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Coexistence of phase transitions and hysteresis near the onset of Bose-Einstein condensation
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Multiple phases occurring in a Bose gas with finite-range interaction are investigated. In the vicinity of the onset
of Bose-Einstein condensation (BEC), the chemical potential and the pressure show a van der Waals—like behavior
indicating a first-order phase transition although there is no long-range attraction. Furthermore, the equation of
state becomes multivalued near the BEC transition. For a Hartree-Fock or Popov (Hartree-Fock-Bogoliubov)
approximation, such a multivalued region can be avoided by the Maxwell construction. For sufficiently weak
interaction, the multivalued region can also be removed using a many-body 7-matrix approximation. However, for
strong interactions there remains a multivalued region even for the T-matrix approximation and after the Maxwell
construction, which is interpreted as a density hysteresis. This unified treatment of normal and condensed phases
becomes possible due to the recently found scheme to eliminate self-interaction in the 7-matrix approximation,

which allows one to calculate properties below and above the critical temperature.
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I. INTRODUCTION

When Einstein predicted Bose-Einstein condensation
(BEC) [1] for an ideal gas of bosons, extending a paper
by Bose, it was not foreseeable that 70 years would pass
before experimental verification, which was performed in
87Rb by [2], "Li by [3], and **Na by [4] at temperatures
between 0.1 and 2 wK. These measurements have encouraged
an enormous theoretical activity among which the problem
of accounting adequately for correlations is still unsettled.
Specific interesting consequences of correlations are the
change of condensation temperature [5—11], the occurrence
of further phase transitions, and even the change of the nature
of the BEC transition itself. Since this is not the place to
give credit to all of these important activities, we want to
focus on the single question of possible phase transitions
due to correlations. Even the BEC is sometimes viewed as
a first-order phase transition [12], which seems to be doubtful
when attributing a phase transition to interactions and the BEC
appearing already in ideal gases.

Multiple phase transitions have been reported, e.g., in
Ref. [13], where the influence of BEC to the liquid-gas
phase transition has been calculated. We will follow this path
and explore the coexistence and mutual influence of a phase
transition and the BEC. Since now there is a consistent scheme
available which allows one to describe the situation in and
out of the BEC by a common theoretical object, i.e., the
multiple-scattering-corrected 7 matrix, we are in a position
to investigate the mutual influence of phase transitions and
the BEC due to interactions. This leads to the expectation that
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interactions and correlations are a proper tool to tune the BEC
parameter since they can be controlled fairly well, e.g., by
Feshbach resonances [14-16].

Strongly correlated systems are connected with a highly
nonlinear density dependence of the thermodynamic quanti-
ties. Interestingly, such nonlinearities can lead to hysteresis
behavior. Besides the known magnetic-field hysteresis, there
are a number of examples observed in other fields. Optical
bistable systems have been reported to show a time hysteresis
in the response due to a nonlinear density dependence [17]. A
pressure-induced thermal hysteresis in Kondo lattice systems
has been found [18] and even in plasma discharge systems, a
density-driven hysteresis is reported [19]. A density hysteresis
driven by pressure can be found in spin-crossover compounds
due to elastic stresses [20]. Near the BEC of a quantum spin
system, a peak in sound attenuation was observed [21] and
attributed to the hysteresis in magnetic field, which indicates
a first-order phase transition. In this paper, we show that
in strongly correlated Bose systems near BEC, a density
hysteresis appears.

The outline of the paper is as follows. In Sec. II, we
explain the main set of equations of the T-matrix approach
with multiple scattering corrections and how known approxi-
mations appear. The condensed and noncondensed phase can
be described in this way on the same theoretical footing. In
Sec. III, we discuss the solution in terms of the equation of
state. We show that the appearing artifact of a multivalued
region is reduced with increasing level of approximation
[22,23] and can be avoided by the Maxwell construction.
Furthermore, we investigate how the Bose condensate behaves
during a first-order phase transition. For the strong-interacting
limit, we report a phase of back bending of density with
increasing chemical potential, which indicates an anomalous
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rearrangement and which we interpret as density hysteresis.
The comparison with other approaches and with experiments
is discussed in Sec. I'V. Finally, Sec. V contains the summary
and conclusions.

