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Scattering and effective interactions of ultracold atoms with spin-orbit coupling
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We derive an analytical expression for the scattering amplitude of two ultracold atoms of arbitrary spin and
with general spin-orbit (SO) coupling, on the basis of our recent work [Phys. Rev. A 86, 053608 (2012)]. As an
application, we demonstrate that SO coupling can induce scattering resonance in the case with finite scattering
length. The same approach can be applied to calculate the two-body bound state of SO-coupled ultracold atoms.
For the ultracold spin-1/2 Fermi gases in three- or two- dimensional systems with SO coupling, we also obtain
the renormalization relation of effective contact interaction with momentum cutoff, as well as the applicability
of Huang-Yang pseudopotential.
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I. INTRODUCTION

In the study of ultracold gases it is very important to
understand the low-energy scattering properties of atoms.
First, two-body and three-body collisions are the underlying
physics of many important experimental phenomena, e.g.,
the two-body decay and three-body recombination. Second,
understanding the behavior of the low-energy interatomic scat-
tering amplitudes is indispensable in designing the effective
interatomic interactions (e.g., the Huang-Yang pseudopoten-
tial [1], Bethe-Peierls boundary condition [2], and the contact
interaction with momentum cutoff [3]), which are widely
used in the theoretical calculations. In the low-energy cases
the effective interaction and the realistic interaction potential
should lead to the same two-body scattering amplitude.

In recent years, a class of synthetic gauge fields and
spin-orbit (SO) coupling has been realized in ultracold Bose
gases [4–8,10] and degenerate Fermi gases [11–13] with
Raman laser beams [14,15]. In these systems, the atomic spin
is linearly coupled with the atomic spatial momentum. There is
a considerable amount of theoretical interest in understanding
the SO-coupling effect in both many-body [16–44] and few-
body physics [44–55].

In this paper we provide a systematic investigation on
the two-body scattering amplitude of SO-coupled ultracold
atoms in three-dimensional (3D) uniform space. Our research
is based on the following motivations. First, in the current
experiments, the amplitude of elastic interatomic collision
[9] and inelastic-scattering-induced decay [9,10] of ultracold
gases have been directly observed in the systems with SO
coupling. The theoretical investigation for the two-body
scattering amplitude is necessary to explain this kind of
observations. In particular, the calculation of the inelastic
scattering amplitudes is crucial for the study of stability of
the SO-coupled ultracold gases in the metastable dressed state,
e.g., the dark state. Second, as shown above, the criteria for the
effective interaction in the ultracold gases is that the effective
interaction potential and the real interaction potential should
lead to the same low-energy two-body scattering amplitude.
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Accordingly, we should first calculate the scattering amplitude
given by the real potential and then construct the correct
effective interactions. This kind of work has been done for
ultracold gases in quasi-one-dimensional [56] and quasi-two-
dimensional [57] confinements and optical lattices [58,59], but
it is still absent for the gases with SO coupling.

The calculation in this paper is based on our recent work
[54] where the short-range behavior of the scattering wave
functions of two SO-coupled ultracold atoms in a 3D uniform
system is studied and a modified Bethe-Peierls boundary
condition is derived. Based on these results, in this paper we
derive an analytical expression for the scattering amplitude of
two atoms with arbitrary spin and SO coupling. Our approach
can also be used to calculate the low-energy bound state of
two spin-1/2 atoms with SO coupling. Furthermore, we show
that the SO coupling can induce the scattering resonance.
Namely, for the atoms with finite scattering length, the
threshold scattering amplitude diverges when the SO-coupling
intensity assumes some particular value. For the SO-coupled
spin-1/2 fermonic atoms, we also derive the renormalization
relation of 3D and pure-two-dimensional (pure-2D) effective
contact interaction with momentum cutoff, as well as study
the applicability of Huang-Yang pseudopotential. We find that
the form of the 3D and 2D renormalization relation is not
changed by the SO coupling. Nevertheless, in the presence
of SO coupling the physical parameters, i.e., the scattering
length in the 3D case and bound-state binding energy in the
2D case, should be replaced by the ones which are related to the
SO coupling. Furthermore, we also find that the Huang-Yang
pseudopotential cannot be directly used in the presence of SO
coupling.

The remainder of this paper is organized as follows: In
Sec. II, we derive the exact analytical expression for the
scattering amplitude of SO-coupled ultracold atoms and show
the approach for the calculation of two-atom bound states. In
Sec. III, we illustrate the scattering resonance induced by SO
coupling. The renormalization relation of effective contact in-
teraction and the applicability of Huang-Yang pseudopotential
are investigated in Sec. IV. The main results are summarized
and discussed in Sec. V, while some details of our calculations
are explained in the Appendixes.

053626-11050-2947/2013/87(5)/053626(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.053608
http://dx.doi.org/10.1103/PhysRevA.87.053626


LONG ZHANG, YOUJIN DENG, AND PENG ZHANG PHYSICAL REVIEW A 87, 053626 (2013)

II. SCATTERING AMPLITUDE AND BOUND STATE OF
SO-COUPLED ATOMS

A. Spin-1/2 fermionic atoms

We first consider the scattering amplitude of two SO-
coupled spin-1/2 fermonic atoms in 3D space. In this paper
we use the term “SO coupling” to refer to the linear coupling
between atomic spin and momentum, e.g., the ones realized in
the current experiments with Raman laser beams. Without loss
of generality, the single-atom Hamiltonian of such a system
can be written as

H1b =
�P 2

2
+ λ �M · �P + Z , (1)

where �P is the atomic momentum and �M and Z are operators
in spin space (here we have used h̄ = 1 and the atomic mass
m = 1). The term λ �M · �P describes the SO coupling and
Z accounts for the residual spin-dependent part. Here, the
eigenvalues of �M are of the order of unity, and λ indicates
the intensity of the SO coupling. It is pointed out that the
term λ �M · �P in Hamiltonian in Eq. (1) can be used to
describe arbitrary type of linear spin-momentum coupling. For
instance, for effective spin-1/2 systems in Refs. [11,12], one
has λ = 2kr , �M = (σ̂z,0,0), and Z = δσ̂z/2 + �σ̂x/2, where
δ is the two-photon detuning, kr is the recoil momentum, � is
the Raman-coupling strength, and σ̂x,y,z is the Pauli operator.
Similarly, for the system with Rashba SO coupling in the 3D
space, we have �M = (σ̂x,σ̂y,0).

