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Multibistability and self-pulsation in nonlinear high- Q silicon microring resonators considering
thermo-optical effect
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Optical bistability (BI) and self-pulsation (SP) in high-Q silicon microring resonators (MRRs) induced by
thermo-optical (TO) effect and other nonlinear effects are theoretically studied with coupled mode theory and
linear stability analysis method. It is found that the boundaries for both BI and SP are mainly restricted by two
counteracting effects: free carrier dispersion effect and TO effect. If the refractive index changes of a MRR caused
by these two effects are on the same order of magnitude, the output power will exhibit much more complicated
dependence on the input power and wavelength, namely, input-power-dependent multi-BI and multi-SP regions
will exist at certain input wavelength range. The controllability of multi-BI and multi-SP phenomena by the input
power and input wavelength could be very useful in all-optical nonlinear devices.

DOI: 10.1103/PhysRevA.87.053805 PACS number(s): 42.65.Pc, 42.65.Sf, 42.60.Da

I. INTRODUCTION

Silicon microring resonators (MRRs) have shown great
potential in passive and active photonic devices. With the
decrease of the cross section as well as the linear loss for
the ring waveguide, the threshold power for the onset of
bistability (BI) and self-pulsation (SP) can be effectively
lowered. Currently, linear loss of silicon MRRs has been
reduced to less than 0.8 dB/cm by using the etchless
technology, resulting in an intrinsic quality factor higher than
510 000 [1]. Meanwhile, the waveguide geometric dimension
has been reduced from several micrometers to several hundred
nanometers, immensely enhancing the light intensity within
the ring waveguide. The minimum threshold power has been
reported as 277 μW (BI) [2] and 300 μW (SP) [3] for etched
SOI resonators and 42 μW (BI) for etchless silicon MRRs [4],
respectively. Besides MRRs, other types of silicon resonators
have been employed to further reduce the threshold power as
well, with 35 μW (BI) and 480 μW (SP) for silicon microdisk
resonators [5] and 25 μW (BI) for silicon photonic crystal
nanocavities [6]. The lower threshold power of BI and SP is
useful in all-optical modulation and logic devices. However,
such low threshold power may have a negative influence
on the functions of some passive devices based on silicon
resonators, for example, optical routers and splitters, as a
slightly higher input power (about 0.1 mW) would arouse
undesired disturbance on their normal functionalities.

SP can occur in passive ring cavities when the relaxation
time of the nonlinear medium is much longer than the round-
trip time of the ring, which is proposed by Ikeda [7]. In silicon
MRR, such relaxation time includes photon lifetime, free
carrier lifetime and thermal decay time. S. Malaguti et al. [8]
and we [9] both analyzed the BI and SP phenomena without
considering the thermo-optical (TO) effect. Several articles
have reported thermo-induced BI and SP in silicon resonators
previously [3,5]. However, it is not yet clear how the associated
parameters affect the dynamic behaviors of these nonlinear
phenomena. Recently, Van Vaerenbergh, et al. [10,11] have
analyzed the TO effect on the nonlinear behavior of silicon
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MRRs, but they neglected the fast light dynamics, i.e., the
photon lifetime in silicon MRRs.

In this paper, we have investigated the individual effect of
the three time constants on the regions of BI and SP, with
emphasis on the effect of the free carrier lifetime and the
thermal decay time. An interesting result is found that if we
choose proper free carrier lifetime and thermal decay time, we
will get multi-BI and multi-SP when changing input power,
which has not been reported yet. A further study on different
SP regions shows that the oscillation frequencies and output
power waveforms are much different. The effects considered
in our model include linear loss, linear absorption, two-photon
absorption (TPA), TPA-induced free carrier absorption (FCA)
and FCD, Kerr nonlinearity, and TO effect [12,13]. Free
carriers generated by TPA play a twofold role in terms of
refractive index change: first, they decrease the refractive index
of the waveguide by the FCD effect; second, the interband
and intraband relaxation of these free carriers induces phonon
excitation, which raises the temperature in the waveguide
through lattice vibration, and in turn increases the refractive
index due to TO effect. As a result of the different response time
of these two opposite effects, the output power of the MRR
becomes much more complicated with respect to varying input
power and wavelength.