II. THE T-MATRIX APPROXIMATION

We will present a consistent treatment of interactions and
condensation in a unified manner with the help of the corrected
multiple-scattering 7" matrix, which yields a nonperturbative
description of strong correlations beyond the mean field. Our
starting point is a homogeneous gas of interacting bosons with
mass m, temperature T, and particle density n. The temperature
T scales in energy units so that Boltzmann’s constant kg can
be omitted. The Hamiltonian has the structure

. /) S e )
H= Z 5 a,tak—l— Zap ,'1 p8p—18k—1axdg—k, (1)
k qpk

where &,t (ay) creates (annihilates) a particle with momentum
k. The volume of the system 2 is considered in the ther-
modynamic limit, & — oo. The interaction is characterized
by the strength A and the Yamaguchi form factors g, =
(1 + p?/y?)~! [24]. The latter yields a soft momentum cutoff
to avoid an ultraviolet divergence. The parameter y is related
to the range of the interaction. A is positive for repulsive
interaction.

A. Condensed phase

In the BEC phase, a fraction of particles is condensed, with
a condensate density ny.

We use a scheme to eliminate self-interaction in the
T-matrix approximation to calculate properties below the criti-
cal temperature [25-28]. The Green function [29,30] for parti-
cles with momentum ¢ and Matsubara frequency iz, = 2nvT,
v eZ,is

izy + €4 izy + €

G(q,iz, = , 2
(g.iz)) = é+%ﬁ@)zﬁ—% (2

where the interactions between the particles are considered in
a ladder summation of diagrams resulting in the many-body T
matrix

—1

gk
2n) 2, —I1 +2fB(Ek)]} 3)

T(q)—kgq{1+kf

and fg(e) = 1/(e/T — 1) is the Bose distribution function.
The quasiparticle dispersion is given by the poles of the Green
function. In the normal phase, for ny = 0, the dispersion would
be

e

€g=———n+2n7(0). )

2m
In the condensed phase, the chemical potential p satisfies
the Hugenholtz-Pines [31] relation u = 2n7 (0) — ny7 (0),
and the Green function yields the generalized Bogoliubov
dispersion

n%q? g
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With the particle density
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the set of Eqs. (3)—(6) is closed. The depletion of the
condensate at 7 = 0 is described by v,% = (ex — Ep) /2Ey.
Also, the expectation value of the total energy density can be
calculated from the Green function [32],

(H) T 1/. n2k? ,
= — = — — — v _— G k’ v
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——[1 +2fs(Ep)].

(7

Let us inspect different levels of approximation and the corre-
sponding contributions to this energy density. The mean-field-
like approximation 7 (¢) ~ A together with E;, = ¢, ~ n*q%/
2m 4+ no) establishes the Hartree-Fock approximation, as
proposed by Huang et al. [33,34], and in Eq. (7) only the
contribution of quasiparticles u, and the mean-field term u ¢
survive, leading to

4’k n2k? 1
u= 2ny 2 fB( )+ (ﬂ - Eno) 8

This energy density shows that in addition to statistics, BEC
is also energetically favored, since a finite condensate density
ng lowers the interaction energy. This phenomenon is called
“attraction in momentum space” [35,36].

Approximating only 7(q) ~ A provides the Hartree-
Fock-Bogoliubov or Popov approximation, with the typical
Bogoliubov dispersion

W2q? 2
E, = \/ <—2q + no,\) — n2. ©)
m

Within this approximation, a further contribution of the energy
density (7) remains besides the quasiparticle and the mean-
field term, i.e., a correlation term u.;, which favors a finite de-
pletion [37,38]. It has to be noted that the original Bogoliubov
approximation corresponds to an additional approximation of
the chemical potential u =~ nyA.

For the T-matrix approximation, there appears a fourth

contribution to the energy density (7),
I’l() d3k
o )3 28xCr,

(10)

A’k d’q
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which is a two-particle term that can be expressed by the
anomalous expectation value of a pair of particles

no7 (k)
2E,

Please note that this two-particle term appears as a conse-
quence of the theory [26] here and has not been assumed ad hoc
as done in most approaches postulating anomalous functions.
A very similar term can be found in the Bardeen-Cooper-
Schrieffer (BCS) approximation [38], where it describes the
contribution of Cooper pairs.

