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In recent years, matter-wave interferometry has attracted growing attention due to its unique suitability
for high-precision measurements and the study of fundamental aspects of quantum theory. Diffraction and
interference of matter waves can be observed not only at a spatial aperture (such as a screen edge, slit, or grating),
but also at a time-domain aperture (such as an absorbing barrier, or “shutter,” that is being periodically switched
on and off). The wave phenomenon of the latter type is commonly referred to as “diffraction in time.” Here, we
introduce a versatile, exactly solvable model of diffraction in time. It describes time evolution of an arbitrary
initial quantum state in the presence of a time-dependent absorbing barrier, governed by an arbitrary aperture
function. Our results enable a quantitative description of diffraction and interference patterns in a large variety
of setups, and may be used to devise new diffraction and interference experiments with atoms and molecules.
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The wave nature of matter is both captivating and perplex-
ing, and its exploration has been at the center of experimental
and theoretical research since the early days of quantum
mechanics. To date, diffraction and interference experiments
have been successfully performed with particles ranging from
elementary particles and simple atoms to complex molecular
clusters [1,2]. Most spectacularly, wavelike behavior has
been convincingly demonstrated even for such large organic
compounds as C60[C12F25]10 and C168H94F152O8N4S4, each
comprising 430 atoms [3].

In optics, diffraction is typically portrayed as the deflection
of light incident upon an obstacle with sharp boundaries that
cannot be accounted for by reflection or refraction. Interest-
ingly, quantum mechanics allows an additional, intrinsically
time-dependent manifestation of the phenomenon: Owing to
the dispersive nature of quantum matter waves, sudden changes
in boundary conditions may cause the particle wave function to
develop interference fringes akin to those in stationary (optical)
diffraction problems. This phenomenon, pioneered in 1952
by Moshinsky [4] and presently referred to as “diffraction in
time” (DIT), is at the heart of a vibrant area of experimental
and theoretical research concerned with quantum transients
(see Ref. [5] for a review).

In Moshinsky’soriginal setup [4], a monoenergetic beam of
nonrelativistic quantum particles is incident upon a perfectly
absorbing barrier (“shutter”). The shutter is suddenly removed
at time t = t1. In other words, the transparency of the barrier
χ (t), called the aperture function, jumps instantaneously from
0 at t < t1 to 1 at t > t1, i.e., χ (t) = �(t − t1), with � denoting
the Heaviside step function. The removal of the shutter renders
a quantum wave function with a sharp, discontinuous wave
front. The latter disperses in the course of time, smoothing
out the initial discontinuity and developing a sequence of
interference fringes. As Moshinsky has shown, these fringes
bear close mathematical similarity to those in Fresnel diffrac-
tion of light at the edge of a straight, semi-infinite screen.
Moshinsky’s paradigm triggered considerable interest in DIT
in experimental research with ultra-cold neutrons and atoms
and with Bose-Einstein condensates [1,2,5].

On the theoretical side, a number of interesting extensions
and variations of Moshinsky’s shutter problem have been

addressed. Moshinsky himself extended his original result to
the case of a “time slit,” in which the shutter stays open only
during a time interval t1 < t < t2, as described by the aperture
function χ (t) = �(t − t1)�(t2 − t) [6]. Scheitler and Kleber
found an exact analytical solution of a related problem, in
which the role of a smoothly opening shutter was played
by a time-dependent δ-potential barrier V (x,t) ∼ t−1δ(x),
with x denoting the spatial coordinate [7,8]. Various physical
problems requiring generalization of Moshinsky’s original
setup to describe DIT caused by an arbitrary aperture function,
χ (t), have been addressed in Refs. [9–15]. The analytical
methods adopted in all these studies rely on treating the
shutter as an effective “source” boundary of a semi-infinite
coordinate space (transmission region). The main advantage
of this approach is that the transmitted wave can be readily
expressed in terms of χ (t) and a time-dependent source
boundary condition. A significant difficulty with this approach,
however, is that, in general, there is no unique well-defined
recipe for finding the source function that would accurately
mimic a given incident wave packet (although, in some cases,
efficient approximations and exact bounds are known [13]).

In this paper, we introduce a self-consistent exactly solvable
model of DIT, free of arbitrary parameters. The model aims
to describe the dynamics of an arbitrary quantum state in the
presence of an absorbing time-dependent shutter characterized
by an arbitrary aperture function χ (t), see Fig. 1. It serves as a
versatile generalization of Moshinsky’s original problem and
reduces to the latter in the particular case χ (t) = �(t − t1).