The article is organized as follows. The model is introduced
in Sec. II including TO effect and other physical effects. We
then normalize these equations and give the linear stability
analysis. In Sec. III, we analyze BI and SP phenomena
using linear stability method. The boundaries for both BI
and SP in input power and wavelength are obtained. And
the characteristics in different SP regions are studied in time
domain and frequency domain. Then we study the effects of
free carrier lifetime, thermal decay time, and photon lifetime
on the BI and SP. Finally, we conclude the paper.

II. MATHEMATICAL MODEL

A. Nonlinear coupled mode theory

Nonlinear coupled mode theory (CMT) is used to describe
the light propagation in silicon MRRs. Similar to those
described in [14–17], the temporal evolution of the intracavity
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field u(t) can be described as follows:
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where c is the light velocity in vacuum, u is the complex
amplitude of light propagating in the MRR by letting |u|2
equal to the mode energy U = |u|2, n0 is the refractive index
of the MRR, ω0 is the resonance frequency of the MRR, ωL is
the incident light frequency, and Pin is the incident light power.
n2c|u|2/(n0VKerr) is the refractive index change caused by Kerr
effect, with n2 the Kerr coefficient and VKerr the Kerr nonlinear
volume VKerr = AKerrL. −(σr1N + σr2N

0.8) is the refractive
index change induced by FCD effect with σr1 = 8.8 × 10−22,
σr2 = 8.5 × 10−18 and electron-hole density N in cm−3 [18].
κθ�T is the refractive index change induced by TO effect, with
κθ the TO coefficient κθ = ∂n/∂T and �T the temperature
change in the ring waveguide. α is the total linear loss of the
MRR, including ring linear loss αring and coupling loss αc.
β2c

2|u|2/(2n2
0VTPA) represents the absorption loss caused by

TPA, with β2 the TPA coefficient and VTPA the TPA volume
VTPA = ATPAL. σFCANc/(2n0) is the FCA loss, with σFCA

the FCA coefficient. 
c is the coupling coefficient between
straight waveguide and ring waveguide with 
c = cαc/n0.

Under critical coupling conditions, the total microring loss
equals to the coupling loss (αring = αc). αring ≡ αabs + αrad +
αsca means that the ring loss has three parts, i.e. the linear
absorption loss αabs, the radiation loss of the higher order mode
αrad, and the sidewall roughness scattering loss αsca. The linear
absorption involves the material absorption and the surface
state absorption. It is generally difficult to determine the exact
proportion of linear absorption loss in the ring loss (ηlin =
αabs/αring), and as an example, we assume this proportion to
be 0.4, which means that 40% of the ring loss is due to the
linear absorption, which would eventually converted to heat to
raise the temperature of the waveguide.

Due to the intrinsic connection between TPA and Kerr
effects, the effective cross section of TPA effect, denoted by
ATPA, equals to that of Kerr effect, denoted by AKerr, and is

defined as ATPA = [
∫∫

n(x,y)2|E|2dxdy]
2∫∫

Si
n(x,y)4|E|4dxdy

[5,19].

Free carriers in the ring waveguide are mostly generated by
TPA effect. The relaxation of these free carriers involves in
a variety of processes, including nonradiative recombination,
diffusion, Auger recombination, etc. If the silicon ring waveg-
uide dimension is less than 1 μm, nonradiative recombination
dominates [5]. We can write the temporal evolution of the free
carrier density as

∂N

∂t
= c2β2

n2
02h̄ωLV 2

FCA

|u|4 − N

τcar
, (2)

where N is the electron-hole pair density, VFCA = AFCAL is

the FCA volume and is defined as A2
FCA = [

∫∫
n(x,y)2|E|2dxdy]

3∫∫
Si

n(x,y)6|E|6dxdy

[5,19]. We simplify the free carrier lifetime τcar as a fixed
value, which does not change with the carrier density.

Similarly, we can introduce an equation to describe the
temperature evolution in the silicon MRR. Heat generated in-
side the resonator comes from absorption—linear absorption,
TPA, and FCA. Thermal energy in the waveguide diffuses
to the surroundings mainly through heat conduction, thus we
use the thermal decay time τth to describe the temperature
evolution [5,19,20]
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∂t
= |u|2
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(
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+ c2β2|u|2

n2
0VTPA

+ σFCANc

n0

)
− �T

τth
,

(3)

where ρSi and cSi are the density and the constant-pressure
specific heat capacity of silicon, respectively. Veff = AeffL is
the effective volume of the silicon waveguide.