Cr = (ara_y) = [1+2fs(EW)] (11)

B. Normal phase

Due to the use of the corrected multiple-scattering T-
matrix approximation, i.e., due to the elimination of self-
interaction, Egs. (2), (3), and (6) are valid in the normal
phase as well and yield the same level of approximation as
in the BEC phase [25,28,30]. For ny = 0, the Green function
simplifies to

1
G(q.izy) = ——, (12)
iz, — €

with the dispersion E; = €, according to (4). The correspond-
ing particle density is

d’k
n= me(Gk)» (13)
and the energy density is
d*k 1*k?

In this approximation, each quasiparticle simply feels a mean
field of 2n7(0).

In the normal phase, the Popov approximation is identical
to the Hartree-Fock approximation, with a mean field of 2nA,
while the Bogoliubov approximation yields an ideal Bose gas.

III. EQUATION OF STATE

A. Chemical potential

From the set of equations, we calculate the chemical
potential p for different particle densities n, as shown in Fig. 1.
The Hartree-Fock approximation, i.e., the dash-dotted line,
shows a multivalued region near the onset of BEC, where
several solutions of the equation of state coexist. The origin of
this unphysical behavior seems to be an overestimation of the
attraction in momentum space, which favors a high-condensate
fraction. Figure 2 illustrates a rapid drop of the density
of noncondensed particles after the onset of BEC. That is
due to the attraction in momentum space and leads to a
temporary drop of the total density, which is responsible for
the back-and-forth behavior of the chemical potential in Fig. 1.
Furthermore, Fig. 1 shows that there is also a temporary drop of
the chemical potential in the Hartree-Fock approximation after
BEC has set in, which indicates an instability of the gas and a
first-order phase transition. It has to be emphasized, however,
that this instability has its origin not in the attractive part of
the interaction potential, but in the BEC and the attraction
in momentum space. During the first-order phase transition,
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FIG. 1. Chemical potential in the Bogoliubov, Hartree-Fock,
Popov, and T-matrix approximation for weak repulsive interaction;
the horizontal broken lines correspond to the Maxwell construction.
niq A~ 2.61/AJy is the ideal critical density for Bose condensation,
the constant quantity is given above the diagram, Agg = hi\/27/mT
is the thermal de Broglie wavelength, A, = A7h’ Agg /my/m, and

Y =247/ Ags.

there is a coexistence of a high- and a low-density phase and,
according to Gibb’s phase rule, there is only one free parameter
which has to be constant in order to keep the temperature
fixed. Therefore, all intensive parameters of the two phases
are constant during the phase transition, especially pressure
and chemical potential. In equilibrium, the pressure and the
chemical potential have to be equal for both phases and can
be obtained via the Maxwell construction, illustrated in Fig. 1
by the horizontal broken line. As the system follows the curve
of constant pressure and chemical potential, the unphysical
multivalued region is avoided.

As illustrated by the broken curve in Fig. 1, the chem-
ical potential in the Bogoliubov approximation shows an
unphysical region as well. However, in this approximation, the
Maxwell construction is not possible. Since the Bogoliubov
approximation was developed to describe the system near
T =0, it fails near the BEC transition. The approximation
can be improved by including the Hartree-Fock mean field,
leading to the Popov approximation. Although the unphysical
region remains, the Maxwell construction becomes possible.
Compared to the Hartree-Fock approximation, the width of
the unphysical region is reduced with no qualitative change.
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FIG. 2. Contributions of condensed and noncondensed particles
to the total particle density n in Hartree-Fock approximation.
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FIG. 3. Many-body and two-particle 7T matrix for zero momentum
and energy in the T-matrix approximation.

Therefore, in the following, it is sufficient to compare only the
Hartree-Fock approximation with our 7-matrix approximation.

If the repulsive interaction is weak, i.e., A < 0.23X1., then
the chemical potential in the 7T-matrix approximation shows
no unphysical region. Nevertheless, there is still an instability
of the gas, i.e., the chemical potential drops down to zero at
the onset of BEC, shown by the full line in Fig. 1. The reason
for the vanishing of the chemical potential is the phenomenon
that the many-body T matrix for zero momentum and energy
7(0) vanishes at the critical point [29,39], as illustrated by the
full line in Fig. 3.