For the two-atom scattering problem, the Hilbert space H
can be expressed as H = Hr ⊗ Hs1 ⊗ Hs2, with Hr for the
interatomic relative motion in the spatial space, and Hsi (i =
1,2) for the spin of the ith atom. In this paper we use |〉〉 to
denote the state in H, |) for the state in Hr , |〉 for the state in
Hs1 ⊗ Hs2, and |〉i for the state in Hsi . In Secs. II, III, and IV.C
we work in the representation of interatomic relative position,
where the state |ψ〉〉 is described by the “spinor wave function”
|ψ(�r)〉 ≡ (�r|ψ〉〉. Here |�r) is the eigenstate of the interatomic
relative position, with corresponding eigenvalue �r = (x,y,z).
It is clear that |ψ(�r)〉 can also be considered as a �r-dependent
spin state.

The total Hamiltonian of the two atoms is given by
H

(1)
1b + H

(2)
1b + U (�r), where H

(i)
1b (i = 1,2) is for the ith atom,

and U (�r) is the spin-dependent interaction potential between
the two atoms. Because the total momentum of the two
atoms is conserved, the relative motion of these two can be
separated from their mass-center motion. The Hamiltonian for
the relative motion is then

H = �p2 + λ�c· �p + B( �K) + U (�r) ≡ H0 + U (�r), (2)

where �p is the relative-momentum operator of the two atoms.
In the �r representation we have �p = −i∇. The total momentum
�K = �P (1) + �P (2) of the two atoms is conserved during the

scattering process and behaves as a constant in our calculation.
The operators �c and B( �K) read

�c = �M (1) − �M (2), (3)

B( �K) = Z(1) + Z(2) + λ

2
�K · ( �M (1) + �M (2)) . (4)

In the stationary scattering theory, the incident state is
regarded as the eigenstate of the Hamiltonian H0 for the
free motion of the two fermionic atoms. With the Pauli’s
principle being taken into account, such an incident state for
two spin-1/2 fermonic atoms can be expressed as

∣∣�(0)
t (�r)

〉= ei�k·�r

4π3/2
|α,�k〉 − e−i�k·�r

4π3/2
P12|α,�k〉, (5)

with �k being the relative momentum of the two atoms and P12

being the permutation operator of the spin of the two atoms.
Here the state |α,�k〉 (α = 1,2,3,4) of the two-atom spin is
defined as the αth eigenstate of the operator h0(�k) ≡ λ�c·�k +
B( �K), with eigenenergy E(α, �K,�k). The symbol satisfies α �
α′ when E(α, �K,�k) � E(α′, �K,�k). In this paper, we denote

t = (α, �K,�k) (6)

as the set of these three quantum numbers. It is easy to prove
that |�t (�r)〉in Eq. (5) is an eigenstate of H0 with eigenenergy

Et = k2 + E(α, �K,�k). (7)

In this paper, we assume that U (�r) is a short-range potential
with effective range r∗. In the region r ≡ |�r| � r∗, we have
U (�r) 	 0 and furthermore the low-energy scattering state
|�(+)

t (�r)〉 with respect to the incident state |�(0)
t (�r)〉 can be

expressed as [48,57]

|�(+)
t (�r)〉 ≈ |�(0)

t (�r)〉+ BtG0 (Et ; �r,0) |S〉, (8)

with |S〉 = (|↑〉1|↓〉2 − |↓〉1|↑〉2) /
√

2 being the singlet spin
state. Here Bt is a �r-independent constant and related with
|�(+)

t (�r)〉 through the relation∫
d�r ′U (�r ′)|�(+)

t (�r ′)〉 = Bt |S〉. (9)

For details, see Appendix A. In Eq. (8) the free Green’s
function G0(η; �r,�r ′) is defined as

G0(η; �r,�r ′) = 1

η + i0+−H0
δ(�r − �r ′), (10)

and is a (�r,�r ′)-dependent operator for the two-atom spin. In
this paper we consider the low-energy case with k � 1/r∗ and
further assume that the SO coupling is weak enough so that
λ � 1/r∗. Furthermore, we have proved [54] that, in the short-
range region r∗ � r � 1/k the function |�(+)

t (�r)〉 behaves as

|�(+)
t (�r)〉 ∝

(
1

r
− 1

aR

)
|S〉 − i

λ

2
�c ·

( �r
r

)
|S〉. (11)

Here, the scattering length aR is determined by both the detail
of the potential U (�r) and the SO coupling. In some special
systems, e.g., the systems with [U (�r),�c] = 0 and those in
the current experiments [4–10], the scattering length aR is
independent of the SO coupling and takes the same value as
the scattering length in the systems without SO coupling [54].

We can now calculate the coefficient Bt in Eq. (8) and the
interatomic scattering amplitude. As in Refs. [48,57], Bt can
be obtained from Eq. (11) and the behavior of G0(η; �r,�r ′)|S〉 in
the short-range region r∗ � r � 1/k. With calculations shown

053626-2



SCATTERING AND EFFECTIVE INTERACTIONS OF . . . PHYSICAL REVIEW A 87, 053626 (2013)

in Appendix B, we find that

G0 (η; �r,0) ≈ − 1

4π

(
1

r
+ iη1/2

)
+ F (η) + i

λ

8π
�c ·

( �r
r

)
(for r∗ � r � 1/k) , (12)

where the operator F (η) is defined as

F (η) = 1

(2π )3

∫
d�k′′F(η,�k′′), (13)

where

F(η,�k′′) =
∑
α′′

(
|α′′,�k′′〉〈α′′,�k′′|
η + i0+ − Et ′′

− |α′′,�k′′〉〈α′′,�k′′|
η + i0+ − k′′2

)
, (14)

with t ′′ = (α′′, �K,�k′′) and k′′ = |�k′′|. It is clear that
the fact lim|�k|→∞ h0(�k) = λ�c · �k gives limk′′→∞[F(η,�k′′) +
F(η, − �k′′)] ∝ 1/k′′4 + O(1/k′′5). Therefore, using

∫
d�k′′ =∫ ∞

0 k′′2dk′′ ∫ d��k′′ with ��k′′ being the solid angle of �k′′,
it is easy to prove that the integration in the right-hand
side of Eq. (13) converges to a finite operator. Apparently,
F (η) can be re-expressed asF (η) = (2π )−3

∫
d�k′′[F(η,�k′′) +

F(η, − �k′′)]/2. Such an expression maybe convenient for the
numerical calculation of the integration.