The nonlinear system has three specific time-dependant
parameters: photon lifetime (τph), carrier lifetime (τcar), and
thermal decay time (τth). Photon lifetime is the average time
that a photon can exist within the ring, which is determined
by the total loss of the ring (including coupling loss) or
equivalently, the cavity quality factor Q. Free carrier lifetime
is mainly affected by the state of the silicon-silica interfaces. It
is reported that the free carrier lifetime of an etchless silicon-
on-insulator waveguide is one order of magnitude larger than
that of the etched waveguide of the similar size [4,21]. Thermal
decay time is mainly determined by the heat conduction rate,
which is controlled by the material property and geometry.
One reported experiment has shown that the thermal energy
decay time can be engineered by etching trenches around the
microring [4].

In this paper, we take a ridge waveguide with 220 nm height,
500 nm width, and 100 nm slab height as an example. Such ring
resonator includes only one ring and one coupling waveguide,
and the radius of the ring is 50 μm. The minimum linear
loss reported is about 0.7 dB/cm for strip waveguide, while
the linear loss of shallow-etched rib waveguide is less than
0.2 dB/cm by IMEC using optical lithography [22]. Thus,
we use 0.7 dB/cm (0.16 cm−1) as the loss of our ridge ring
waveguide. Only critical coupling condition is considered
in the numerical analysis. At this case, the photon lifetime
calculated is 0.27ns [τph = n0/(cα)]. The values of parameters
used in the calculation are listed in Table I.

TABLE I. Parameter values used in the calculation.

Parameter Value Unit Source

n0 2.588 – FimmWave
αring 0.16 cm−1 –
τph 0.27 ns calculated
ηlin 0.4 – [2,19]
R 50 μm –
n2 4.5 × 10−18 m2/W [23,24]
β2 0.75 × 10−11 m/W [23,24]
σFCA 14.5 × 10−22 m2 [23,24]
Aeff 0.204 × 10−12 m2 FimmWave
ATPA 0.1289 × 10−12 m2 Calculated
AFCA 0.116 × 10−12 m2 Calculated
ρSi 2.329 × 106 g/m3 [25]
cSi 0.713 J/(g K) [25]
κθ 1.86 × 10−4 K−1 [26]
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B. Normalized equations and linear stability analysis

It is difficult to use Eqs. (1)–(3) to numerically analyze the
nonlinear dynamic process directly, due to the large orders of
magnitude differences of the parameters (u, N , and �T ). For
example, in some cases, the carrier density N is 1034 larger than
the ring energy |u|2 in number. Thus, it is very difficult to obtain
correct dynamic results with Runge-Kutta method. Besides, it
is also difficult to calculate the eigenvalues with linear stability
analysis method directly, because of the very large quantitative
differences among the elements in the matrix. A useful way
is to normalize these parameters to dimensionless ones, which
are shown below [8–11].

∂a

∂t
= {iδ − i[nKerr|a|2 − (n + σFCDn0.8) + T ]

− [1 + αTPA|a|2 + γFCAn]}a +
√

P (4)

∂n

∂t
= |a|4 − n

τ
(5)

∂T

∂t
= ξT |a|2 (

ηlinηc + 2αTPA|a|2 + 2γFCAn
) − T

τθ

, (6)

where the normalized time t is in unit of 1/
0 with

0 = cα/(2n0). |a|2 = |u|2√σβ is the normalized energy
in the ring; P = KinPin is normalized input power where
Kin = √

σβ
c/
2
0; n = σN is the normalized carrier density;

δ = (ω0 − ωL)/
0 is the normalized input light frequency
detuning; nKerr = ωLn2c/(
0n

2
0VKerr

√
σβ) is the Kerr non-

linearity; σ ≡ σr1ωL/(n0
0) and σFCD = σr2ωL/(σ 0.8n0
0)
are related to FCD effect; T = ωLκθ�T/(n0
0) is the nor-
malized temperature change corresponding to TO effect;
αTPA = β2c

2/(2n2
0
0VTPA

√
σβ) is the TPA coefficient; γFCA =

σFCAc/(2n0
0σ ) is the FCA absorption coefficient; τ = 
0τcar

is the normalized carrier lifetime; β ≡ c2β2/(
02h̄ωLn2
0V

2
FCA);

ξT = ωLκθ/(n0
0ρSicSiVeff
√

σβ); ηlin = αabs/αring is the pro-
portion of the linear absorption; ηc = 2αring/α represents if the
ring is at critical coupling (= 1), under coupling (> 1) or over
coupling (< 1); τθ = 
0τth is the normalized thermal decay
time.