As shown in Fig. 3, the vanishing of the many-body T matrix
is clearly a medium effect since the two-particle T matrix,
which does not include medium contributions, stays finite at
the critical density for BEC. The two-particle T matrix, i.e.,
the broken line, can be obtained from (3) by omitting the Bose
function. It seems that in the vicinity of the onset of BEC, the
repulsive interaction is compensated by the Bose enhancement,
leading to the drop of the chemical potential. Again, there
is a first-order phase transition due to this instability and the
Maxwell construction yields the critical chemical potential and
pressure. However, the drop of the chemical potential and the
corresponding first-order phase transition might as well be an
artifact of omitting the momentum dependence of the T matrix
in the self-energy, leading to the dispersion (4) [22,23,39].
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FIG. 4. Chemical potential in the Hartree-Fock and T-matrix
approximation for strong repulsive interaction; the horizontal broken
lines correspond to the Maxwell construction, and the vertical arrows
mark the density hysteresis.
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FIG. 5. Condensate density in the Hartree-Fock and T-matrix
approximation for weak repulsive interaction; the broken lines
correspond to the construction according to Eq. (16).

Figure 4 shows the chemical potential in the two ap-
proximations for a stronger repulsion. In the Hartree-Fock
approximation, i.e., the dash-dotted line, there is no qualitative
change. However, for the T-matrix approximation (full line), a
multivalued region appears for A > 0.231, which cannot be
avoided by the Maxwell construction. Therefore, we attribute
a true physical relevance to this behavior and interpret it
as the appearance of a hysteresis. Reaching the end of the
coexistence region at n ~ 0.98 njq from below, the chemical
potential jumps from 0.65 to 3.07 T. Decreasing the density,
the chemical potential decreases and jumps back to 0.65 T
at a smaller density near 0.82 njg. This can be understood as
hysteresis behavior.

The alternative view is to consider the density as a function
of the chemical potential. Normally, adding a particle costs
energy due to repulsion. In the multivalued region, we have the
situation that with increasing chemical potential, the density
drops. This indicates strong rearrangement and correlations,
which make the effective interaction attractive. Therefore, a
hysteresis appears due to the strong correlation.

B. Condensate density

The dependence of the condensate density on the total one
for weak and strong interaction are illustrated in Figs. 5 and 6.
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FIG. 6. Condensate density in the Hartree-Fock and T-matrix
approximation for strong repulsive interaction; the broken lines
corresponds to the construction according to Eq. (16), and the vertical
arrows mark the density hysteresis.
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The condensate density in the Hartree-Fock approximation
shows an unphysical multivalued region as well. This behavior
has already been found by Huang et al. [34]. They also
proposed a solution to the problem, i.e., taking into account
the first-order phase transition.

As already mentioned, there is a coexistence of a high- and
a low-density phase during the first-order phase transition.
The corresponding properties are labeled with subscript h
and | in the following. The phases are separated, therefore,
their volumes add to the total one, Q = Q; + 2y, which
shall be fixed. The gas is driven through the phase transition
by increasing the total number of particles, N = N; + N.
The phase transition takes place in the region of total
density, n; < n=N/Q < np. As an intensive parameter,
the density within the low-density phase N;/€2; is constant
during the phase transition. At the lower border of the
phase transition, all particles are in the low-density phase,
i.e., N/ = n;. Analogously, the density within the high-
density phase equals the total one at the upper border of the
phase transition, Ny /2, = n,. With these conditions, one can
find the density of the high-density phase within the total
volume,

Nh n—ng

= . 15
) nznz_n1 (15)

This leverage relationship shows that N,/ €2 changes linearly
with the total density n. An analogous relationship can also be
obtained for N}/ 2 [40]. In the present case, a certain fraction of
the high-density phase forms a BEC. As the temperature and
the density N/ 2, are constant during the phase transition;
also the condensate fraction Ny/ N}, is constant and equal to its
value at the upper border of the phase transition, i.e., No/ Ny, =
ny(n,)/n,. The condensate density within the total volume is,
therefore,

n—ny

Ny
no(n) = — = ny(ny) (16)

Q ny, —ny

According to this equation, BEC starts already at the lower
border of the phase transition n;, which is always smaller
than the ideal critical density niq, and the condensate density
increases linearly with the total one n during the phase
transition. This linear construction according to Eq. (16) is
illustrated in Figs. 5 and 6 as broken lines. The borders 7
and n, of the first-order phase transition have to be calculated
from the Maxwell construction of the chemical potential or
pressure.