The central quantity analyzed in this paper is a propagator
K(x,x ′; t) that relates the particle wave function �(x,t) at time
t > 0 to an initial quantum state �0(x) at t = 0 through [16]

�(x,t) =
∫ +∞

−∞
dx ′ K(x,x ′; t)�0(x ′) . (1)

The propagator satisfies the time-dependent Schrödinger equa-
tion (TDSE) on both sides of the absorbing shutter, positioned
at x = 0, i.e.,(

i∂t + h̄

2m
∂2
x

)
K(x,x ′; t) = 0 for x,x ′ �= 0 . (2)
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FIG. 1. (Color online) Time evolution of a quantum state in the
presence of a time-dependent absorbing shutter.

Here, m denotes the mass of the particle. The propagator is
subject to the initial condition

K(x,x ′; 0+) = δ(x − x ′) , (3)

and is required to vanish as x → ±∞ at negative imaginary
times, i.e., at t = −i|t |.

Our treatment of absorption is based on a time-domain
rendition of an approach originally introduced by Kottler.
The approach applies to diffraction of stationary fields gov-
erned by Poisson’s equation at spatial apertures in otherwise
perfectly absorbing (“black”) screens [17,18]. According to
this approach, a wave originating on one side of a black
screen is subject to a discontinuous jump at every point of the
screen, except for points inside possible openings (holes, slits,
etc.). More concretely, the difference of the wave amplitude
on the source side of the screen and that on the opposite
side equals the amplitude of the corresponding free-space
wave, i.e., the amplitude the wave would have if no screen
were present. A similar discontinuity condition is imposed
on the normal derivative of the field. Both the field and its
normal derivative are postulated as being continuous across the
openings. As Kottler has shown, an exact solution of Poisson’s
equation, subject to the above well-defined, though unusual,
discontinuous boundary conditions, is identical to the wave
field predicted by Kirchhoff’s diffraction theory.

In our model, we consider a time-dependent generalization
of Kottler’s discontinuity condition at the shutter. Thus, we
require the propagator to satisfy

K(x,x ′; t)
∣∣x=0+

x=0− = sgn(x ′)[1 − χ (t)]K0(x − x ′,t)|x=0, (4)

and

∂xK(x,x ′; t)
∣∣x=0+

x=0−

= sgn(x ′)[1 − χ (t)]∂xK0(x − x ′,t)|x=0 . (5)

Here, χ (t) denotes the aperture function, ranging between 0
(shutter closed) and 1 (shutter open),

K0(z,t) =
√

m

2πih̄t
exp

(
i

m

2h̄t
z2

)
(6)

is the free-particle propagator, and sgn(x ′) = x ′/|x ′| stands for
the sign function. The latter identifies whether the source is
located to the left or right of the shutter.

Equations (2)–(5) completely specify dynamics of a quan-
tum particle in the presence of a time-dependent absorbing
barrier. In fact, as will be shown below, this quantum-
mechanical problem admits an exact analytic solution valid
for an arbitrary piecewise differentiable function χ (t). The
solution is given by

K(x,x ′; t) = �(x,x ′)K0(x − x ′,t) + K1(x,x ′; t), (7)

with

K1(x,x ′; t) =
∫ t

0
dτ uK0(x,t − τ )χ (τ )K0(−x ′,τ ) (8)

and

u(x,x ′; t,τ ) = − sgn(x ′)
2

(
x

t − τ
− x ′

τ

)
. (9)

Here, �(x,x ′) = [1 + sgn(x)sgn(x ′)]/2, i.e., � equals 1 if x

and x ′ lie on the same side of the barrier, and 0 otherwise.
For what follows below, it is useful to rewrite the propaga-

tor, given by Eqs. (7)–(9), in an alternative form. Evaluating
the integral in Eq. (8) by parts, we obtain

K(x,x ′; t) = �(x,x ′)[1 − χ (t)]K0(x − x ′,t) + K2(x,x ′; t) ,

(10)

where

K2(x,x ′; t) = 1

2

(
χ (0) + χ (t) + sgn(x ′)

×
∫ t

0
dτ

dχ (τ )

dτ
erf(
)

)
K0(x − x ′,t) (11)

and


(x,x ′; t,τ ) =
√

m

2ih̄t

(
x

√
τ

t − τ
+ x ′

√
t − τ

τ

)
. (12)

