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Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate
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We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of 87Rb atoms prepared
in the internal states |1〉 ≡ |F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = 1〉 for the precision measurement of the
interspecies scattering length a12 with a relative uncertainty of 1.6 × 10−4. We show that in a cigar-shaped
trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently
described by a one-dimensional (1D) Schrödinger equation for an effective harmonic oscillator. The frequency of
the collective oscillations is defined by the axial trap frequency and the ratio a12/a11, where a11 is the intraspecies
scattering length of a highly populated component 1 and is largely decoupled from the scattering length a22, the
total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations
to the recorded temporal evolution of the axial width we obtain the value a12 = 98.006 (16) a0, where a0 is the
Bohr radius. Our reported value is in reasonable agreement with the theoretical prediction a12 = 98.13 (10) a0 but
deviates significantly from the previously measured value a12 = 97.66a0 [Phys. Rev. Lett. 99, 190402 (2007)]
which is commonly used in the characterization of spin dynamics in degenerate 87Rb atoms. Using Ramsey
interferometry of the 2CBEC we measure the scattering length a22 = 95.44 (7) a0 which also deviates from the
previously reported value a22 = 95.0a0 [Phys. Rev. Lett. 99, 190402 (2007)]. We characterize two-body losses for
component 2 and obtain the loss coefficients γ12 = 1.51 (18) × 10−14 cm3/s and γ22 = 8.1 (3) × 10−14 cm3/s.
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I. INTRODUCTION

Collisional interactions in dilute ultracold gases play an
important role in the dynamics of Bose-Einstein condensates
(BECs), formation of molecules, and shifts of resonance
frequencies. Binary collisions of atoms can be divided into
inelastic and elastic collisions. Inelastic collisions lead to
the change of a hyperfine state or spin flips of the colliding
atoms. At sufficiently low temperatures the elastic collisions
of ultracold bosonic atoms can be adequately described by a
single parameter, the s-wave scattering length a, through the
corresponding interaction strength [1].

Precise knowledge of the values of the scattering length
is required for reliable modeling of BEC dynamics and
spin squeezing, the accurate evaluation of collisional shifts
in atomic clocks, and for spin gradient thermometry at
subnanokelvin temperatures [2]. It can also be used to verify
theoretical models of interatomic potentials [3]. In general, it
is difficult to carry out precision measurements of a scattering
length in a single-species ensemble. Binary mixtures in the
form of either two condensates of different atomic species or
two-component Bose-Einstein condensates (2CBEC) provide
more opportunities for the accurate measurement of these
collisional properties. Two-component BECs are defined as
a mixture of two different spin or hyperfine states of the
same condensed species. In either case collisions involve
intraspecies (a11 and a22) and interspecies (a12) s-wave
scattering.

Due to the particular properties of the singlet and triplet
interatomic potentials [4] the s-wave scattering lengths of
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87Rb atoms in the ground hyperfine states with F = 1 and
F = 2 are very close to each other (the maximum difference
is around 5%). These two states in 87Rb, |1〉 ≡ |F = 1,mF =
−1〉 and |2〉 ≡ |F = 2,mF = 1〉, are potentially useful for
future applications of ultracold or condensed atoms because
they are magnetically trappable and their differential first-order
Zeeman shift is canceled at a rather low magnetic field strength
of 3.228 G [5]. As a result, coherent superpositions of these
two states are largely insensitive to magnetic-field noise. Under
appropriate conditions very long coherence times have been
reported for trapped noncondensed atomic ensembles [6] and
a 2CBEC [7]. This makes these states of great interest for
on-chip atomic clocks and interferometric applications, since
the collisional frequency shift in a trapped atomic clock with
equal population of the two states is proportional to the differ-
ence (a11 − a22) between the intraspecies scattering lengths.
The coherent superposition of these states and subsequent
nonlinear evolution were recently used in a spin-squeezing
experiment [8].