Equations (4)–(6) have steady-state solutions a(t) = A,
n(t) = N0, T (t) = T0 by letting ∂a/∂t = 0, ∂n/∂t = 0 and
∂T /∂t = 0.

N0 = τE2 (7)

T0 = τθ ξT E(ηlinηc + 2αTPAE + 2γFCAτE2) (8)

P = E{[−δ + nKerrE − (τE2 + σFCDτ 0.8E1.6) + T0]
2

+ [1 + αTPAE + γFCAτE2]
2}, (9)

where E = |A|2 is the intracavity normalized dimensionless
energy.

For the normalized dimensionless equations (4)–(6), we
can directly analyze the nonlinear system dynamics by using
linear stability analysis which is similar to Refs. [8–11].
The corresponding linear matrix is obtained by adding small
perturbations to the stable results and substituting the up-
dated parameters into the normalized differential equations
with omitting higher-order terms. Letting a(t) = A + δa,
n(t) = N0 + δn, and T = T0 + δT , the perturbation array

ε ≡ (δa,δa∗,δn,δT )T is found to obey the linear equation

dε/dt = Mε (10)

where the eigenmatrix M is a 4 × 4 matrix. All the elements
in M are listed below.

M =

⎛
⎜⎜⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎟⎟⎠ (11)

with M11 = iδ − i2nKerr|A|2 + i(N0 + σFCDN0.8
0 ) − iT0 −

1 − γFCAN0 − 2αTPA|A|2, M12 = −inKerrA
2 − αTPAA2,

M13 = iA(1 + 0.8σFCDN−0.2
0 ) − γFCAA, M14 = −iA,

M21 = M∗
12, M22 = M∗

11, M23 = M∗
13, M24 = M∗

14,
M31 = 2|A|2A∗, M32 = M∗

31, M33 = −1/τ , M34 = 0,
M41 = ξT (ηlinηc + 4αTPA|A|2 + 2γFCAN0)A∗, M42 = M∗

41,
M43 = 2ξT γFCA|A|2, M44 = −1/τθ .

Thus, we can use the eigenvalues of M to find the
boundaries of both BI and SP. Note that all the figures plotted in
the next section are based on these normalized equations. After
calculation, we then convert some dimensionless parameters
back to the real physical parameters to give an intuitive
physical view.

III. ANALYSIS OF BISTABILITY AND SELF-PULSATION

The normalized dimensionless equations [Eqs. (4)–(6)],
together with the linear stability analysis method [Eq. (10)], are
used to study the boundaries of both BI and SP. The resulted
matrix is a 4 × 4 matrix with four eigenvalues [Eq. (11)].
If the real parts of all the eigenvalues are negative, it is
called a stable node. On the other hand, if any of them
is positive, it is called an unstable node [27]. In order to
illustrate the BI and the SP conditions clearly, we assume
λr1 � λr2 � λr3 � λr4 as the real parts of the four eigenvalues.
If λr1 > 0 > λr2 � λr3 � λr4, this point is in the BI region,
while if more than one of them is larger than 0, this point
is in the SP region. Actually, there may be two pairs of
complex conjugate eigenvalues or more than one real positive
eigenvalues. As a result, the system considering TO effect
is much more complicated than that only focusing on Kerr
nonlinearity [28–31] or TPA nonlinearity [8,9].

As the relationship between input power and the energy
in the ring (we use ring energy for simplicity) is not simply
linear, the boundaries of BI and SP with respect to input power
are complicated. An example of the relationship is shown in
Fig. 1, assuming τcar = 10 ns, τth = 100 ns and input light
wavelength detuning �λ = −3 pm, where different colors
represent different energy states in the ring. The boundaries
of the colored curves are determined by the eigenvalues of
the linear stability matrix. In some cases, one input power
corresponds to more than one ring energy state, thus the
output power is determined by the initial ring energy state.
For example, if one input power corresponds to two possible
stable states of the ring, the actual output power is determined
by the initial ring energy before the input light is injected
into the ring; while if one input power corresponds to one
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FIG. 1. (Color online) Ring energy E versus input power Pin