By substituting Eq. (12) into Eq. (8), we get the expression
for |�(+)

t (�r)〉 in the short-range region

|�(+)
t (�r)〉 = ∣∣�(0)

t (0)
〉+ iBt

λ

8π
�c ·

( �r
r

)
|S〉

+Bt

[
− 1

4π

(
1

r
+ iE

1/2
t

)
+ F (Et )

]
|S〉

(for r∗ � r � 1/k). (15)

By comparing Eq. (15) to Eq. (11) and using the fact that
F (η)|S〉 ∝ |S〉, we obtain

Bt = 4π
〈
S
∣∣�(0)

t (0)
〉

1/aR + iE
1/2
t − 4π〈S|F (Et )|S〉

. (16)

According to scattering theory [60], the scattering ampli-
tude f (t ′ ← t) between the incident state |�(0)

t (�r)〉 and an
energy-conserved output state |�(0)

t ′ (�r)〉 with t ′ = (α′, �K,�k′) is
defined as

f (t ′ ← t) = −2π2
∫

d�r 〈�(0)
t ′ (�r)|U (�r)|�(+)

t (�r)
〉
. (17)

It is pointed out that, since U (�r) 	 0 in the region r � r∗, the
integration in the right-hand side of the above equation is only
done in the region r � r∗. Under the low-energy condition
k � 1/r∗, in this region we have 〈�(0)

t ′ (�r)| ≈ 〈�(0)
t ′ (0)|, and

then f (t ′ ← t) can be re-expressed as

f (t ′ ← t) = −2π2
〈
�

(0)
t ′ (0)

∣∣ ∫ d�r U (�r)|�(+)
t (�r)〉

= −2π2
〈
�

(0)
t ′ (0)

∣∣S〉
Bt , (18)

where we have used Eq. (9). Thus, using Eq. (16), we finally
have

f (t ′ ← t) = −(2π )3
〈
�

(0)
t ′ (0)

∣∣ 1

1/aR + iE
1/2
t − 4πF (Et )

× ∣∣�(0)
t (0)

〉
, (19)

with E
1/2
t ≡ i

√|Et | for Et < 0. This is the exact analytical
expression for the low-energy scattering amplitude of two spin-
1/2 fermonic atoms with SO coupling.

B. Atoms with arbitrary spin

This approach can be straightforwardly generalized to the
general case of two fermonic or bosonic atoms with any kind of
SO coupling and arbitrary spin. In these cases, the single-atom
motion and the relative motion of the two atoms are still given
by Eqs. (1) and (2), respectively. The incident state can be
expressed as

∣∣�(0)
t (�r)

〉= ei�k·�r

4π3/2
|α,�k〉 ± e−i�k·�r

4π3/2
P12|α,�k〉, (20)

where ± are for the systems of bosonic and fermonic atoms,
respectively.

The scattering wave function with respect to incident state
|�(0)

t (�r)〉 can still be denoted as |�(+)
t (�r)〉. In the region with

r � r∗ we have (Appendix A)

|�(+)
t (�r)〉 ≈ |�(0)

t (�r)〉+ G0 (Et ; �r,0) |φ〉 (21)

with the �r-independent spin state |φ〉 satisfying

|φ〉 =
∫

d�r ′U (�r ′)|�(+)
t (�r)〉. (22)

This is very similar to Eq. (8), but the spin state |φ〉 is not
unique. Instead, |φ〉 can be different for different incident
state |�(0)

t (�r)〉. Furthermore, as shown in Ref. [54], in the
short-range region r∗ � r � 1/k the scattering wave function
|�(+)

t (�r)〉behaves as

|�(+)
t (�r)〉=

(
1

r
− AR

)
|χ〉 − i

λ

2
�c ·

( �r
r

)
|χ〉. (23)

Here |χ〉 is another �r-independent spin state, and AR is
a �r-independent operator in the spin space, which is also
determined by the detail of the interaction potential U (�r) and
the SO coupling. For the cases of spin-1/2 fermonic atoms,
we have AR = 1/aR, and Eq. (23) reduces to Eq. (11). As
in the above section, in the current experiments [4–10] for
bosonic atoms with one-dimensionl (1D) SO coupling, AR is
independent of the SO coupling. For instance, for the ultracold
gases with spin-1 87Rb atoms, we have

AR = 1

a0
PF=0 + 1

a2
PF=2, (24)

where a0 (a2) is the scattering length with respect to the total
atomic spin F = 0 (F = 2) and PF=0,2 are the associated
projection operators.

Using Eq. (12), we can obtain the expression of |�(+)
t (�r)〉in

the short-range region. By comparing such an expression with
Eq. (23), we have

|φ〉 = −4π |χ〉 = 4π

AR + iE
1/2
t − 4πF (Et )

∣∣�(0)
t (0)

〉
(25)

and the exact analytical expression

f (t ′ ← t) = −(2π )3
〈
�

(0)
t ′ (0)

∣∣ 1

AR + iE
1/2
t − 4πF (Et )

× ∣∣�(0)
t (0)

〉
(26)
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for the scattering amplitude of SO-coupled ultracold atoms
with arbitrary spin. In Ref. [10] we have used this result to
quantitatively explain the collisional decay observed in our
experiments with SO-coupled 87Rb atoms.

It is pointed out that in the presence of SO coupling, the
state |�(0)

t (0)〉 depends on the quantum number t = (α, �K,�k),
and thus changes with the direction of the atomic relative
momentum �k. Therefore, the scattering amplitude f (t ′ ← t)
in Eq. (26) is anisotropic with respect to the directions of
the incident momentum �k and output momentum �k′. This
anisotropicity is also observed in the experiment by Spielman
et al. [9].

In the end of this section we consider a simple case where
AR = 1/a with a being a constant c number and |a| being
much smaller than the eigenvalues of the operator iE

1/2
t −

4πF (Et ). In this case Eq. (26) can be simplified as f (t ′ ←
t) ≈ −a (2π )3〈�(0)

t ′ (0)|�(0)
t (0)〉. This approximate result can

also be obtained with Fermi’s golden rule. On the other hand,
if the eigenvalues of AR are comparable to or smaller than the
ones of the operator iE

1/2
t − 4πF (Et ), the contribution from

that operator becomes significant and the Fermi’s golden rule
is no longer applicable.