In this paper we demonstrate a method for precision
measurement of the interspecies scattering length a12 using
collective oscillations in a 2CBEC. It was previously proposed
[9] that the interspecies coupling has a dramatic effect on
the collective excitation spectrum. Our method is largely
decoupled from the a22 scattering length, the total atom
number, and loss terms. In the course of our study we
measured the two-body loss coefficients for the states |1〉
and |2〉 in 87Rb and obtained values that are significantly
different from previous measurements [10,11]. We also carried
out a measurement of the intraspecies scattering length a22

using Ramsey interferometry of a trapped 2CBEC, a known
theoretical value of a11, and our measured value of a12.

In Sec. II, we use the quantum least-action principle for a
2CBEC trapped in a cigar-shaped harmonic potential to derive
a one-dimensional (1D) Schrödinger equation describing

053614-11050-2947/2013/87(5)/053614(10) Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.190402
http://dx.doi.org/10.1103/PhysRevLett.99.190402
http://dx.doi.org/10.1103/PhysRevA.87.053614


M. EGOROV et al. PHYSICAL REVIEW A 87, 053614 (2013)

collective oscillations of component 2. The oscillation fre-
quency is defined by the axial trap frequency and the ratio
a12/a11 of the scattering lengths. In Sec. III, we use a full
three-dimensional (3D) simulation of the coupled Gross-
Pitaevskii equations (GPE) with loss terms to confirm that the
frequency of the collective oscillations in the approximation
of a small relative population of component 2 (N2 � N1)
largely depends on the value of a12 (relative to a11) and
has a very weak dependence on the a22 value and the total
atom number N = N1 + N2 (for N > 3 × 104). We describe
our experimental setup and the characterization of the trap
frequencies in Sec. IV. Section V describes the converging
analysis sequence which we use to obtain values of the
s-wave scattering lengths a12, a22, and the two-body loss
coefficients γ12 and γ22. In Sec. VI, we present the results of our
measurement of the two-body loss coefficients. We describe
in detail our measurements of the scattering length a12 using
collective oscillations in a two-component BEC and a22 using
Ramsey interferometry in Secs. VII and VIII, respectively. We
compare our results with previous experimental and theoretical
investigations in Sec. IX.

II. ONE-DIMENSIONAL EFFECTIVE
SINGLE-COMPONENT TREATMENT

We consider the dynamics of a two-component Bose-
Einstein condensate initially prepared in the internal quantum
state |1〉 (component 1) and trapped in a cigar-shaped, axi-
ally symmetric harmonic potential V = mω2

zz
2/2 + mω2

r r
2/2,

where r2 = x2 + y2. Electromagnetic radiation can transfer a
variable portion of the condensate to another internal quantum
state |2〉 (component 2) which is also trapped in the same po-
tential V . The transfer modifies mean-field interactions and ini-
tiates a dynamical evolution of the two condensate wave func-
tions �1(r,t) and �2(r,t) normalized to the atom numbers N1

and N2 in the components 1 and 2, respectively. In this section,
we obtain an analytic expression which substantiates decou-
pling of the a12 measurement from the parameters a22 and N .

We consider the case of a tight transverse confinement
(ωr � ωz) where the 3D dynamics of the 2CBEC can be
conveniently described by an effective 1D treatment. We use
the variational method and follow the procedure developed for
single-component condensates [12–14]. The action functional
of a 2CBEC can be written as [15]

S =
∫

(L1 + L2 − U12|�1|2|�2|2)d3rdt, (1)

where the Lagrangian density of the component |j 〉 is

Lj = i
h̄

2

(
�∗

j

∂

∂t
�j − �j

∂

∂t
�∗

j

)

− h̄2

2m
|∇�j |2 − V |�j |2 − 1

2
Ujj |�j |4, (2)

where Uij = 4πh̄2aij /m are the inter- and intracomponent
interaction strengths, and aij are the s-wave scattering lengths
(i,j = 1,2). The coupled three-dimensional GPE can be

obtained from ∂S/∂�∗
j = 0 [1]:

ih̄
∂�1

∂t
=

[
− h̄2∇2

2m
+ V + U11|�1|2 + U12|�2|2

]
�1,

(3)

ih̄
∂�2

∂t
=

[
− h̄2∇2

2m
+ V + U12|�1|2 + U22|�2|2

]
�2.

