
for implementing a STIRAP transfer process.

A. Adiabatic State Transfer

The left half of Fig. 8 shows the transduction fidelity for
overlapping coupling pulses that are in the counterintuitive
order, which means that the optomechanical coupling
pulse occurs before the electromechanical coupling pulse. As
the peak separation increases, at some point the pulses become
effectively separated and the fidelity goes to zero. However,
when the coupling pulses are significantly overlapping, there
is a large area of high fidelity for any pulse area. As we
increase the pulse area and thus the adiabaticity, the zone of
high-fidelity transduction increases.

This counterintuitive coupling scheme closely resembles
the stimulated Raman adiabatic passage (STIRAP) process
in a three-level atom. Our system of three coupled harmonic
resonators can be formally mapped onto such a three-state
system [16]. The energy levels for a three-state system are
shown in Fig. 9. If we identify the microwave cavity with state
|1〉, the optical cavity with state |2〉, and the mechanical cavity
with state |3〉, then we can get population transfer from state
|1〉 to |2〉 via the normal STIRAP process [30], which leaves
virtually no population in state |3〉. In the STIRAP process, the
Stokes coupling (the coherent coupling between states |2〉 and
|3〉) is turned on first, which splits the energy levels for state
|3〉. Then the pump coupling (the coherent coupling between
states |1〉 and |3〉) is turned on and the population in state |1〉
is seen to be transferred to state |2〉 without ever having any
significant population in state |3〉 because of the interference
between the pathways corresponding to traversing each of the
two split energy levels.

For illustration purposes we examine the populations
of the three resonators throughout this scheme shown in
Fig. 10. Just as we would expect for a STIRAP-like process,
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FIG. 10. (Color online) The number of photons or phonons in
each resonator for the STIRAP-like coupling pulses. The pulse area
is 10π and the peak separation is –14%.

053818-8



MECHANICAL RESONATORS FOR STORAGE AND . . . PHYSICAL REVIEW A 87, 053818 (2013)

the state adiabatically transfers from the microwave to the
optical resonator while minimally populating the mechanical
resonator. Thus this scheme is much more robust against
decay and thermal noise as well as imperfections in pulse
area. However, adiabaticity generally requires longer times.
The simultaneous pulse scheme will transduce the state much
quicker, but the pulses must be precisely generated. So there
is a tradeoff between the transduction time and considerations
such as how stringent must be the pulse preparation and the
role of decay during the simultaneous pulse width.

A representative counterintuitive partially overlapping cou-
pling pulse configuration is shown in Fig. 7(a) by the black
stars. For this case, the pulse area is 2.4π , the peak separation
is −15%, and n̄ = 3.

V. CONCLUSION

Quantum state memory and transduction is possible for a
broad range of experimentally achievable parameters in driven
cavity optomechanics. Many different types of states can be
stored in the mechanical resonator and retrieved with a high
fidelity in the range of experimentally achievable mechanical
quality factors. At the current experimental Q values of
about Qm = 360 000 [20] the quantum state can be stored
in the mechanical resonator for longer than �T = 160ω−1

m at
low temperatures. As the experiments improve the coupling
strength, the time the state can be stored without significant

degradation will increase. If the mechanical mode is cooled
before the swapping pulses are applied, then the storage time
will also increase.

We have shown several procedures to accomplish trans-
duction of quantum states. High-fidelity transfer is possible
for Rabi-type pulses of varying widths and separations even
for very-low-Q mechanics. We have shown that over 95%
transduction fidelity can be achieved for Qm > 4525 for
�m = 0.1ωm and n̄ = 3 for the simultaneous pulse scheme.
This scheme is quicker and more robust against thermal
noise and decay than the more common separated pulse
scheme. Higher bath temperatures will require a shorter
simultaneous pulse with stronger coupling to achieve high
fidelities.

Counterintuitively ordered adiabatic pulses can also be used
to transfer the quantum state through a STIRAP-like scheme
with high fidelity. This scheme is robust against thermal
noise and decay and imperfections in pulse preparation and
overlap but requires longer transduction times. Higher bath
temperatures will also require longer transduction times to
maintain the adiabaticity.
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