C. Two-atom bound state

In the above subsections we derived the analytical ex-
pression of the scattering amplitude of two ultracold atoms
with SO coupling. The Green’s function approach used in
our calculations can also be applied to derive the low-energy
bound state of two SO-coupled atoms. We denote the energy
of the bound state as Eb, and then the binding energy can
be defined as Ebinding ≡ −(Eb − Eth), where Eth is the energy
of scattering threshold or the lowest eigenenergy of H0. As
shown in Appendix B, when Ebinding � r−2

∗ , the wave function
|�b(�r)〉 of low-energy bound state is given by

|�b(�r)〉 ≈ NbG0 (Eb; �r,0) |φb〉, (27)

in the region r � r∗. Here Nb is the normalization factor
and |φb〉 is a �r-independent spin state. Furthermore, in the
short-range region r∗ � r � E

−1/2
binding, |�b(�r)〉 has the same

behavior as the low-energy scattering state |�(+)
t (�r)〉 and thus

can be expressed as |�b(�r)〉 = (1/r − AR)|χb〉 − i(λ/2)�c ·
(�r/r)|χb〉, with |χb〉 being a �r-indepedent state in the spin
space. As in the above section, with this fact and the short-
range behavior of G0 (η; �r,0) given by Eq. (12), we find that
|χb〉, |φb〉 and Eb can be obtained by[ − iE

1/2
b + 4πF (Eb)

]|χb〉 = AR|χb〉, (28)

|χb〉 = − 1

4π
Nb|φb〉, (29)

with E
1/2
b ≡ i

√|Eb| for Eb < 0. In particular, for two spin-1/2
fermonic atoms, we have AR = 1/aR and |φb〉 = |S〉. Then
Eq. (28) becomes

− iE
1/2
b + 4π〈S|F (Eb) |S〉 = 1

aR

. (30)

With this equation one can obtain the bound-state energy Eb.

III. SO-COUPLING-INDUCED RESONANCE

In above discussions, we derive the general analytical
expression (26) for the scattering amplitude of ultracold atoms
with SO coupling. As an application, in this section we show
that SO coupling can induce scattering resonance of two
ultracold atoms. For simplicity, here we only consider the
scattering of two spin-1/2 fermoinc atoms.

In such a system, the incident state |�(0)
t (�r)〉 takes the form

in Eq. (5), and one has |�(0)
t (0)〉 ∝ |S〉. Thus, the interatomic

scattering amplitude f (t ′ ← t) in Eq. (19) can be rewritten as

f (t ′ ← t) = − (2π )3

〈
�

(0)
t ′ (0)

∣∣S〉〈
S
∣∣�(0)

t (0)
〉

1/aR + d(λ,Et )
, (31)

with the function d(λ,Et ) defined as

d(λ,Et ) = iE
1/2
t − 4π〈S|F (Et )|S〉. (32)

We first consider the case of threshold scattering with Et =
Eth. In this case, we have |�(0)

t ′ (�r)〉 = |�(0)
t (�r)〉 and d(λ,Eth)

usually takes a real value. Therefore, when the condition

1

aR

+ d(λ,Eth) = 0 (33)

is satisfied, the threshold scattering amplitude diverges and a
scattering resonance occurs. Since the scattering length aR can
be finite, such a resonance is induced by the SO coupling. By
comparing Eq. (33) to Eq. (30), we further find that a bound
state with zero binding energy appears at the resonance point.
In experiments, one can observe the SO-coupling-induced
resonance by tuning the scattering length or the SO-coupling
intensity [61].

In Fig. 1 we plot the amplitude f (t ← t) of the threshold
scattering of two spin-1/2 fermoinc atoms with 1D SO
coupling, i.e., �M = (σ̂z,0,0) and Z = κσ̂x , as in current
experiments. In our calculation we assume the total momentum
�K of the two atoms is along the x direction, i.e., �K = (K0,0,0).

The scattering amplitudes with respect to different values of
K0 are illustrated versus 1/aR and the SO coupling intensity
λ. The appearance of resonance is clearly shown.

Next, when the scattering energy Et is larger than the
scattering threshold, the function d(λ,Et ) takes a complex
value. Thus, the scattering amplitude f (t ′ ← t) cannot be
divergent. Nevertheless, as a function of 1/aR, the absolute
value of the scattering amplitude still achieves a local
maximum value when the condition Re[1/aR + d(λ,Et )] =
0 or 1/aR = −Re[d(λ,Et )] is satisfied. To illustrate this
effect, we also calculate the scattering amplitude f (t ′ ← t)
for two spin-1/2 fermoinc atoms with �M = (σ̂z,0,0) and
Z = κσ̂x . In Fig. 2 we plot |f (t ′ ← t)| versus 1/aR for the
cases with �K = 0, t = (2,0,0) and t ′ = t0,1,2,3 where t0 =
t , t1 = (4,0,

√
λ4 − κ2/λ), t2 = (4,0,

√
λ4 − κ2/λ − 0.5κ1/2),

and t3 = (4,0,
√

λ4 − κ2/λ − 0.8κ1/2). The peak behavior of
the scattering amplitude is clearly illustrated.

We mention again that the resonance discussed here is
essentially induced by the SO-coupling term in the Hamil-
tonian H0 defined in Eq. (2). From Eq. (2) one can easily find
that such a term can be omitted when k � λ, and therefore
the SO-coupling-induced resonance is significant only when
the atomic relative momentum k is small enough, i.e., k � λ.
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FIG. 1. (Color online) The threshold scattering scattering ampli-
tude f (t ← t) of two spin-1/2 fermoinc atoms with 1D SO coupling.
We plot the f (t ← t) as a function of SO-coupling intensity λ with the
scattering length aR = 2κ−1/2 (a) and a function aR with λ = 1.25κ1/2

(b). Here we have used the natural unit with h̄ = m = 1 and set the
total momentum of the two atoms to be �K = (K0,0,0), with K0 = 0
(black solid line), 0.3κ1/2 (red [gray] dashed line), 0.5κ1/2 (green
[gray] dotted line), and 0.8κ1/2 (blue [gray] dashed-dotted line).

Finally, we emphasize that the calculations in this section can
be directly generalized to the systems of atoms with arbitrary
spin and SO coupling, and the SO-coupling-induced resonance
can also appear.

IV. EFFECTIVE INTERACTIONS

In the many-body theory of ultracold gases, the interatomic
interaction is usually modeled by some simple effective poten-
tials. The most widely used effective interactions include the
Huang-Yang pseudopotential [1], the Bethe-Peierls boundary
condition [2], and the contact interaction with a momentum
cutoff [3].

For a given system, the interatomic scattering amplitude
given by the effective inter-atomic interaction should be the
same as the one from the realistic interaction potential U (�r).
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FIG. 2. (Color online) The absolute value of scattering amplitude
of two spin-1/2 fermonic atoms with 1D SO coupling. Here we plot
|f (t ′ ←− t)| for the cases with �K = 0, λ = 1.25κ1/2, and Et > Eth.
We take t = (2,0,0) and t ′ = t0 (blue [gray] solid line), t1 (green
[gray] dashed line), t2 (red [gray] dotted line), and t3 (black dashed-
dotted line), with t0,1,2,3 defined in Sec. III.

In our previous works [48,54], we have shown that to satisfy
such a condition, the Bethe-Peierls boundary condition for
3D ultracold gases, as well as the renormalization relation for
the contact interaction of quasi-2D gases, should be modified
in the presence of SO coupling. In this section, we consider
the contact interaction with a momentum cutoff in a 3D and
pure-2D uniform system of the SO-coupled spin-1/2 Fermi
gas, as well as the Huang-Yang pseudo potential.