In order to reduce the 3D treatment to the 1D case, we
factorize the wave functions in the form [12]

�j (r,t) = φj (r,σj (z,t))fj (z,t), (4)

where fj is normalized to the atom number in component j

and φj is a Gaussian trial function normalized to unity:

φj (r,σj (z,t)) = 1√
πσj (z,t)

exp

[
− r2

2σj (z,t)2

]
. (5)

The use of Gaussian trial functions for the radial depen-
dence of the condensate density is justified in the limit of
weak interactions when the BEC is one-dimensional [12,16].
A typical Thomas-Fermi (TF) radius for the BEC in our
experiments along the tight trap direction is 4 μm; four times
larger than the size of the corresponding harmonic-oscillator
ground state. However a Gaussian trial wave function is known
to give consistent results for a 1D reduction even in the case
of a TF radial profile of a BEC [12]. We assume that φj is
slowly varying along the axial coordinate relative to the radial
direction and

∇2φj ≈
(

∂2

∂x2
+ ∂2

∂y2

)
φj . (6)

Using the Euler-Lagrange equations (∂S/∂f ∗
j = 0 and

∂S/∂σj = 0) we obtain
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− 1

2

U22

2πσ 3
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|f2|2

− U12σ2
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2
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For the case of the transfer of a small atom number N2 to
state |2〉 (|f2| � |f1|) and a large atom number N1 in state |1〉
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[|f1|2 � (2a11)−1] we find

σ 2
1 = h̄

mωr

√
2a11|f1|, (11)

σ 2
2 = σ 2

1

(
2

√
a12

a11
− 1

)
. (12)

In the approximation |f2|2/|f1|2 � 1, the density in compo-
nent |1〉 does not change and is given in the TF approximation
by

|f1| =
√

2

3h̄ωr

√
a11

(
μ − mω2

zz
2

2

)
, (13)
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(

135Na11h̄
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√
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2
11
2

) 2
5

, (14)

where μ is the effective 1D chemical potential of component
|1〉. Equation (13) is valid for |z| < rTF = (2μ/mω2

z )1/2,
otherwise |f1| = 0. We substitute Eq. (13) instead of |f1| for
simplicity. However this implies a certain limitation on rTF

for which the analytical solution is valid, which is discussed
after the solution is obtained [Eq. (21)]. Now the effective 1D
equation for component |2〉 is

ih̄
∂

∂t
f2 =

[
− h̄2

2m

∂2

∂z2
+ mω2

effz
2

2
+ μeff

]
f2, (15)

where

ωeff = 2√
3

√
1 −

√
a12

a11
ωz, (16)

μeff = μ

3

(
4

√
a12

a11
− 1

)
. (17)

Apart from the constant term μeff , this is the Schrödinger
equation for a harmonic oscillator. If the superposition of states
|1〉 and |2〉 is prepared by a pulse with area θ , the 1D wave
function of state |2〉 is expressed in terms of a TF profile for
state |1〉 as f2(z,0) = sin2(θ/2)f1(z,0). Therefore, the solution
of Eq. (15) takes the form

f2(z,t) = e−iμeff t/h̄

∞∑
k=0

[
e−iωeff (2k+ 1

2 )tψho(2k,z)

