
PHYSICAL REVIEW A 87, 053806 (2013)

All-optical amplification in metallic subwavelength linear waveguides
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The proposed all-optical amplification scenario is based on the properties of light propagation in two coupled
subwavelength metallic slab waveguides where, for a particular choice of waveguide parameters, two eigenmodes
coexist: propagating (symmetric) and nonpropagating (antisymmetric). For such a setup incident beams realize
boundary conditions for forming a stationary state as a superposition of the mentioned eigenmodes. It is shown
both analytically and numerically that the amplification rate in this completely linear mechanism diverges for
small signal values.

DOI: 10.1103/PhysRevA.87.053806 PACS number(s): 42.81.Qb, 42.60.Da, 42.79.Ta

Leading ideas in investigations of all optical logical devices
in structured media [1] usually implement optical bistability
[2] or soliton interaction [3] in creating the switching operation
of optical beams. Quantum dots [4], single molecules [5], or
atomic systems [6] could be also used for optically controlled
switching of light. One can also quote various optoelectronic
approaches [7] for the realization of optical transistors and
asymmetric nonlinear waveguides for all optical diodes [8].
However, all the mentioned setups are based on nonlinear
photon-photon interactions and hardly meet the criteria [9]
for applicability in all-optical computing. Here we consider
the possibility of amplification of optical signals using two
subwavelength waveguides coupled by metallic film. The
problem is linear with no need in high-power fields and
there is a rich experience in the building of subwavelength
photonic [10] and metallic waveguides [11].

Our idea of all-optical amplification is based on the
possibility of the coexistence of two fundamental modes with
real (symmetric mode) and imaginary (antisymmetric mode)
wavenumbers along the longitudinal propagation direction of
a dielectric-metal-dielectric combined waveguide system. In
such a situation only the symmetric mode can carry nonzero
flux, while the energy flux associated with the antisymmetric
mode is exactly zero. Thus the propagation of the antisymmet-
ric mode responsible for destructive interference is suppressed
and the amplification effect can take place. Suggested effect
is different than one in a homodyne receiver scheme, where
signal intensity is amplified at the receiver area, while the
total signal energy flux is not amplified. As we will show
below, the total signal flux amplification is possible only in
metallic subwavelength waveguides, where symmetric and
antisymmetric modes are characterized by real and imaginary
wavenumbers, respectively.

In principle, the suggested waveguide system could be of
different geometries; in this paper we consider two dielectric
slabs (with refractive index n) separated by a metallic film and
we assume the perfect electric conductor (PEC) condition on
both sides of the waveguide system. Thus the setup presented
in Fig. 1(a) allows one to reduce the problem to 2 (space) + 1

*Deceased.

(time) dimensions assuming the electric field is polarized and
homogeneous along the y direction and having a fixed zero
value at the boundaries. In nonmagnetic medium we can write
down the following wave equations for the transverse electric
field E ≡ Ey perpendicular to the xz plane:

�E − n2∂ttE = 0, �E − ω2
pE − ∂ttE = 0, (1)

where we work in the units c = 1 and use the definition
� ≡ ∂xx + ∂zz. The first equation in (1) corresponds to
the wave propagation inside a dielectric, while the second
equation describes the dynamics inside the metallic film in
the approximation of zero Drude relaxation rate. Beyond this
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FIG. 1. (Color online) (a) Schematics for the dielectric-metal-
dielectric waveguide system restricted by the perfect electric conduc-
tor (PEC) from both sides. (b) Dependence of the longitudinal wave
number on the waveguide width d for two fundamental symmetric
(solid) and antisymmetric (dashed) modes calculated from Eqs. (4)
and (5); the thickness of the metallic film is fixed to the value
2b = 0.506(λ/2π ). Panels (c) and (d) display snapshots for these
modes according to expressions (6) and (7).
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approximation the electromagnetic wave dynamics inside the
metal is governed by [12]

�E − 4π∂tJ − ∂ttE = 0, ∂tJ = −J

τ
+ ω2

p

4π
E, (2)

where J stands for the electric current density; 1/τ stands
for the Drude relaxation rate; ωp =

√
4πe2N/m is a plasma

frequency; and e, N , and m are charge, concentration, and
mass of electrons, respectively.