Equations (10)–(12), while being mathematically equiv-
alent to Eqs. (7)–(9), enable a straightforward verification
of the fact that K satisfies Eqs. (2)–(5). Indeed, since both
K2 and ∂xK2 are continuous functions of x, the validity
of the discontinuity conditions, Eqs. (4) and (5), follows
directly from Eq. (10). The validity of the initial condition,
Eq. (3), can be also verified straightforwardly: K(x,x ′; 0+) =
[� + (1 − �)χ (0)]K0(x,x ′; 0+) = δ(x − x ′). The fact that K

satisfies the TDSE is confirmed by a direct substitution of
Eqs. (10)–(12) into Eq. (2). [Here, it is convenient to take
into account the identity ∂t
 + x−x ′

t
∂x
 + i h̄

m

(∂x
)2 = 0.]

Finally, we note that the uniqueness of the solution can be
established in a standard way [16].

It is important to point out that due to the nonunitarity
of quantum evolution in the presence of absorption, the
propagator K , in general, does not fulfill the composition
property, i.e.,

K(x,x ′; t) �=
∫ +∞

−∞
dξ K(x,ξ ; t − τ )K(ξ,x ′; τ ) . (13)

This can be readily seen by considering the simple case of
a time-independent, completely absorbing barrier, for which
χ = 0 and K = �K0.

Although not valid generally, the composition property
holds in the following important special case. Consider a
scenario in which the absorbing barrier acts only up to some
time tf . In other words, suppose the aperture function χ is
such that χ (τ ) = 1 for all τ > tf . It can then be shown that K

satisfies

K(x,x ′; t) =
∫ ∞

−∞
dξ K0(x − ξ,t − τ )K(ξ,x ′,τ ) (14)
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FIG. 2. (Color online) Diffraction in time of an initially Gaussian wave packet. Figures (a) and (b) show, respectively, the probability
density and Husimi representation of the diffracted wave packet for the aperture function given in the inset of (a). Similarly, figures (c) and (d)
correspond to the aperture function given in the inset of (c). All quantities are given in atomic units, m = h̄ = 1.

for 0 < tf < τ < t . The physical picture offered by Eq. (14)
is apparent: Once the absorbing shutter has been switched off,
the wave function evolves in accordance with the free-particle
propagator.

Equations (7)–(9) offer the following physical interpreta-
tion of the wave-function evolution. The full propagator K

is a sum of �K0, describing propagation in the case of a
completely absorbing barrier (χ = 0), and K1, representing
the contribution of a barrier of nonzero transparency. In the
transmission region, i.e., for x and x ′ such that �(x,x ′) = 0, the
expression for K1, Eq. (8), conforms to the Huygens-Fresnel
principle [19]: The probability amplitude at point x and time
t , produced by a point source at x ′ and time 0, can be viewed
as that produced by a fictitious source, located at the origin
(between x and x ′); the strength of the fictitious source is
determined by the free-particle wave function at the origin,
modulated by the aperture function.

In certain cases, the integral in
Eq. (11) can be evaluated explicitly. One important example is
that of a “time grating,” characterized by a “staircase” aperture
function χ (τ ) = χ0�(t1 − τ ) + ∑N−1

n=1 χn�(τ − tn)�(tn+1 −
τ ) + χN�(τ − tN ), where 0 � χj � 1, with 0 � j � N ,
and 0 < t1 < t2 < · · · < tN < t . In this case, the integral
in Eq. (11) reduces to

∑N
n=1(χn+1 − χn) erf[
(x,x ′; t ; tn)],

rendering a closed form expression for the propagator. In
particular, χ (t) = �(t − t1) leads to a propagator coincident
with that in Moshinsky’s original shutter problem [19].

A diffracted wave function, �(x,t), resulting from an arbi-
trary initial state, �0(x), can now be obtained by numerically
evaluating the integral in Eq. (1). As an illustration, we con-
sider diffraction of an initially localized Gaussian wave packet.
Adopting atomic units, m = h̄ = 1, we consider a coherent
state ψq,p(x) = (π )−1/4 exp[− 1