×
∫

ψho(2k,ξ )f2(ξ,0)dξ

]
, (18)

where only even harmonic oscillator eigenstates ψho(2k,z)
contribute to the solution because the wave function f2(z,0)
is symmetric about z = 0. Equation (18) is periodic in such a
way that

f2(z,t + n/fc) = e−iμeffn/(h̄fc)f2(z,t), n ∈ Z, (19)

where fc = 2 × ωeff/(2π ) gives the frequency of the collective
oscillations

fc = 4fz√
3

√
1 −

√
a12

a11
. (20)

The effective harmonic potential in equation (15) acts only
within the size of the BEC whose density is nonzero when
|z| < rTF. Therefore, Eq. (15) is valid only when the char-
acteristic size of the relevant harmonic oscillator eigenstates

is less than rTF. As a criterion, we require that N be large
enough to make the first two even eigenstates of the harmonic
oscillator smaller than rTF, so that

r2
TF � 5h̄

mωeff
, or (21)

N � 2.3

a11ω2
r

√
h̄ω3

z

m

(
1 −

√
a12

a11

)− 5
4

. (22)

In our experiments the critical value of N for this criterion is
5 × 103, and we choose N to be at least 10 times larger than
this value.

Thus the transfer of a small atom number from state |1〉 to
state |2〉 initiates collective oscillations of component 2 along
the axial coordinate z with frequency fc which is independent
of the total atom number N [providing the condition of Eq. (22)
holds], the intracomponent scattering length a22 and the trans-
ferred fraction. The evolution of the 1D density of component
2 (n2 = f ∗

2 f2) is presented in Fig. 1(a) and clearly shows
periodic compressions of component 2 with frequency 2.91 Hz
(a12/a11 = 98.006/100.40,fz = 11.507 Hz). Accurate mea-
surements of the axial trap frequency and the frequency of the
collective oscillations make precision measurements of the
ratio a12/a11 possible. When a12 < a11 component 2 contracts
periodically. For a12 > a11 the dynamics of component 2
becomes unstable.

FIG. 1. (a) Oscillations of one-dimensional density |f2(z,t)|2
with frequency 2.91 Hz evaluated from Eq. (18) and 1(b) the linear
density with frequency 3.00 Hz simulated with the coupled 3D GPE
[Eqs. (3)].
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III. GPE SIMULATIONS OF COLLECTIVE
OSCILLATIONS OF COMPONENT 2

In this section we test the accuracy of the predictions of
the effective 1D treatment, by comparing the above results
with the full numerical simulations of the 3D GPE including
collisional losses, described by the following equations:

ih̄
∂�1

∂t
=

[
−h̄2∇2

2m
+ V (r) + U11|�1|2 + U12|�2|2 − i�1

]
�1,

ih̄
∂�2

∂t
=

[
−h̄2∇2

2m
+ V (r) + U12|�1|2 + U22|�2|2 − i�2

]
�2.

(23)

Here the loss rates of species 1 and 2 are �1 = h̄
2γ12|�2|2 and

�2 = h̄
2 (γ12|�1|2 + γ22|�2|2), and γ12 and γ22 are the two-body

loss coefficients [10]. The three-body loss rate is negligible
at our typical BEC densities. The simulations are performed
using a symmetric split-step Fourier method [17]. The main
idea of this method is the integration of the GPE by the
separate application of nonlinear and differential operators (the
latter being applied in Fourier space). The symmetric version
of the method additionally applies a differential operator
in two steps, separated by the application of a nonlinear
operator in a middle step, allowing it to reach a local error
of the third order in the time step. Free expansion of the
BEC is simulated when needed on a grid with increased
size (128 × 256 × 256 for a free expansion compared to
128 × 32 × 32 in a trap) with the trapping potential set to 0.
We also find the optimal regimes for precision measurements
of a12 and the dependence on various parameters. Unless
otherwise specified we use the 87Rb parameters for the
states |1〉 ≡ |F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = +1〉
(a11 = 100.4a0, a12 = 98.006a0, and a22 = 95.44a0) and the
trap frequencies (98.23, 101.0, 11.507) Hz.