A. Contact interaction in 3D system

In this and the next subsection we give up the �r represen-
tation and use the Dirac symbol |〉〉 defined in Sec. II A to
describe the state in the total Hilbert space H . In a 3D system,
the contact interaction Ûeff with a momentum cutoff can be
expressed as an operator in H :

Ûeff = U0

(2π )3

∫
|�k|,|�k′|<kc

|�k)(�k′| ⊗ |S〉〈S|d�kd�k′. (34)

Here kc is a cutoff momentum and |�k) ≡ (2π )−3/2
∫

d�rei�k·�r |�r)
is a state in the space Hr . It is pointed out that in
many references about the many-body theory of ultracold
gases, the systems are first assumed to have finite volume
V , and the final result is obtained in the limit V → ∞.
In these cases the second-quantized form Ûeff is given
by Ûeff = U0/V

∑
�k,�k′, �K

′a†
�K/2+�k,↑a

†
�K/2−�k,↓a �K/2−�k′,↓a �K/2+�k′,↑,

where a
†
�p,σ

and a �p,σ are the creation and annihilation operators
for an atom with momentum �p and spin σ . The summation∑′

�k,�k′, �K is under the condition max(|�k|,|�k′|) < kc with kc being
the cutoff momentum.

The renormalization relation for this contact potential, i.e.,
the relationship between U0 and kc, can be obtained from
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the condition that Ûeff and the realistic interatomic interaction
should lead to the same low-energy scattering amplitude. For
the cases without SO coupling, the standard calculation gives
the well-known result

1

4πas

= 1

U0
+ 1

(2π )3

∫
k′′<kc

d�k′′ 1

k′′2 , (35)

with as being the s-wave scattering length.
In the presence of SO coupling, the correct renormalization

relation can be obtained by the same procedure. The effective
scattering amplitude feff(t ′ ← t) given by Ûeff can be obtained
from the Lippmman-Schwinger equation for the two-body T

operator T̂eff (η) with respect to Ûeff :

T̂eff (η) = Ûeff + ÛeffĜ0 (η) T̂eff (η) , (36)

where the Green’s operator Ĝ0 (η) is defined as

Ĝ0 (η) = 1

η + i0+−H0
(37)

=
∑

α

∫
d�k |�k)(�k| ⊗ |α,�k〉〈α,�k|

η + i0+ − Et

, (38)

where we have t = (α, �K,�k) as before.
Using the Lippmann-Schwinger equation, we can obtain

the equation for the T -matrix element:

Teff(η,t ′,t)

= U0

(2π )3 〈α′,�k′|S〉〈S|α,�k〉 + U0

(2π )3 〈α′,�k′|S〉

×
(∑

α′′

∫
|�k′′|<kc

d�k′′ 〈S|α′′,�k′′〉
η + i0+ − Et ′′

Teff(η,t ′′,t)

)
,

(39)

where we have t ′ = (α′, �K ′,�k′) and Teff(η,t ′,t) =
(�k′|〈α′,�k′|T̂eff(η)|α,�k〉|�k). The notations t ′′ and Teff(η,t ′′,t) are
defined similarly. From Eq. (39), we find that Teff(η,t ′,t) can
be expressed as

Teff(η,t ′,t) = U0

(2π )3 〈α′,�k′|S〉u(η,α,�k), (40)

where u(η,α,�k) is independent of α′ and �k′. By substituting
Eq. (40) into Eq. (39), we get the result

u(η,α,�k) = 〈S|α,�k〉
1 − U0

(2π)3

(∑
α′′

∫
k′′<kc

d�k′′ |〈S|α′′,�k′′〉|2
η+i0+−Et ′′

) .

(41)

By substituting Eq. (41) into Eq. (40), we can obtain the
expression of the T -matrix element Teff(η,t ′,t).

The scattering amplitude feff(t ′ ← t) for two spin-1/2
fermionic atoms is defined as

feff(t
′ ← t) = −2π2

〈〈
�

(0)
t ′

∣∣T̂eff (Et )
∣∣�(0)

t

〉〉
, (42)

where the incident state is |�(0)
t 〉〉 = 2−1/2[|α,�k〉|�k) −

(P12|α,�k〉)| − �k)], with P12 being the permutation operator for
the spin of the two atoms. Therefore, it is apparent that we
have

feff(t
′ ← t) = −2π2[Teff(Et,t

′,t) − T ′
eff(Et,t

′,t)] (43)

with T ′
eff(Et,t

′,t) = (�k′|〈α′,�k′|T̂eff(η)[P12|α,�k〉]| − �k). By sub-
stituting our result of Teff(Et,t

′,t) into Eq. (43), we have

feff(t
′ ← t) = −

U0
2π

〈α′,�k′|S〉〈S|α,�k〉
1 − U0

(2π)3

(∑
α′′

∫
k′′<kc

d�k′′ |〈S|α′′,�k′′〉|2
η+i0+−Et ′′

) .

(44)

By requiring that the zero-energy effective scattering
amplitude feff(t ′ ← t) be equal to the realistic scattering
amplitude, i.e.,

feff(t
′ ← t) = f (t ′ ← t) (45)

with Et = 0 and f (t ′ ← t) given by Eq. (19), we obtain
the following renormalization relation for systems with SO
coupling in the limit kc → ∞:

1

4πaR

= 1

U0
+ 1

(2π )3

∫
k′′<kc

d�k′′ 1

|�k′′|2 . (46)

Here we have used Eq. (B3). By comparing Eq. (35) with
Eq. (46), we find that for the 3D contanct potential with
momentum cutoff, the form of the renormalization relation
is not changed by the SO coupling. In the presence of SO
coupling one only needs to replace the scattering length as

with aR.
We mention that Eq. (28) for the bound-state energy Eb

can also be obtained from the contact potential Ûeff with
renormalization relation (46).

B. Contact potential in pure-2D system

Our above discussion can be directly generalized to pure-2D
ultracold gases of spin-1/2 fermonic atoms with SO coupling.
We assume the atoms are moving in the x-y plane. Thus, the
single-atom Hamiltonian is also given by Eq. (1), with �P =
(Px,Py) being the single-atom momentum in the x-y plane.
The Hamiltonian for the relative motion is then

H (2D) = �p2 + λ�c· �p + B( �K) + U2D( �ρ) ≡ H
(2D)
0 + U2D( �ρ),

(47)

where �K is the two-atom total momentum, �ρ = (x,y) is the
two-atom relative position in the x-y plane, and U2D is the
two-atom interaction potential in the 2D space, with effective
range ρ∗. Here the operators �c and B( �K) in the two-atom
spin space are defined as in Sec. II, and SO-coupling intensity
λ is also assumed to be small enough so that the condition
λ � 1/ρ∗ is satisfied.

