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Vortices in Bose-Einstein condensates: Finite-size effects and the thermodynamic limit

J. C. Cremon,1 G. M. Kavoulakis,2 B. R. Mottelson,3 and S. M. Reimann1

1Mathematical Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund, Sweden
2Technological Education Institute of Crete, P.O. Box 1939, GR-71004, Heraklion, Greece

3The Niels Bohr International Academy, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
(Received 30 August 2012; published 22 May 2013)

For a weakly interacting Bose gas rotating in a harmonic trap we relate the yrast states of small systems (that
can be treated exactly) to the thermodynamic limit (derived within the mean-field approximation). For a few
dozens of atoms, the yrast line shows distinct quasiperiodic oscillations with increasing angular momentum that
originate from the internal structure of the exact many-body states. These finite-size effects disappear in the
thermodynamic limit, where the Gross-Pitaevskii approximation provides the exact energy to leading order in the
number of particles N . However, the exact yrast states reveal significant structure not captured by the mean-field
approximation: Even in the limit of large N , the corresponding mean-field solution accounts for only a fraction
of the total weight of the exact quantum state.
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I. INTRODUCTION

Contrary to many other systems with superfluid properties
like, e.g., liquid helium or atomic nuclei, ultracold atomic
quantum gases are—at least under typical conditions—very
dilute. Still, they may exhibit superfluid properties [1,2] be-
cause of their ultralow temperatures. Initial experiments with
trapped Bose-Einstein condensates [3–7] have been performed
mainly in large systems confining thousands to millions of
atoms. It was only more recently that experiments reached
the limit of smaller atom numbers N ∼ O(1) [8]. In small
systems, however, the thermodynamic limit often applied to
the case of homogeneous superfluids is not appropriate. Even
in the regime of weak interactions, deviations from this limit
are expected due to finite-size effects and the influence of the
trapping potential.

The rotational properties of Bose-Einstein condensates in
a harmonic trap have been studied extensively in the past,
see the reviews [9–13]. Previous theoretical studies applied
the Gross-Pitaevskii method (for example, [14–18]), or have
gone beyond the mean-field approximation (for example,
[19–48]). Most of these studies made use of the numeri-
cal “exact” diagonalization of the many-body Hamiltonian.
Reference [47] and the more recent study in [48] exam-
ined the effect of correlations on the rotational properties
considering Bogoliubov fluctuations on the mean-field state.
Reference [49] went beyond the Bogoliubov description and
considered interactions between the quasi-particle excitations.

As discussed below, the exact quantum states of a few
dozens of weakly interacting atoms in a rotating harmonic
trap reveal significant structure not captured by the Gross-
Pitaevskii approximation. It is well known from earlier
studies of mean-field theory in the thermodynamic limit that
with increasing rotational frequency, a dilute Bose gas in
a harmonic trap goes through a systematic series of phase
transitions associated with the formation of vortices [14–18].
In the limit of small N , however, finite-size effects become
important: Quasiperiodic oscillations occur along the “yrast
line” connecting the lowest-energy states as a function of
angular momentum ([28,32–35,41,45], see also the discussion
in the review articles [11,13]). These oscillations lead to

discontinuous steps in the ground state angular momentum L

as a function of the trap rotation frequency �. They originate
from the structure of the exact many-body wave function,
generalizing the well-known pattern first described by Butts
and Rokshar in the mean-field thermodynamic limit [14]. The
Gross-Pitaevskii approximation is known to provide the exact
energy to leading order in N [25,50,51]. However, we find that
only a fraction of the total weight of the exact quantum state
accounts for the corresponding mean-field solution even in the
limit of rather large numbers of atoms.