For the sake of analytical simplification we assume neg-
ligible damping inside the metal (τ → ∞) getting from
(2) automatically the initial system (1), and we work in
the frequency range ω � ωp for which the metal is not
transparent. Moreover, because of the placement of the PEC
on both sides of the waveguide system, one has vanishing
boundary conditions E(x = ±d) = 0. Thus the stationary
basic solution of (1) in the different parts of the combined
dielectric-metal-dielectric symmetric waveguide system is
written as follows:

E = A sin[kx(d + x)]ei(kzz−ωt) + c.c., − d < x < −b

E = (F1e
κx + F2e

−κx)ei(kzz−ωt) + c.c., |x| < b (3)

E = B sin[kx(d − x)]ei(kzz−ωt) + c.c., b < x < d,

where “c.c.” means complex conjugated term and in the
combined part of the waveguide one has a dielectric in the
range b < |x| < d and metal in the range |x| < b; A, B, F1,
and F2 are real amplitudes of electric field in the dielectric and
metallic parts, respectively; kx is a real wave number in the
dielectric; ω is a working frequency; and κ is the penetration
depth in the metal. These wave numbers are linked by the
dispersion relations

kz =
√

ω2n2 − (kx)2, κ =
√

ω2
p − ω2 + (kz)2, (4)

which automatically follows putting solution (3) into wave
equations (1). If we fix operational frequency ω and waveguide
parameters b and d, all other quantities are uniquely defined.
Particularly, from the continuity conditions of solution (3) at
the lines x = ±b, one gets the following relations for kx :

tan[k±
x (d − b)][tanh(κb)]±1 + [k±

x /κ] = 0, (5)

where we have a + (−) sign for the symmetric (antisymmetric)
solution. Taking into account the dispersion relations (4), one
can calculate k±

x and k±
z versus waveguide parameters b and

d, and we are interested in the range of these parameters for
which (k+

z )2 is positive while (k−
z )2 is negative [see Fig. 1(b)

for the appropriate parameter values indicated by a circle].
Then defining the real quantities as k+

z ≡ ks and k−
z ≡ ika we

can write the following for the symmetric and antisymmetric
solutions:

Es = 	+(x) cos(ksz − ωt); Ea = 	−(x)e−kaz cos(ωt),
(6)

where orthogonal to each other the symmetric and antisym-
metric profiles 	±(x) are defined as

	± = sin[k±
x (d + x)], − d < x < −b,

	± = sin[k±
x (d − b)]

eκb ± e−κb
[eκx ± e−κx], |x| < b, (7)

	± = ± sin[k±
x (d − x)], b < x < d,
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FIG. 2. (Color online) (a) The upper panel displays profiles of two
fundamental modes given by Eqs. (7) and the lower panel presents
their combinations which serve as a good approximation for boundary
conditions of beams entering into the left (solid line) and right (dashed
line) waveguides. (b) Results of numerical simulations (crosses) on
acceleration rate versus signal amplitude f , which is compared with
analytical formula (19) presented as a solid line. Panels (c) and (d)
show energy flux density distribution within the waveguide system
for signal amplitudes f = 0 and f = 0.5, respectively.

and we present snapshots of symmetric and antisymmetric
solutions (6) in Figs. 1(c) and 1(d) while their profiles (7)
along axis x and their combinations are presented in Fig. 2(a).

As long as the electric field has a single component along
the transversal y axis one can readily compute the in-plane
components of the magnetic field; particularly, Hx could
be easily integrated form the Maxwell equation ∂Hx/∂t =
∂E/∂z. Then it is straightforward to calculate the energy
flux density as sz = EHx and the total energy flux along the
longitudinal z direction as Sz = ∫ d

−d
EHxdx. It is easy to see

from (6) and (7) that averaged over time the total flux in the
case of the symmetric eigenfunction is 〈Ss

z 〉 � dks/2ω, while
in the antisymmetric case one has a standing wave profile along
the z direction and consequently the averaged total flux 〈Sa

z 〉
is exactly zero.