For N = 105 atoms and a transfer of 2.4% of the atoms
to state |2〉 the evolution of the simulated linear density of
component |2〉 [n2l = ∫

�∗
2 �2dxdy, Fig. 1(b)] resembles that

from the effective 1D treatment [Fig. 1(a)] but exhibits a
few additional distinct features. First, the frequency of the
collective oscillations is 3.00 Hz. Second, additional periodic
variations of the linear density with frequency 18.3 (3) Hz
are clearly visible. These represent the monopole compression
mode, which is also excited due to atomic interactions being
altered by the transfer of atoms to state |2〉. Indeed, the
frequency of these fast oscillations is consistent with the
estimated value of the lowest monopole mode frequency√

5/2fz = 18.2 Hz for very elongated traps [18].
The frequency of the slow collective oscillations is very

sensitive to variations in the value of a12 [Fig. 2(a)] and can be
approximated in the range of interest by

fc(ξ12) = (
3.00 − 0.63ξ12 − 0.063ξ 2

12

)
Hz, (24)

where ξ12 = a12/a0 − 98.0 and the preparation pulse area
is θ = π/10. The simulated value is higher by 3% than
the value estimated from Eq. (20) which does not account
for the dynamics of the BEC in the radial direction. A
one-dimensional treatment accounting for those dynamics can
be derived [14]; however the resulting equations can be solved
only numerically. The difference between Eq. (20) and the

FIG. 2. (Color online) Dependence of collective oscillations
frequency of component |2〉 on the scattering lengths 2(a) a12 and
2(b) a22 and 2(c) on the total atom number N . Dotted lines are
the analytical predictions of Eq. (20). The three-dimensional GPE
simulations are represented by the solid lines (θ = π/10) and dashed
lines (θ = π/5). N = 105 for panels 2(a) and 2(b).

GPE simulations depends weakly on N which appears in
our simulations as the derivative ∂fc/∂N ∼ 2 × 10−7. The
dependence on a22 is greatly suppressed for small atom number
in state |2〉 [Fig. 2(b)]. For a mixture of two components
prepared by a π/10 pulse, fc can be estimated from

fc(ξ22) = (3.00 − 0.020ξ22)Hz, (25)

where ξ22 = a22/a0 − 95.5. Sensitivity to the total atom
number N is also suppressed for small pulse areas θ [Fig. 2(c)]
and sufficiently large atom numbers [Eq. (22), Fig. 2(c)].
We checked that the dependence of the frequency on the
pulse area is not pronounced when θ � π/2. We use the
first-order derivatives of the collective oscillation frequencies
on the experimental parameters in our error analysis later in
the paper. The simulations showed that, for sufficiently large
N and small θ , the collective oscillation frequency can be
used for precision measurements of a12/a11. We estimated
the accuracy of measuring a12 from the trap frequency fz.
While fc is independent of fr, Eqs. (20) and (24) assume
that an axial trap frequency measurement with a precision
δfz/fz = 6 × 10−4 (Fig. 3) leads to an additional uncertainty
in the a12 measurement of δa12 = 0.003a0.
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FIG. 3. (Color online) Dipole oscillations of state |1〉 BEC along
the axial direction of magnetic trap. The measured value of the axial
trap frequency is fz = 11.507 (7) Hz.

IV. EXPERIMENTAL SETUP

We generate an almost pure condensate of 87Rb atoms in
state |1〉 in a cigar-shaped magnetic trap on an atom chip [19].
A two-photon microwave–radio-frequency (MW-rf) transition
[10,20] is used for the fast transfer of a variable number of
atoms from state |1〉 to state |2〉. The MW radiation (fMW ≈
6.8 GHz) is applied by a half-wave dipole antenna located
outside of the vacuum chamber and the rf field (frf ≈ 3.2 MHz)
is coupled using two side wires on the chip [19]. During the
transfer the MW field is red detuned from the intermediate state
|F = 2,mF = 0〉 by 1 MHz. The two-photon Rabi frequency
of the effective two-level system is �12/(2π ) = 500 Hz and
the two-photon detuning is �/(2π ) = 6.8 Hz.