II. MODEL

We consider N bosons of mass M , confined in a harmonic
oscillator potential that is isotropic in two dimensions (x,y),
with z taken to be the axis of rotation of the cloud. We
assume that the system is quasi-two-dimensional, with the
motion along the z axis being frozen (i.e., oscillator frequen-
cies ω = ωx = ωy � ωz and h̄ωz larger than the interaction
energy). For sufficiently weak interactions one may restrict
the set of single-particle states of the harmonic potential
to those with zero radial nodes, which is the so-called
lowest-Landau-level approximation [9]. Then, the quantum
number m � 0 specifying the z component of single-particle
angular momentum is the only quantum number defining
the orbitals ψ0,m ∝ rmeimφe−r2/2�2

(with � = √
h̄/Mω). The

set F of Fock states {|�j 〉}Fj=1 = {|0N0 ,1N1 , . . . , mNm〉}Fj=1
(where Nm denotes the number of particles in a single-particle
state with angular momentum m) labeled by the index j

spans the basis of the many-body state. These Fock states
are chosen as eigenstates of the particle-number operator
and of the angular-momentum operator, with

∑
m Nm = N

as well as
∑

m mNm = L (units of h̄). In the absence of
interactions there is a large degeneracy which comes from
the different ways that one may distribute L units of angular
momentum to N particles in a harmonic potential [20].
Clearly this degeneracy increases with increasing L and N . In
the spirit of degenerate perturbation theory, the Hamiltonian
Ĥrot is diagonalized in the subspace of these degenerate
states. For effective contact interactions between the bosonic
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atoms [52], in the rotating frame of reference, Ĥrot is
given by

Ĥrot = h̄ωN + h̄(ω − �)L + g

2

∑

k �=l

δ(rk − rl), (1)

i.e., only the part coming from the two-body interactions needs
to be diagonalized. Here � is the trap rotation frequency,
and g = U0

∫ |φ0(z)|4 dz = U0/(
√

2π�z) is the interaction
strength, with φ0(z) = e−z2/2�2

z /(π�2
z)1/4 being the ground state

of the potential along the z axis, and �z is the oscillator length
in the z direction. Also, U0 = 4πh̄2a/M is the matrix element
for zero-energy elastic two-body collisions between the atoms,
with a being the corresponding scattering length. We can
thus define the dimensionless parameter λ = NMg/h̄2 =√

8πNa/lz to measure the coupling strength. The eigenstates
of Ĥrot are expressed as |L,N〉 = ∑F

j=1 Cj | �j 〉.

III. RESULTS

It is instructive to start with the case L/N = 1, where there
is a single vortex state at the center of the cloud, the so-called
“unit vortex.” Within the mean-field approximation [14,15],
all the atoms reside in one single-particle state with m = 1.
However, the exact many-body wave function (which in this
case is known analytically, see [19,21,23]) has a different
structure. Although the dominant Fock state corresponds to
the mean-field state with macroscopic occupancy of the m = 1
orbital, in addition there are orbitals with m = 0 and m = 2.
The yrast state of the unit vortex can be written as [15,19] |L =
N,N〉 = ∑

k(−1)kCk|0k,1N−2k,2k〉, where Ck = 1/(
√

2
k+1

)
to leading order in N . The component corresponding to
the mean-field approximation is the single term with k = 0,
with |C0|2 = 1/2. All other Fock states, with their sum
trivially adding up to completeness,

∑
k �=0 |Ck|2 = 1/2, have

significantly smaller amplitudes. In other words, half of the
weight of the total wave function is not captured by the single
dominant Fock state carrying a macroscopic occupancy that
corresponds to the mean-field solution. (For a discussion of
the unit vortex see also Refs. [21,46,47].) Evaluating the mean
occupancy of the three single-particle states from the exact
state, one finds [19] that to leading order in N , the occupancy
of the m = 1 state is 〈N1〉 = N − 2, while for m = 0 and
m = 2 we have 〈N0〉 = 〈N2〉 = 1. (The mean occupancy of
all other single-particle states is of lower order in N , which
justifies to neglect them.) Thus, there is only one single-particle
orbital that is macroscopically occupied for large N . The
depletion of the condensate, defined as (〈N0〉 + 〈N2〉)/N ,
equals 2/N . In the mean-field approximation the energy (in
the laboratory frame of reference) at L/N = 1 is EMF =
Nh̄ω + gN (N − 1)/2 (see [15]), while the exact energy is
Eex = Nh̄ω + gN (N − 2)/2 (see [19,21]). The comparison
shows that the mean-field energy is correct to leading order in
N , while the contribution of the single-particle states m = 0
and m = 2 that are absent in the mean-field solution give
corrections to the energy that are of lower order in N [25].