As in Sec. II A, the incident state in the scattering, or the
eigenstate of the Hamiltonian H

(2D)
0 , can be described by the

spinor wave function

∣∣�(0)
t (�r)

〉= ei�k· �ρ

23/2π
|α,�k〉 − e−i�k· �ρ

23/2π
P12|α,�k〉 (48)

in the �r representation. Here the state |α,�k〉 for the two-atom
spin is defined as in Sec. II A, and we have t = (α, �K,�k) as
before. In Ref. [48], we have calculated the 2D scattering
amplitude f (2D)(t ′ ← t) between |�(0)

t (�r)〉 and |�(0)
t ′ (�r)〉 for

the cases with Rashba SO coupling. The method applied there
can be directly used for the cases with arbitrary type of SO
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coupling. The straightforward calculation yields

f (2D)(t ′ ←− t)

= − 4π3
〈
�

(0)
t ′ (0)

∣∣S〉〈
S
∣∣�(0)

t (0)
〉

iπ
2 − ln E

1/2
t − C − ln dR

2 − 2πF (2D)(Et )
, (49)

where C = 0.5772 . . . is the Euler � number and Et is the
eigenvalue of H

(2D)
0 , with respect to the eigenstate |�(0)

t (�r)〉.
In Eq. (49) the function F (2D) (η) is defined as

F (2D)(η) = 1

(2π )2

∑
α′′

∫
d�k′′|〈S|α′′,�k′′〉|2

×
(

1

η + i0+ − Et ′′
− 1

η + i0+ − |�k′′|2
)

, (50)

with t ′′ = (α′′, �K,�k′′). The parameter dR in Eq. (49) can be
determined by the following condition (see Appendix B of
Ref. [48] where dR is denoted by d): In the region with ρ∗ <

| �ρ| � 1/k, the solution |ψR( �ρ)〉 of equation

[T ( �ρ)H (2D)T †( �ρ)]|ψT ( �ρ)〉 = Et |ψT ( �ρ)〉 (51)

satisfies |ψT ( �ρ)〉 ∝ (ln | �ρ| − ln dR)|S〉. Here the rotation T ( �ρ)
is defined as T ( �ρ) = exp(iλcxx/2) exp(iλcyy/2).

Now we consider the 2D contact potential which takes the
form

Û
(2D)
eff = U0

(2π )2

∫
|�k|,|�k′|<kc

|�k)(�k′| ⊗ |S〉〈S|d�kd�k′, (52)

where kc is a cutoff momentum. Similar to the 3D case, in the
references where the area S of the system is first assumed to
be finite, the second-quantized form Û

(2D)
eff is given by Û

(2D)
eff =

U
(2D)
0 S−1 ∑

�k,�k′, �K
′a†

�K/2+�k,↑a
†
�K/2−�k,↓a �K/2−�k′,↓a �K/2+�k′,↑ where

a
†
�p,σ

, a �p,σ , and
∑′

�k,�k′, �K have similar definitions as in
Sec. IV B. The renormalization relation for this contact
potential can be obtained from the condition that Û

(2D)
eff

and the realistic interatomic interaction should lead to the
same low-energy scattering amplitude. In the absence of SO
coupling, the standard calculation gives [62]

1

U
(2D)
0

= − 1

(2π )2

∫
k′′<kc

d�k′′ 1

ε + k′′2 , (53)

where the physical parameter ε > 0 is the binding energy of the
2D two-atom bound state for the cases without SO coupling.

In the presence of SO coupling, the effective scattering
amplitude feff(t ′ ← t) given by Ûeff can be obtained with the
method used in Sec. IV. A. The straightforward calculation
gives

f
(2D)
eff (t ′ ←− t)

= − 4π3
〈
�

(0)
t ′ (0)

∣∣S〉〈
S
∣∣�(0)

t (0)
〉

iπ
2 − ln E

1/2
t + 2π

U
(2D)
0

+ ln kc − 2πF (2D) (Et )
.

(54)

By requiring that f
(2D)
eff (t ′ ← t) = f (2D)(t ′ ← t) with

f (2D)(t ′ ← t) given by Eq. (49), we obtain the following
renormalization relation for systems with SO coupling in the

limit kc → ∞:

1

U
(2D)
0

= − 1

(2π )2

∫
k′′<kc

d�k′′ 1

εR + k′′2 , (55)

with εR = 4 exp(−2C)/d2
R . By comparing Eq. (53) with

Eq. (55), we find that for the 2D contact potential with
momentum cutoff, the form of the renormalization relation
is not changed by the SO coupling. In the presence of SO
coupling one only needs to replace ε with εR .

C. Huang-Yang pseudopotential

In the end of this section consider the Huang-Yang
pseudopotential [1] for the SO-coupled spin-1/2 Fermi gas
in a 3D system. In the �r representation, the Huang-Yang
pseudopotential [1] is given by

UHY = 4πaδ (�r)
∂

∂r
(r·) , (56)

with being a the scattering length. Since UHY is a zero-range
potential, the scattering state with respect to UHY , i.e., the
solution of the equation

[H0 + UHY ] |ψ (+)
t (�r)〉 = Et |ψ (+)

t (�r)〉 (57)

with outgoing boundary condition, should take the form

|ψ (+)
t (�r)〉 = |�(0)

t (�r)〉+ BtG0 (Et ; �r,0) |S〉 (58)

in the region with r ≡ |�r| > 0, and thus satisfy the Bethe-
Peierls boundary condition. In the absence of SO coupling,
the Bethe-Peierls boundary condition is

lim
r→0

|ψ (+)
t (�r)〉 ∝

(
1

r
− 1

a

)
|S〉. (59)

According to this condition, the function r|ψ (+)
t (�r)〉 is contin-

uous in the point r = 0. Therefore, the partial derivative ∂/∂r

in UHY is well defined for the function r|ψ (+)
t (�r)〉. Namely,

the operation of the Huang-Yang pseudopotential UHY on the
wave function |ψ (+)

t (�r)〉 is well defined.
Nevertheless, in the presence of the SO coupling, as shown

in Ref. [54], the Bethe-Peierls boundary condition is modified
to

lim
r→0

|ψ (+)
t (�r)〉 ∝

(
1

r
− 1

a

)
|S〉 − i

λ

2
�c ·

( �r
r

)
|S〉. (60)

Due to the anisotropic term −iλ�c · �r/(2r)|S〉, the function
r|ψ (+)

t (�r)〉 is notcontinuous in the point r = 0. As a result,
the partial derivative ∂/∂r in UHY is not well defined for the
function r|ψ (+)

t (�r)〉, and thus the operation of UHY on the wave
function |ψ (+)

t (�r)〉 is no longer well defined. Therefore, in the
presence of SO coupling, the Huang-Yang pseudopotential
is not consistent with the modified Bethe-Peierls boundary
condition and thus cannot be directly used in the theoretical
calculations.