With this linear construction, the multivalued region for the
Hartree-Fock approximation can be avoided. This construction
is also possible for the T-matrix approximation, where we
observe a surviving of the multivalued region for stronger
interaction and a hysteresis like in the chemical potential. The
existence of the multivalued region is illustrated in Fig. 7 in
terms of the condensate density without linear construction.
Together with the unphysical region, there appears a second
finite solution for the condensate density at the critical point
n = njq. Besides the trivial solution ny = 0, there is always
a second finite solution for the Hartree-Fock approximation
(dash-dotted line), while for the T-matrix approximation (solid
line), the second solution appears only above some critical
interaction strength of about 0.234.
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FIG. 7. Solutions for the condensate density at the critical point
in the Hartree-Fock and T-matrix approximation.

IV. COMPARISON WITH EXPERIMENT
AND OTHER MODELS

A direct comparison of the calculations presented here
with experiments is limited for several reasons. First, the
atoms considered in this paper have zero total spin, while
the alkali-metal atoms in the experiments have finite total
spin. Second, the atomic gas in the experiment is trapped
magneto-optically or in an optical lattice [41] and, therefore,
is not homogeneous, in contrast to the gas considered here.
And, third, the T-matrix approximation presented here is not
sufficient to describe the shift of the critical temperature [6],
which is, however, measurable in experiment and also has an
influence on the behavior of the condensate [42,43]. One can
use inverse expansions to extend the 7 matrix to describe such
temperature shift [11].

For “He, the parameters of the Yamaguchi interaction
can be fit to the s-wave scattering length ap =93 A and
effective range ry = 7.298 A [44], yielding y = 0.015A~" and
A = 2.2410(2+/ /¥ Ag). The temperature corresponding to
y =24/ /Ags as chosen for all plots is T = 1.4kg mK.
However, only the curves for the T-matrix approximation
depend on y and T'. The curves for the other approximations
are independent of y and therefore independent of T due to
the scaling.

A comparison of our results with a Monte Carlo (MC)
calculation [23] of the dimensionless condensate density

noh® ng A 2.61

=—=—— 17
fo m3T2% nig A 167 {17
depending on the dimensionless chemical potential
h® ro)® 1
Y AU L (18)
m3T2)\2 T\ A 3272

yields qualitative agreement. The result is shown in Fig. 8. With
the higher-order T-matrix approximation (solid line), the back
bending of the Hartree-Fock approximation (dash-dotted line)
can be removed. However, there is no quantitative agreement
of the T-matrix approximation with the MC data (broken line).

We find that for a repulsive Bose gas, an additional first-
order phase transition is accompanying the BEC. Although the
onset of BEC is changed by the first-order phase transition,
the BEC transition itself remains continuous, i.e., except for
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FIG. 8. Dimensionless plot of the condensate density (17) de-
pending on the chemical potential (18), in comparison with MC data
from Ref. [23].

the hysteresis there is no jump in the condensate density.
Nevertheless, this is probably an artifact of the approximations
used, since the general belief is that for such a system, there is
only the continuous BEC phase transition [22,23].

For the case of strong correlations, we find a region of
decreasing density with increasing chemical potential which
cannot be removed by the Maxwell construction. From the
viewpoint of experimental realization, one could remove
particles from the system to reach this region. Then the
chemical potential would drop at a specific density to a
lower value. We suggest that this indicates an onset of a
rearrangement phase transition, which shows up at higher
correlations as hysteresis.
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V. SUMMARY AND CONCLUSIONS

For a repulsive Bose gas, the continuous BEC transition is
closely related to a first-order phase transition. The instability
causing the first-order phase transition appears due to the onset
of BEC. In view of the first-order phase transition, BEC sets in
already at a lower density than initially expected. In spite of the
repulsive interaction, the instability of the system is caused by
the attraction in momentum space and medium effects closely
related to the bosonic character of the particles. BEC sets
in with the first-order phase transition and the condensate
density increases linearly during this phase transition. The
physical relevance is justified by the successively higher level
of approximation used here. Lower-level approximations show
artificial multivalued regions which can be avoided by the
Maxwell construction. With a higher level of approximations,
this multivalued region shrinks and, for weak interaction,
vanishes for the T-matrix approximation. In the case of
strong interactions, we observe that besides the first-order
phase-transition region, multiple solutions appear for the
T-matrix approximation, which are interpreted as density
hysteresis.
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