Beyond the unit vortex, for L/N > 1 the yrast states are not
analytically known, and one needs to turn to numerical meth-
ods instead. The upper panel of Fig. 1 shows the yrast energies
(in the rotating frame) obtained by the Gross-Pitaevskii method

FIG. 1. (Color online) Comparison of mean-field and “exact”
yrast states of N = 30. Upper panel: Energy (in the rotating frame)
as a function of total angular momentum L, at a rotational frequency
of �/ω = 0.9768, and a coupling strength λ = 0.3. The black line
shows the result of the numerical diagonalization. Cusps in the yrast
line occur with a quasiperiodicity of q = 2, 3, and 4 in L, as marked
by the blue, green, and magenta circles. The three higher-energy
parabolas show the result of the corresponding mean-field variational
calculation. Lower panel: Sum

∑
|�j 〉∈P(q) |Cj |2 of amplitudes of

Fock states |�j 〉 built exclusively out of the orbitals that are
macroscopically occupied within the mean-field approximation (see
text), with (m = 0,2,4), (m = 0,3,6), and (m = 0,4,8) for the cases
of twofold (blue, q = 2), threefold (green, q = 3), and fourfold
(magenta, q = 4) symmetry, respectively.

(upper, parabolic lines), in comparison to the energies obtained
by exact diagonalization (lower black line), calculated for
N = 30, for the interaction strength λ = 0.3, and �/ω =
0.9768.1

For 1.7 � L/N � 2.03, the yrast state consists of single-
particle orbitals with even values of m, and thus has twofold
symmetry. The occupancy of the orbitals with odd m is of
lower order in N , and thus negligible in the thermodynamic
limit assumed within the mean-field approximation [15]. For
the simple form � = c0ψ0,0 + c2ψ0,2 + c4ψ0,4, the mean-field
energy is straightforwardly obtained variationally under the
constraints of fixed particle number and of fixed expectation
value of angular momentum. For twofold symmetry, the
corresponding energy is shown as the upper blue line in
Fig. 1. Similarly, we may evaluate the energies for the order
parameter with threefold symmetry (green line), consisting

1Here, up to m � 14 single-particle orbitals were included in the
basis states. For diagonalization we used the ARPACK library.
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FIG. 2. (Color online) The energy of the yrast state and of the
low-lying excited states in the rotating frame for N = 40, �/ω =
0.9322, and λ = 1.0. Insets: Isosurfaces (placed at half-maximum
value) of the pair-correlated densities; reference point in the (x,y)
plane at (1,0). [Units of the oscillator length (h̄/Mω)1/2] (see text).

exclusively of single-particle orbitals with angular momenta
m that are multiples of three, � = c0ψ0,0 + c3ψ0,3 + c6ψ0,6,

and fourfold symmetry (gray line) with m being multiples of
four, � = c0ψ0,0 + c4ψ0,4 + c8ψ0,8. The local energy minima
associated with a given symmetry in the order parameter
compete with each other, giving rise to the discontinuous
phase transitions between states of different symmetry as �

increases.
For finite N , the exact energy (shown by the black line in

Fig. 1) overall lies below the mean-field value, as expected. The
yrast line shows oscillations with a quasiperiodicity increasing
from q = 2 to 3, and then 4 units of angular momentum
(for the range of L considered here). We find that the
minima (downward cusps, marked by circles) occurring with
quasiperiodicity q lie on parabolic energy branches that are
associated with the symmetry of the yrast states, similar to the
Gross-Pitaevskii mean-field result. The crossings between the
different branches mark the transitions between the different
symmetries.

Figure 2 shows the yrast line and low-lying excitations
in the rotating frame for N = 40 particles, for λ = 1.0, and
�/ω = 0.9322 (here for a basis with m � 12), where similar
oscillations occur (here only shown up to q = 3 due to the
rapid increase in matrix dimension for larger N ). The insets
to Fig. 2 show the isodensity surfaces of the pair-correlated
densities [defined as 〈�|�̂†(r)�̂†(r′)�̂(r′)�̂(r)|�〉]. Around
the transition between two and three vortices (see insets) it is
apparent that there is a crossing of states.