2 (x − q)2 + ip(x − q)], with
the average position q and momentum p, and set the initial state
to be �0(x) = ψ−10, 5(x). Figure 2 shows the wave function
�(x,t) at time t = 3 diffracted at two different time gratings
χ (τ ), shown in the insets of Figs. 2(a) and 2(c). The elementary,
one-period cell of the first grating, Fig. 2(a), is given by 0 ×
�(τ )�(
t − τ ) + 1 × �(τ − 
t)�(2
t − τ ), and that of the
second grating, Fig. 2(c), by 0 × �(τ )�(
t − τ ) + 0.5 ×
�(τ − 
t)�(2
t − τ ) + 1 × �(τ − 2
t)�(3
t − τ ), with

t = 0.056. (The value χ = 0.5 means that the shutter allows
only half of the probability amplitude through, while absorbing
the other half.) The probability densities |�(x,t)|2 for the
two gratings are shown in the main panels of Figs. 2(a)
and 2(c), and the corresponding Husimi distributions,
H (q,p) = | ∫ +∞

−∞ dx ψ∗
q,p(x)�(x,t)|2, with the asterisk denot-

ing complex conjugation, are presented in Figs. 2(b) and 2(d),
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respectively. (Phase-space representations, akin to H (q,p),
have been previously used for establishing classical-quantum
analogies in the dynamics of diffracted particles [20].) The
central bright peaks in Figs. 2(b) and 2(d) are localized around
the point (q,p) = (5,5), which is the average phase-space
location of the particle in the absence of a shutter. Additionally,
in the case of the first grating, three separated diffraction
peaks—one in the reflection region, q < 0, and two in the
transmission region, q > 0—are clearly visible in Fig. 2(b). On
the contrary, in the case of the second grating, Fig. 2(d), diffrac-
tion peaks overlap substantially, forming a distinct pattern
of probability naughts, i.e., points in phase space “avoided”
by the diffracted particle. We point out that, in general, the
diffraction pattern sensitively depends on the initial wave
packet and aperture function, making diffraction on time
gratings well suited for spectroscopic analysis of quantum
states.

So far, we have shown that Eqs. (7)–(9), or equivalently
Eqs. (10)–(12), give an exact solution to a quantum dynamical
problem, defined by Eqs. (2)–(5). A natural question is, how-
ever, in order: Does this dynamical system accurately model
physical reality? In what follows, we argue that the proposed
system should indeed provide a good description of the motion
of a quantum particle in the presence of a purely absorbing
(but not reflecting, in the classical sense) barrier. The key
building block of our model is a time-dependent extension of
Kottler’s discontinuity conditions, Eqs. (4) and (5). The latter,
in the case of stationary waves governed by Poisson’s equation,
are mathematically equivalent to Kirchhoff’s description of
diffraction. Predictions of Kirchhoff’s theory, in turn, are
generally found in good agreement with experimental data
in the transmission region, while somewhat lacking accuracy
in the reflection region [21]. Therefore, at the very least, it
is reasonable to expect the propagator K(x,x ′; t) to correctly
describe quantum wave dynamics in the transmission region.

Moreover, if the absorbing shutter is in effect only until some
final time tf , so that χ (t) = 1 for all t > tf , then K(x,x ′; t),
being an analytic function of x at any time t > tf , must
correctly describe the dynamics of the diffracted particle in
both the transmission and the reflection regions.

Nevertheless, in the absence of a compelling local theory
of absorption, the ultimate answer to the question of how
accurately the proposed model describes physical reality
can only be given by an experimental investigation. To this
end, atom-optics systems appear to be particularly suitable.
Remarkably, recent progress in control and manipulation of
ultra-cold atoms has made it possible to perform diffraction
and interference experiments with a single, isolated atom,
corresponding to a quantum wave packet highly localized in
space [22]. At the same time, strong ionizing radiation has
been used to realize an optical diffraction grating, similar in
effect to an absorbing nanostructure (mechanical) grating [23].
Utilizing these technologies, one might envision a single-atom
DIT experiment, in which quasi-one-dimensional motion of an
atom is “intercepted” by a time-dependent absorbing shutter
produced by a transversely oriented, pulsing sheet of ionizing
radiation.

In conclusion, we have addressed a self-consistent math-
ematical model of diffraction in time and found its exact
analytical solution in the form of a time-dependent propagator.
The latter enables a quantitative description of diffraction of an
arbitrary initial quantum state at an absorbing shutter governed
by an arbitrary aperture function. We believe that our model
will prove useful in the areas of coherent quantum control
and quantum metrology, in designing new diffraction and
interference experiments with atoms and molecules, and, more
generally, in exploring the foundations of quantum physics.

The author thanks Ilya Arakelyan, Orestis Georgiou, and
Jonathan M. Robbins for their valuable comments.
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