in steady state. This figure is plotted by the steady-state relationship
between normalized ring energy E and normalized input power P [see
Eq. (9)]. Inset: zoom-in views when the input power is from 0.035
mW to 0.05 mW. Black solid curves: stable state; red dashed curves:
self-pulsation state (SP); blue dotted curves: bistability state (BI). All
the boundaries of these curves are determined by the linear stability
analysis method [or the eigenvalues of matrix M , see Eq. (11)]. The
red arrows represent input power changes from low to high, while
the green ones represent the opposite direction. Two BI and three SP
regions are found along with the ring energy, but only two SP regions
are observed along with the input power.

stable ring energy state and several unstable states, the output
power usually chooses the stable one. As a result, with the
increasing or decreasing of input power, some energy states
are not obtained. In Fig. 1, only two SP regions are obtained.
The two BI regions are within the two SP regions, thus we
cannot see the hysteresis loop in the Pout-Pin plane (see Fig. 2).
Furthermore, there is another stable energy state as the energy
E is near 0.8, which is shown in short black curve in Fig. 1
(arrow). The range of such state is very narrow under this
condition, but it will change with other parameters, such
as input wavelength. Normally, it is difficult to reach this
stable energy state with continuous change of input power.
Some researchers have studied this condition by using short
pulse laser and they observed the excitability [10,11,32].
Besides, in some cases changing input wavelength will reach
this stable state, which will be shown in the following
subsection.

A. Influence of input power and wavelength on bistability
and self-pulsation

In this section, we analyze how the input light parameters
(i.e., power and wavelength) affect the boundaries of BI and
SP. It is convenient to use the steady-state solutions to show the
relationship between the normalized refractive index change
�n and normalized ring energy E [Eqs. (7)–(9)], which is
derived as follows:

�n = nKerrE − (τE2 + σFCDτ 0.8E1.6)

+ τθ ξT E(ηlinηc + 2αTPAE + 2γFCAτE2), (12)
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FIG. 2. (Color online) Output power in through port versus input
power. The inset is zoom-in view of the first SP region. The red curve
describes the case where input power is increasing gradually, while
the green dashed curve is for the opposite power changing direction.
The blue dotted boxes represent the maximum possible output power
ranges in SP regions. The irregular curves shown in SP regions are
instantaneous values of output power at the same fixed time. All the
values used in the figure are the same to those used in Fig. 1. Such
curves are obtained by calculating Eqs. (4)–(6) with the Runge-Kutta
method. At each input power, we read the output power and the ring
state after 40 μs. The ring state was then used to be the initial state
in calculating the next input power.

where the first term on the right-hand side is the Kerr effect,
the second term within the bracket is the FCD effect, and
the last one is the TO effect. The FCD effect has two parts,
which illustrate the different roles of free electrons and holes
in the refractive index. The TO effect has three parts: linear
absorption, TPA absorption, and FCA absorption. The FCD
effect decreases the refractive index, while Kerr and TO effects
increase it. The sign of �n is changed especially by the energy
E – when E is very low, say near 0, TPA and its induced effects
are so low that only the Kerr and linear absorption are in roles;
while increasing E may make it negative according to the ratio
of carrier lifetime and thermal decay time; when increasing E

further, the FCA-induced TO effect will have the major effect
on �n.

When the carrier lifetime and thermal decay time are
fixed to be 10 ns and 100 ns, respectively, the dimensionless
parameters in Eq. (12) are calculated as: nKerr = 0.55, σFCD =
7.2, ξT = 0.074, αTPA = 0.11, γFCA = 0.20, τ = 18.5, and
τθ = 185, thus �n = 0.55E − (18.5E2 + 74E1.6) + 5.5E +
3E2 + 101E3. Actually, there is a range of E where �n <

0, which means the resonant wavelength of this MRR is
blue-shifted. Multi-BI and multi-SP are the results of the
competition of FCD and TO effects. Such a phenomenon was
not predicted and observed in the systems where only FCD
effect and/or Kerr effect is considered.