V. DISCUSSION

In this paper we derive the analytical expression of the scat-
tering amplitude of two ultracold atoms with SO coupling. Our
approach can also be used to calculate the wave function and
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the energy of two-body bound state. Moreover, we show that
the SO coupling can induce interatomic scattering resonance.
The influence of such a resonance in the many-body physics
of the SO-coupled ultracold gases remains to be explored.
With the expression of scattering amplitude, we further prove
that the renormalization relations of the 3D and 2D contact
potentials with momentum cutoff are not changed by the SO
coupling. Nevertheless, in the presence of SO coupling the
physical parameters in the renormalization relation should be
replaced by the ones which are related to the SO coupling.
Our result provides a solid basis for some previous theoretical
works (e.g., Refs. [25,33,46]) where the renormalizations
relation with these forms are used for the SO-coupled gases
without proof. We also show that in the presence of the
SO coupling, the Huang-Yang pseudopotential is no longer
consistent with the modified Bethe-Peierls boundary condition
and thus cannot be directly used in the theoretical calculations.
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APPENDIX A: BEHAVIOR OF SCATTERING WAVE
FUNCTION

In this Appendix we give the explicit definition of the
effective range r∗ for the potential U (�r) and prove Eqs. (8),
(9), (21), (22), and (27) for the behavior of the scattering
state |�(+)

t (�r)〉 and bound state |�b(�r)〉 in the region r � r∗.
Although this problem has been discussed by us in Refs. [54]
and [48], the treatment there is not fully rigorous. Here we
provide a more explicit analysis.

We first consider the case of spin-1/2 atoms. According
to the scattering theory, |�(+)

t (�r)〉 is determined by the
Lippmman-Schwinger equation

|�(+)
t (�r)〉 = |�(0)

t (�r)〉 +
∫

d�r ′G0(Et,�r,�r ′)U (�r ′)|�(+)
t (�r ′)〉,

(A1)
with the Green’s function G0 defined in Eq. (10). Here we
assume the potential U (�r) is negligible when the interatomic
distance is larger than a characteristic length r0, i.e., U (�r) 	 0
in the region r � r0. Thus, the integration in Eq. (A1) is only
effective in the region r ′ � r0.

If the momentum k is low enough so that k � 1/r0,
when r → ∞ and r ′ � r0, the function G0(E,�r,�r ′) varies
very slowly with respect to �r ′ and we have G0(E,�r,�r ′) ≈
G0(E,�r,0). Therefore, in the limit r → ∞, the solution of
Eq. (A1) takes the form

|�(+)
t (�r)〉 ≈ ∣∣�(0)

t (�r)
〉 + G0(Et,�r,0)|φ〉, (A2)

where the spin state |φ〉 is related to |�(+)
t (�r)〉 via the equation

|φ〉 =
∫

d�r ′U (�r ′)|�(+)
t (�r ′)〉. (A3)

Furthermore, due to the fact that P12|�(+)
t (−�r)〉 = −|�(+)

t (�r)〉
and P12U (−�r)P12 = U (�r) with P12 being the permutation
operator of the spin of the two atoms, one finds that
P12[U (−�r)|�(+)

t (−�r)〉] = −U (�r)|�(+)
t (�r)〉. This result yields

|φ〉 =
∫

d�r ′U (�r ′)|�(+)
t (�r ′)〉 = Bt |S〉 , (A4)

with Bt a constant number. Therefore, when the interatomic
distance r is large enough, we have

|�(+)
t (�r)〉 ≈ ∣∣�(0)

t (�r)
〉 + BtG0(Et,�r,0)|S〉. (A5)

A direct result is that there exists a characteristic length
r∗ and Eq. (A5) is applicable in the region r � r∗. It is
apparent that we have r∗ � r0. In this paper we define such
a characteristic length as the effective range of the potential
U (�r) . Therefore, Eqs. (A5) and (A3) or Eqs. (8) and (9) are
naturally satisfied when r � r∗.

When U (�r) is spherical, in the low-energy case one
only needs to take into account the s-wave scattering.
The straightforward calculation shows that, as a result of
the s-wave approximation, we have r∗ = r0. When U (�r) is
anisotropic, the effective range r∗ is larger than r0. In our
current paper and Ref. [54], we assume the kinetic energy
of atomic relative motion is low enough so that the effective
ranges of U (�r) and the “rotated potential”

UR(�r) ≡ eiλczx/2eiλcyy/2eiλcxz/2U (�r)e−iλcxx/2e−iλcyy/2e−iλczz/2

(A6)

are much smaller than 1/k. This condition can be satisfied
in the dilute gases, in particular, in the systems where the
condition r0 � 1/k is satisfied and the anistropicity of U (�r)
and UR(�r) is small enough so that the relevant effective ranges
of U and UR are in the same order of magnitude with r0.

Our above analysis can be directly generalized to the
general cases of atoms with arbitrary spin. In that case the
scattering state |�(+)

t (�r)〉 takes the form in Eq. (A2) in the
whole region with r � r∗, and the �r-independent state |φ〉 is
also related to |�(+)

t (�r)〉 via Eq. (A3). Nevertheless, now |φ〉
is not unique. It can be different for different incident states
|�(0)

t (�r)〉. Then we can obtain the result in Eqs. (21) and (22).
Now we consider the low-energy bound state of two SO-

coupled atoms. It is clear that the wave function |�b(�r)〉 of the
bound state is given by the equation

|�b(�r)〉 = Nb

∫
d�r ′G0(Eb,�r,�r ′)U (�r ′)|�b(�r ′)〉 (A7)

with Eb being the energy of the bound state and Nb being the
normalization factor. As above, when |Ebinding| � 1/r2

0 we
have

|�b(�r)〉 ≈ NbG0(Eb,�r,0)|φb〉 (A8)

in the region r > r∗. That is the result in Eq. (27). In this paper
we assume the condition |Ebinding| � 1/r2

∗ is satisfied.