Now the question is which solution (symmetric or antisym-
metric or their linear combination) is realized for the given
boundary condition. Let us suppose that seed and input beams
are injected from the isolated waveguides separated by the
PEC. Thus we have the seed and input waveguides bounded
by the PEC at x = −d,0 and x = 0,d, respectively, and first
of all we consider the symmetric incident field in the form of
the following propagating wave at z < 0:

Is = |sin (πx/d)| cos(ksz − ωt), − d < x < d. (8)

This should be combined with the reflected beam with
unknown amplitudes r1 and r2 characterizing the symmetric
and antisymmetric contributions,

R = [r1 sin(πx/d) + r2 |sin (πx/d)|] cos(ksz + ωt), (9)
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and the sum I + R should be connected with the linear
combination usEs + uaEa of the solutions at z > 0 given by
Eq. (6) via continuity conditions. Noting that in the case of
narrow metallic films b � d [see Fig. 2(a)] 	+ � | sin(πx/d)|
and 	− � sin(πx/d), we easily get the condition r1 = r2 =
ua = 0, us = 1, meaning that there is no reflected wave and in
a whole range of z and the symmetric solution is approximately
given by

E = |sin (πx/d)| cos(ksz − ωt). (10)

While in the case of the antisymmetric incident field the
analysis is a bit more complicated, particularly, if we take the
incident field in the form

Ia = sin (πx/d) cos(ksz − ωt), − d < x < d, (11)

from considerations similar to those above, we conclude that
such a beam is completely reflected and a whole solution is
written as follows:

E = sin(πx/d) [cos(ksz − ωt) + cos(ksz + ωt + ϕ)] , z < 0

E = ua sin(πx/d)e−kaz cos(ωt + ϕ/2), z > 0, (12)

where tan(ϕ/2) = ka/ks and ua = 2/
√

1 + (ka/ks)2.
Now let us suppose that we have an incident seed beam

entering into the left waveguide written in the form

EI = sin[π (x + d)/d] cos(ksz − ωt), − d < x < 0, (13)

and EI = 0 at the right part 0 < x < d. Then it is clear that
this beam before entering into the waveguide system carries
the total averaged in time flux 〈SI

z 〉 = ksd/4ω. At the edge
of the waveguide system this seed beam realizes a boundary
condition which could be approximately presented as a sum of
symmetric and antisymmetric eigenfunctions (6) at the point
z = 0 (note that all of those functions undergo the same time
oscillations); thus we write [see also the bottom panel of
Fig. 2(a)]

EI (z = 0) � 1
2 (Es + Ea) |z=0. (14)

It is natural to expect that having such a boundary condition
after some transient time the solution (Es + Ea)/2 develops
in a whole waveguide system as well and this is confirmed
by our numerical simulations (please see below). Calculating
the energy flux of this solution and taking into account that
the flux of the antisymmetric solution is strictly zero, one
gets half of the value of the incident averaged flux: 〈SI

z 〉/2 =
ksd/8ω, meaning that only half of the intensity goes through
the waveguide system and the rest is reflected back. A similar
analysis holds for the signal field with amplitude f incident to
the right waveguide in the form

Ef = f sin [π (d − x)/d] cos(ksz − ωt). 0 < x < d,

(15)

and Ef = 0 for −d < x < 0; before entering the waveguide
this beam carries the averaged total flux

〈
Sf

z

〉 = f 2ksd/4ω, (16)

which is a total gain of incident flux due to application of the
signal. This signal beam also realizes a boundary condition
at the right waveguide, but now it is given in the form
(f/2) (Es − Ea) |z=0 [see again the bottom panel of Fig. 2(a)]

and thus due to the presence of both seed and signal fields
the following stationary solution develops in the waveguide
system:

E � (1 + f )Es

2
+ (1 − f )Ea

2
. (17)