To further explore the possible multi-BI and multi-SP
phenomena, we consider a fixed structure where the carrier
lifetime and thermal decay time are constants. The map of BI
and SP boundaries in the plane of input power and wavelength
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FIG. 3. (Color online) BI and SP boundaries in the map of input
power (Pin) and wavelength detuning (�λ). Inset: zoom-in details
of the black box with input wavelength detuning from −1.5 pm to
−4.5 pm. When the input power is from low to high, or the wavelength
detuning is from blue to red, BIon is the boundary of BI; for the
opposite changing direction, BIoff is the boundary of BI. BI�λ and
BIP represent the regions of BI in input wavelength and input power,
respectively. All the black curves and markers are the boundaries of
stable states, while some of them are also the boundaries of BI and/or
SP.

detuning is very useful (see Fig. 3). A clear view of the map
has shown that the minimum input power to stimulate SP
is less than 20 μW. This results from the low loss of the
MRR as well as the small effective area of the waveguide.
The boundaries of BI are all blue-shifted from the linear
resonant wavelength of MRR because of the predominant
roles of FCD over other nonlinear effects. BIon and BIoff are
the boundaries of BI, which are defined according to the ring
energy, E(BIon) < E(BIoff), but P (BIon) > P (BIoff) for input
power. We should point out that the boundaries of BI in Pin

and �λ are different where �λ < −17.5 pm, and the main
difference comes from BIoff . BIoff is on the upper stable branch
of ring energy, and can only be obtained when the initial ring
energy is high. When the input wavelength is from long to
short, the energy state can reach the upper stable state branch,
and thus it goes through the other boundary of BI. However,
gradually changing input power is difficult to reach the upper
branch of BI and thus only stable output power is observed in
such input wavelength range. The mixed state “SP & stable”
means that one input power corresponds to two different states:
stable state and SP state. Normally, only stable output state is
obtained, but a suitable input pulse may stimulate such output
from stable to oscillation.

The output power versus input wavelength detuning at dif-
ferent input powers are shown in Fig. 4. Different wavelength
sweeping directions have different output powers in the regions
of BI. The main characteristic of BI is the hysteresis loop,
which comes from the different initial ring energy states. When
the input wavelength is swept from short to long, the initial ring
energy is lower than E(BIon) that BIon is the first boundary of
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FIG. 4. (Color online) Relative output power spectra at different
input powers. Red solid curves represent the input wavelength from
“blue side” to “red side” (which is from left to right in the figure),
while the green dash-dot curves represent the opposite direction.
τph = 0.27 ns, τcar = 10 ns, τth = 0.1 μs.

the ring energy, thus a sharp drop is obtained in output power.
While if the input wavelength is swept from long to short
such that the ring energy is different from previous situation,
this results in a sharp change in the output power at BIoff .
Furthermore, the SP is also observed in the optical spectrum
when input power is 30 μW.

B. Characteristics of output light in different SP regions

From Fig. 3 it is also found that, if �λ is in the range
of −3.1 pm to −1.7 pm, two input-power-dependent SP
regions are observed. The major nonlinear effects in these
two regions are different, so we further study how the output
power oscillates in the time domain. Here Runge-Kutta method
is directly used to calculate Eqs. (4)–(6), and the output
parameters are then converted back to real physical parameters.
The two input powers are 30 μW (we use SP1 to define this SP
region) and 20 mW (SP2), respectively, with the same input
wavelength detuning �λ = −2 pm.

In SP1, the output power has a periodic oscillation with
high extinction ratio and nearly 50% duty ratio [Fig. 5(a)]. The
limit cycle is obtained from the phase diagram of the output
light field [Fig. 5(b) and the inset]. Fast Fourier transform
(FFT) spectrum of the output power in the frequency domain
shown in Fig. 5(c) indicates that the output light field has
one major frequency near 3 MHz. This oscillation frequency
is much lower than that of the case without considering TO
effect, such as the previous simulation in Ref. [9]. To provide
an insight into the process and the underlying physics, the
refractive index change in the ring caused by Kerr effect, FCD
effect, and TO effect were analyzed separately in the time
domain as well, which are shown in Fig. 5(d). Kerr effect
plays a negligible contribution to the refractive index change
compared with other effects. FCD induced refractive index
change, which is the embodiment of carrier density in the
ring, holds a larger contribution than the TO effect does.
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FIG. 5. (Color online) (a) Output power in time domain with
input power 0.03 mW (within SP1 region) and wavelength detuning
−2 pm. (b) Phase diagram of the output light amplitude. The inset
shows that it has only one limit cycle. (c) FFT spectrum of the output
power. (d) Refractive index change in the ring waveguide caused by
Kerr effect (blue dotted), FCD effect (green dash), and TO effect (red
dash-dot), respectively. The sum result is shown in the black solid
curve. τph = 0.27 ns, τcar = 10 ns, τth = 0.1 μs.