Let us now further analyze the quasiperiodicity of the yrast
line for the example of the two-vortex state. If N is even and
L is a multiple of 2 (but not of 4), then the Fock states |k〉 with
the largest amplitudes giving rise to the downward cusps have
the form

|0k+N/2−(L+2)/4,2N+1−2k,4k−N/2+(L−2)/4〉. (2)

If L is a multiple of 4, then the corresponding states are

|0k+N/2−L/4,2N−2k,4k−N/2+L/4〉. (3)

FIG. 3. (Color online) Angular momentum L = L(�/ω) result-
ing from minimizing Erot

0 for N = 30 and
√

8πNa/lz = 0.3, showing
additional steps in L that originate from the quasiperiodicity of the
yrast line. The insets show isosurfaces of the pair-correlated densities
(as in Fig. 2).

The integer k takes all the possible values for which the
occupancies are non-negative.

The quasiperiodic oscillations give rise to the additional
distinct steps (as in this case, of two units in L in the region
of the two-vortex state) in the graph L(�) that is obtained by
minimizing the energy at a given value of � in the rotating
frame, see Fig. 3. A similar situation occurs for the vortex
states with three- and fourfold symmetry, giving rise to the
corresponding quasiperiodicity in the yrast energy, as well
as the steps in L(�). These additional steps disappear in
the thermodynamic limit and the curve becomes a piecewise
continuous function of �, as described by Butts and Rokshar
[14]. Along the steps, the pair-correlated densities (shown as
isosurfaces in the insets to Fig. 3) follow a pattern similar to
the mean-field results [14].

In the mean-field solution, for a given symmetry only a
certain subset of single-particle states with angular momentum
m contribute to the order parameter [15]. The whole Fock
space F may thus be viewed as composed of a subspace P (q)

that is exclusively built on the Fock states constructed with
single-particle orbitals that appear in the mean-field solution
[as for two-, three-, or fourfold symmetry, q = 2, 3, or 4,
these are only the orbitals with m = (0,2,4), m = (0,3,6), and
m = (0,4,8), respectively], and the rest of all the Fock states
building a space that we callQ(q). Obviously,F = P (q) ∪ Q(q).
[For the two-vortex case, the Fock states in P (2) were given in
Eqs. (2) and (3) above.] For a diagonalization within P (q) only,
one obtains the exact leading-order term in the energy [25].
The contribution of all other Fock states that are elements
of Q(q) lowers the energy to subleading order in N . [As an
example, in the truncated space m = (0,2,4), diagrams which
contribute to subleading order in N are shown in Fig. 4(a)
where the contribution of the states with m = 1 and m = 3 may
be considered perturbatively.] The sum of amplitudes of all
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FIG. 4. (Color online) Comparison between the restricted and the
complementary Fock space for the two-vortex state at L/N = 1.8.
(a) Diagrams showing the contributions to subleading order in N , here
for m � 4. (b) Amplitudes in the subspaces P (2) and Q(2), ordered
after their absolute size. (c) Saturation of the sum of amplitudes∑jmax

j=1 |Cj |2 (here for N = 100) in P (2) to about 30% of the full
weight.

Fock states that are inP (q) is plotted in the lower panel of Fig. 1
for those states that are downward cusps in the yrast line for
q = 2, 3, and 4. The amplitude sums practically vanish around
the transitions between different values of q where the exact
yrast states become very mixed, i.e., there is a superposition of
very many Fock states with comparable and small amplitudes.

Remarkably, around angular momenta where vortex states
with a given symmetry occur as ground states, the subspace
P (q) adds up to only a fraction of the total weight of the exact
quantum state. For the unit vortex with q = 1, as discussed
above, there is a single term |0,1N,0,0, . . .〉 that has 50% of
the total amplitude. For q = 2, only about 30% of the total

amplitude is within P (2), while the contribution of the majority
of Fock states that belong to Q(2) amounts to the remaining
70%. For q = 3, the weight of the restricted subspace P (3)

decreases to about 20%, and for q = 4 we obtain only about
10% in P (4).