From arguments similar to those above that the antisymmetric
mode is characterized by a zero averaged flux, it is obvious
that such a field carries the averaged flux 〈Sout

z (f )〉 = (1 +
f )2ksd/8ω and thus the total gain of the output flux due to the
signal reads as

〈
Sout

z (f )
〉 − 〈

Sout
z (0)

〉 = (2f + f 2)ksd

8ω
. (18)

This should be compared with the averaged over time input
signal flux (16), and thus one gets the following for the
amplification rate:

r = 〈Sout
z (f )〉 − 〈Sout

z (0)〉
〈Sf

z 〉
= 1

2
+ 1

f
, (19)

which diverges at small signal values. Next our aim is to
confirm this analytical result by numerical simulations.

For this purpose we first derive the boundary-value data
at the lines z = 0 and z = L (L is a length of the system)
following Refs. [13,14], which represent incident waves
entering the combined waveguide from the seed and signal
and going out. As we have mentioned above before entering
the waveguide system the seed and signal fields are described
by Eqs. (13) and (15); thus in the range z � 0 the solution
reads

E = [I (x) cos(ksz − ωt) + R(x) cos(ksz + ωt)] , (20)

where one has the following for I (x):

I (x) = sin [π (d + x)/d] and I (x) = f sin [π (d − x)/d]

(21)

for −d < x < 0 and 0 < x < d, respectively, while R(x) is
an unknown amplitude profile for the reflected wave and thuse
has to be eliminated. The continuity conditions at z = 0 with
the electric field E(x,z,t) inside the combined waveguide can
be written as

[I (x) + R(x)] cos(ωt) = (E)z=0,

ks[I (x) − R(x)] sin(ωt) = (∂zE)z=0,

which can be combined to exclude the unknown reflected
amplitude R(x) taking the time derivative from the first
equation and then combining the resulting one with the
second equation. Similar manipulations could be done with the
boundary conditions at z = L but then there is no contribution
of the backward propagating field; thus the resulting equations
read as

∂zE|z=0 = (ks/ω)∂tE|z=0 + 2ksI (x) sin(ωt),
(22)

∂zE|z=L = −(ks/ω)∂tE|z=L.

Thus we solve numerically the initial equations (1) with the
boundary conditions (22) and definition (21) for I (x). Next
we compute the averaged over time longitudinal flux density
〈sz〉 inside the waveguide system and its total value 〈Sz〉 across
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the system and compare the latter to the value of the total
incident signal flux given by Eq. (16) for different values
of signal amplitude f . Finally we compare numerical results
with the analytical prediction (19). We choose the operational
frequency ω such that the vacuum wavelength is λ = 0.7 μm,
as a dielectric we take glass with a refractive index n = 1.5, and
we choose silver as a metal complex refractive index of which
for the mentioned wavelength is ñ = n1 + in2 = 0.05 + 5i

[15]. Thus we can derive the plasma frequency needed in (1)
as follows ωp � n2ω [16]. The width of the waveguide system
is taken as 2d = 4.294(λ/2π ) and the metallic film thickness is
chosen as 2b = 0.506(λ/2π ). For such a choice of waveguide
parameters the wave number of the symmetric propagating
mode is ks = 0.25(2π/λ) and this value is used in the boundary
conditions (22). Measuring the total flux for various values of
signal amplitudes we have plotted Fig. 2(b), which shows an
excellent correspondence with analytical formula (19), while
in Figs. 2(c) and 2(d) we plot the distribution of the averaged

in time flux density for two values of signal amplitude: f = 0
and f = 0.5. Finally, in the Supplemental Material the time
evolution animations of the electric field and associated flux
densities are presented [17].

In conclusion, we present a mechanism of signal amplifica-
tion based solely on linear effects and confirm the amplification
scenario by numerical simulations. In principle the analysis
could be extended in the case of a single waveguide with
a metallic boundary when the seed is directly injected into
the waveguide while the signal beam is illuminated from the
metallic film side. The above studies could be generalized
for different systems where propagating and nonpropagating
fundamental modes coexist.
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