In the SP2 region, the SP characteristics are remarkably
different from those in the SP1 region. The output power is
periodic [Fig. 6(a)] but without a single dominant frequency
[Fig. 6(c)]. The phase diagram of the output light complex
amplitude shows more complicated limit cycle as seen in
Fig. 6(b). As shown in Fig. 6(d), the refractive index changes
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FIG. 6. (Color online) (a) Output power in time domain with input
power 20 mW (red line, within SP2 region) and wavelength detuning
−2 pm. (b) Phase diagram of the output amplitude. (c) FFT spectrum
of the output power. (d) Refractive index change in the ring waveguide
caused by Kerr effect (blue dotted), FCD effect (green dash), and TO
effect (red dash-dot), respectively. The sum result is shown in the
black solid curve. τph = 0.27 ns, τcar = 10 ns, τth = 0.1 μs.
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FIG. 7. (Color online) BI and SP boundaries in the map of input
power (Pin) and wavelength detuning (�λ). (a) Free carrier lifetime
τcar is fixed at 1 ps, which is much less than thermal decay time τth to
simulate the limit value τcar/τth = 0. (b) Free carrier lifetime is 0.1 ns
(τcar/τth = 0.001). SP is obtained at this case, which is shown within
two blue curves. All the black curves and markers are the boundaries
of stable states. τph = 0.27 ns.

smoothly in most time but with sharp rise and fall at the end
of each oscillating cycle.

The sharp rise and fall of output power with time where the
TO effect dominates comes from the fact that the ring energy
state goes through the associated BI boundaries. For example,
when the input power is very high, the ring energy increases
from low to high and will undergo some BI states as seen in
Fig. 1. The very high ring energy induces much more free
carriers via TPA, leading to the increase of both |�n(FCD)|
and �n(TO), and the power coupled into the ring will change
according to the total refractive index. When E is not very
large, |�n(FCD)| is a slightly larger than �n(TO). Therefore,
the instantaneous resonant wavelength is blue-shifted slightly
and is closer to the input wavelength, resulting in an increase
of the coupling power into the ring. A quick increase of E

then makes �n(TO) increase quickly, then the instantaneous
resonant wavelength is red-shifted and is far away from the
input wavelength, resulting in a decrease of the coupling power
into the ring. At this point, the first drop of E takes place, and
the output power increases sharply. Then the energy E is very
low where FCD is almost omitted, leaving only TO dominant.
With the cooling of the ring waveguide, �n(TO) is decreasing
and the coupling power into the ring is increasing smoothly.
When the ring energy is at the critical point, it would jump
again, leading to another jump of output power. Because the
temperature in the ring must be cooled down during one cycle,
the total time in the cycle is much larger than the thermal decay
time.

C. Influence of τcar, τth, and τph on multi-BI and multi-SP

First, we analyze how free carrier lifetime τcar plays roles
in BI and SP, by fixing the other two parameters constant.
When the FCD effect is omitted, the TO effect is the main
nonlinear effect. The refractive index change is positive and
the ring resonant wavelength is red-shifted. The regions of BI
and SP, if it has, are on the red side of the resonant wavelength.
Two cases, τcar/τth = 10−5 and τcar/τth = 10−3, are analyzed
through the map of BI and SP in the Pin- �λ plane (Fig. 7).
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FIG. 8. (Color online) BI and SP boundaries in the map of input
power (Pin) and wavelength detuning (�λ). (a) Free carrier lifetime
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with τph = 0.09 ns.

The main feature is that the regions of BI and SP are all
in the red-shifted wavelength range, which fits well with the
above discussion. When the free carrier lifetime is enlarged,
the region of SP is observed [Fig. 7(b)].

One necessary condition for SP in the silicon MRR is that
both FCD and TO have similar functions on the refractive
index change. With the increase of carrier lifetime, the range
of SP enlarges, while the range of BI shrinks (due to the inter-
section of BI and SP). Enlarging the free carrier lifetime
further will get a whole wavelength detuning range of SP,
which can be understood from Fig. 3 as one example. The
threshold input power of SP will reach its minimum value as
well.