The ratio between the weights of P (q) and Q(q) does not
appear to be a finite-N effect, but systematically persists for
larger system sizes.2 This becomes particularly clear when
studying the Fock state amplitudes in the different subspaces.
For the two-vortex state at L/N = 1.8 for N = 20, 40, 60,
and 100 particles,3 Fig. 4(b) shows the absolute values of the
amplitudes (ordered after their absolute size) that are found to
scale with the particle number as N1/4, as a function of the
Fock space index j , that scales as 1/N1/2, for the subspaces
P (2) (which is relatively small in dimension) and Q(2) (which
is huge, containing very many states with small amplitudes).
Figure 4(c) shows the corresponding sums of the squared
amplitudes

∑jmax
j=1 |Cj |2 (here only for N = 100) in P (2) and

F = P (2) ∪ Q(2). The sum in F quickly saturates to unity,
while in the restricted space P (2) it saturates to only about
30% of the total weight of the quantum state. We see that for
particle numbers N � 40, the scaling in N becomes nearly
perfect, indicating that the distribution of states between P
and Q would not change when going to even larger particle
numbers.

IV. CONCLUSION

To conclude, using the method of numerical diagonalization
for a few dozens of atoms rotating in a harmonic trap,
we found that quasiperiodic oscillations along the yrast line
originate from the finiteness of the system, and disappear in the
mean-field limit of large N . Furthermore, comparing the yrast
state in the restricted subspace corresponding to the mean-field
solution, with the exact yrast state in the full space, we found
that it accounts for only a fraction of the total weight. There
is additional structure in the exact state that persists when
the system approaches the limit of large N , even though the
mean-field approximation provides the yrast energy exactly in
this limit.
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2We varied the particle number from N = 20 which is sufficiently
small to be treated with no truncation, up to about N = 100, where
we were limited to only m � 7 orbitals. In this range of particle
numbers, we found that the sum of the amplitudes in P (2) shows only
a very small decrease of at most 1%, a value close to the limit of
accuracy caused by the unavoidable truncation of the single-particle
basis states in the case of large N and L.

3For N � 40 we used a truncation of m � 14, for N � 70, m � 9,
and for N = 100, m � 7 single-particle orbitals.

053615-4



VORTICES IN BOSE-EINSTEIN CONDENSATES: . . . PHYSICAL REVIEW A 87, 053615 (2013)

[1] A. J. Leggett, Rev. Mod. Phys. 71, 318 (1999).
[2] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[3] K. B. Davis, M. O. Mewes, M. A. Joffe, M. R. Andrews, and

W. Ketterle, Phys. Rev. Lett. 74, 5202 (1995).
[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten,

D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[5] M. Andersson, J. Ensher, M. Matthews, C. Wieman, and
E. Cornell, Science 269, 198 (1995).

[6] E. Cornell and C. Wieman, Rev. Mod. Phys. 74, 875 (2002).
[7] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).
[8] F. Serwane, G. Zurn, T. Lompe, T. B. Ottenstein, A. N. Wenz,

and S. Jochim, Science 332, 336 (2011).
[9] A. Fetter, Rev. Mod. Phys. 81, 647 (2009).

[10] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[11] N. R. Cooper, Adv. Phys. 57, 539 (2008).
[12] S. Viefers, J. Phys.: Condens. Matter 20, 123202 (2008).
[13] H. Saarikoski, S. Reimann, A. Harju, and M. Manninen, Rev.

Mod. Phys. 82, 2785 (2010).
[14] D. Butts and D. Rokshar, Nature (London) 397, 327 (1999).
[15] G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, Phys. Rev.

A 62, 063605 (2000).
[16] M. Linn and A. L. Fetter, Phys. Rev. A 60, 4910 (1999).
[17] M. Linn, M. Niemeyer, and A. L. Fetter, Phys. Rev. A 64, 023602

(2001).
[18] J. J. Garcı́a-Ripoll and V. M. Pérez-Garcı́a, Phys. Rev. A 63,
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