APPENDIX B: THE SHORT-RANGE BEHAVIORS OF FREE
GREEN’S FUNCTION

In this Appendix we prove Eq. (12) for the short-range
behaviors of G0(Et,�r,0) with the following three steps:
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First, with the fact

δ(�r − �r ′) =
∫

d�k′′ e
i�k′′ ·(�r−�r ′)

(2π )3

(∑
α′′

|α′′,�k′′〉〈α′′,�k′′|
)

, (B1)

it is easy to show that

G0(η,�r,0) =
∑

α

∫
d�k′′ ei�k′′ ·�r

(2π )3

|α′′,�k′′〉〈α,�k′′|
η + i0+ − Et ′′

. (B2)

with t ′′ = (α′′, �K,�k′′). Equation (B2) and the completeness
relationship

∑
α′′ |α′′,�k′′〉〈α′′,�k′′| = 1 leads to the result

G0(η,�r,0) =
∫

d�k′′ ei�k′′ ·�r

(2π )3

1

η + i0+ − k′′2

+
∫

d�k′′ ei�k′′ ·�r

(2π )3
F(η,�k′′), (B3)

with the operator F(η,�k′′) defined in Eq. (14). Similarly
as in Sec. II, the fact that lim|�k|→∞ h0(�k) = λ�c·�k gives

limk′′→∞[F(η,�k′′)ei�k′′ ·�r + F(η, − �k′′)e−i�k′′ ·�r ] ∝ cos(�k′′ · �r)[1/

k′′4 + O(1/k′′5)] + sin(�k′′ · �r)[1/k′′3 + O(1/k′′4)]. Therefore,
using

∫
d�k′′ = ∫ ∞

0 k′′2dk′′ ∫ d��k′′ with ��k′′ the solid angle
of �k′′ it is easy to prove that the integration in the right-hand
side of Eq. (B3) does not diverge. On the other hand, we also
have ∫

d�k′′ ei�k′′ ·�r

(2π )3

1

η + i0+ − k′′2 = −ei
√

ηr

4πr
(B4)

with arg η ∈ (−π,π ]. Due to these facts, we have

lim
r→0

G0(η,�r,0) = − 1

4πr
+ O(r0). (B5)

Second, as in Ref. [54], we introduce a unitary transforma-
tion R(�r) as

R(�r) = eiλczx/2eiλcyy/2eiλcxz/2, (B6)

with �c ≡ (cx,cy,cz). The rotated free Hamiltonian H0R =
R(�r)H0R†(�r) can be calculated as

H0R = �p 2 − 2λ �d(λ�r) · �p + W (�r) (B7)

with operators �d ≡ (dx,dy,dz) and W given by

dx (λ�r) = 0; (B8)

dy (λ�r) = eiλczz/2 cy

2
e−iλczz/2 − R(�r)

cy

2
R†(�r); (B9)

dz(λ�r) = cz

2
− R(�r)

cz

2
R†(�r), (B10)

and

W (�r) = iλ[∇ · �d(λ�r)] + R(�r)B( �K)R†(�r)

+ λ2

[
| �d(λ�r)|2 − R(�r)

|�c|2
4

R†(�r)

]
. (B11)

Now we define the rotated Green’s function G0R(η,�r,0) as
the Green’s function with respect to H0R, i.e.,

G0R(η,�r,0) = 1

η + i0+−H0R
δ (�r) . (B12)

According to Eqs. (B8)–(B10), we have �d(λ�r) = O(λr).
Namely, the SO-coupling term in HR vanishes in the limit
r → 0. Due to this fact, in such a limit G0R(η,�r,0) has the
same behavior with the Green’s function GW (η,�r,0), which is
defined as

GW (η,�r,0) = 1

η + i0+− [ �p 2 + W (0)]
δ (�r)

= −
∑

n

|Wn〉〈Wn|e
i
√

η−Wnr

4πr
, (B13)

with Wn and |Wn〉 being the nth eigenvalue and eigenstate of
the operator W (0), respectively. Since limr→0 GW (η,�r,0) is
the sum of −1/(4πr) and a �r-independent operator, we have

lim
r→0

G0R(η,�r,0) = − 1

4πr
+ G′

0(η), (B14)

with G′
0(η) being a �r-independent operator in the space of

two-atom spin.
As in Ref. [54], the result in Eq. (B14) can be proved as

follows. According to the definition of G0R, it is obvious that

G0(η,�r,0) = R(�r)G0R(η,�r,0). (B15)

Due to this relation and Eq. (B5), G0R(η,�r,0) can be expressed
as the sum of −1/(4πr) and another term which converges in
the limit r → 0. Then we have

G0R(η,�r,0) = − 1

4πr
+

∞∑
n=0

rnG′
n(η)

+
∞∑
l=1

l∑
ml=−l

∞∑
n=0

rnYl,ml
(θ,φ)Jl,ml ,n(η) , (B16)

with (r,θ,φ) the spherical coordinate. Here Yl,ml
(θ,φ) are

the spherical harmonic functions, G′
n(η) and Jl,ml,n(η) are

�r-independent operators in the space of two-atom spin.
In the region r > 0, the Green’s function G0R(η,�r,0)

satisfies

[ �p2 − 2λ �d(λ�r) · �p + W (�r)]G0R(η,�r,0) = ηG0R(η,�r,0) .

(B17)

By substituting Eq. (B16) into Eq. (B17) and comparing the
coefficients of the term r−2 in both sides, we find that because
d(λ�r) = O(λr), one has Jl,ml ,0(η) = 0. Therefore, in the limit
r → 0, G0R(η,�r,0) behaves as in Eq. (B14).

Third, using Eq. (B15) and Eq. (B14), we finally have

lim
r→0

G0(η,�r,0) = − 1

4πr
+ i

λ

8π
�c ·

( �r
r

)
+ G′

0(η). (B18)

Now we derive the �r-independent operator G′
0(η) in the space

of two-atom spin. Therefore, we have

G′
0(η) = lim

r→0

1

2

[
G0(η,�r,0) + G0(η, − �r,0) + 1

2πr

]
.

(B19)
Using the Eqs. (B3) and (B4) and the fact

lim
r→0

[∫
d�kf (�k)ei�k·�r +

∫
d�kf (�k)e−i�k·�r

]

= lim
r→0

∫
d�kf (�k)(ei�k·�r + e−i�k·�r ) = 2

∫
d�kf (�k), (B20)
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we find that

G′
0(η) = − iη1/2

4π
+ F (η) . (B21)

with the operator F (η) defined in Eq. (13).
In the short-range region, the behavior of G0 (η; �r,0) is

given by limr→0 G0(η,�r,0). Thus, by substituting Eq. (B21)

into Eq. (B18), we obtain

G0 (η; �r,0) ≈ − 1

4π

(
1

r
+ iη1/2

)
+ F (η) + i

λ

8π
�c ·

( �r
r

)
(for r∗ � r � 1/k) . (B22)

That is the result in Eq. (12).
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