The thermal decay time τth can also be tailored, such as by
etching trenches around the microring [4], or by controlling
the cladding thickness or material. The influence of τth on
BI and SP is inverse to that of τcar, due to the fact that FCD
and TO play opposite roles in the refractive index change
�n. One example of such case is shown in Fig. 8(a) by
assuming τth = 1 μs and τcar = 10 ns. Both BI and SP regions
are in the red-shift range, which is similar to the case of
Fig. 7(b).

With further increase of the free carrier lifetime (or decrease
of the thermal decay time), FCD contributes more to �n than
TO, resulting in an overall blue-shift of BI. The threshold
power of SP increases accordingly. The limit situation in this
case is τcar/τth → ∞. This indicates that the TO effect is
omitted, which was already analyzed by us [9]. Under this
condition, the dynamic system is mainly determined by the
photon lifetime and the free carrier lifetime. Similar BI and
SP regions occur when other suitable parameter values are
adopted.

Thirdly, we analyze how the photon lifetime τph affects BI
and SP. The photon lifetime is inversely proportional to the ring
linear loss [τph = n0/(cα)]. The way to change τph is to change
the ring linear loss α of MRR, for example, to change the gap
between the straight waveguide and the ring waveguide, or to
change the roughness of the sidewall of MRR. It is well known
that the quality factor Q of MRR is also inversely proportional
to the ring loss. Thus, both τph and Q are affected by the ring
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FIG. 9. (Color online) Maximum energy states number of BI (a)
and SP (b) in the map of (τcar, τth) with �λ from -20 pm to 20 pm
and Pin from 0 to 1 W. The minimum steps of carrier lifetime τcar,
and thermal decay time τth are 0.05 ns and 5 ns, respectively. αring =
αc = 0.16 cm−1, τph = 0.27 ns. The rough edges of the regions are
due to the relative large steps of τcar, τth and �λ.

linear loss. The linear loss used is 0.16 cm−1 (0.7 dB/cm)
in the simulation, resulting in a very high intrinsic quality
factor (about 1 million), and photon lifetime of 0.27 ns. Such
large quality factor reduces the threshold power of both BI
and SP due to the high power enhancement effect of the MRR.
Changing the photon lifetime would make the dynamic process
among τcar, τth, and τph no more in balance, thus the regions
of BI and SP change [Fig. 8(b)].

Finally, we give the statistical maximum numbers of ring
energy states (BI and SP) in MRR with free carrier lifetime
from 100 ps to 20 ns and thermal decay time from 10 ns to
1 μs by fixing the photon lifetime at 0.27 ns (Fig. 9). To obtain
the maximum number of ring energy states at each (τcar, τth),
a range of input power and wavelength are used, i.e., the input
power is from 0 to 1 W and the input wavelength detuning is
from −20 pm to 20 pm. The region where two BI states exist
is referred to as the “co-work” region, which means both FCD
and TO have impacts on the refractive index. In the co-work
region, the maximum numbers of SP states in the MRR are
observed from 2 to 5. The case of four and five SP states show
that these three time constants (τcar, τth, and τph) all take effect.
Besides, it is not a linear relationship between τcar and τth at
each energy state boundary.

IV. CONCLUSION

In this work we have studied the behaviors and boundaries
for both bistability and self-pulsation in silicon MRRs with
coupled mode theory and linear stability analysis, taking into
account of thermo-optical effect and other nonlinear effects.
Importantly, with normalizing the coupled mode equations to
dimensionless ones and with the eigenvalues of the stability
matrix, we have found input-power-dependent multi-BI and
multi-SP regions at certain input wavelength, free carrier
lifetime and thermal decay time. We have further analyzed
the roles of carrier lifetime, thermal decay time, and photon
lifetime on the BI and SP, and found that the boundaries and the
region numbers of BI and SP change with these time constants.
The threshold power of the associated nonlinear phenomena
is only several tens of μW in high Q silicon MRRs, which
is, on the one hand, beneficial for the potential applications
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in all-optical nonlinear devices, yet on the other hand, may
be detrimental for the stable operation of linear optical
devices. Moreover, such multi-BI and multi-SP phenomena
may broaden the all-optical application of silicon MRRs.
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