We use MW spectroscopy of the transition |1〉 → |F =
2,mF = 0〉 to adjust the magnetic field at the trap bottom to
the value 3.228 (5) G at which the first-order Zeeman shift
between states |1〉 and |2〉 is canceled so that the atoms in both
states experience almost the same trapping potential [5]. For
accurate knowledge of the total atom number N we detect the
atoms in both states in the same experimental realization. At
the end of the cycle, after the cloud is released from the trap, we
employ adiabatic passage with MW radiation [7,20] to transfer
the state |1〉 atoms to the state |3〉 ≡ |F = 2,mF = −1〉 with
an efficiency of 98%. During the time-of-flight fall the atoms
in states |2〉 and |3〉 are spatially separated by a magnetic-
field gradient generated with a pulse of current through the
Z wire on the chip. A single absorption image of the atoms
in the two states is taken using a 100 μs pulse of probing
light resonant with the F = 2 → F ′ = 3 cyclic transition. The
optical resolution of our imaging system is estimated to be
around 6 μm. The experimental images are postprocessed by
a fringe-removal “eigenface” algorithm [21] to improve the
signal-to-noise ratio.

Accurate knowledge of the harmonic trap frequencies
(especially fz) is essential for precision measurements of
a12. We employ a standard method of dipole oscillations by
suddenly shifting the trap along the measured axis, returning
to the original position after half of a cycle and monitoring the
periodic oscillations of the BEC in state |1〉 (Fig. 3). The dipole
oscillations in the axial direction are not damped over a long
period of time. From these measurements we infer the three
harmonic-oscillator frequencies of our trap: fz = 11.507 (7)
Hz, fx = 98.23 (5) Hz, and fy = 101.0 (5) Hz. We checked
numerically that anharmonicity of the trapping potentials on
the atom chip does not affect the results.

FIG. 4. (Color online) (a) Iterative convergence of interspecies
scattering length a12 and (b) intraspecies scattering length a22. The
solid lines represent the results obtained with a preparation-pulse area
θ = π/10, dashed lines are for θ = π/5 in panel (a). Different colors
in panel (a) represent the data for different sets of measurements of
a12.

V. MEASUREMENT SEQUENCE AND CONVERGENCE
OF ANALYSIS

The time dependence of the collective oscillations of the
lightly populated component |2〉 is crucially dependent on the
a12/a11 ratio. In order to account for the residual dependence
on the scattering length a22, the total atom number N and the
two-body loss coefficients, we carry out measurements and
analysis of the data in the following way: We use the theoretical
predictions of the scattering length (a12 = 98.13a0 and a22 =
95.68a0) [3] and experimental values of the two-body loss
coefficients measured at 8.32 G (γ12 = 7.80 × 10−20 m3/s
and γ22 = 1.194 × 10−19 m3/s) [10] as initial parameters. In
the first iteration we use these values in the interferometric
calibration of the total atom number N [7], which we find
to be consistent with the calibration using the condensation
temperature. We measure the two-body loss coefficients using
the atom number calibration results. Then we find a new value
of a12 from collective oscillations dynamics. In the next step we
find a22 from Ramsey interferometry measurements with π/10
and π/2 preparation pulses. At the end of the first iteration
we find new values of N , γ12, γ22, a12, and a22 and cycle
through the same sequence of analysis several times until all
values converge. We find that three iterations are sufficient for
convergence (Fig. 4).

VI. TWO-BODY LOSS COEFFICIENTS

In the mean-field approximation, atom losses of a two-
component BEC are described by the equations [11]

dn1

dt
= −γ12n1n2,

dn2

dt
= −γ22n

2
2 − γ12n1n2, (26)

where n1 and n2 are the densities of each BEC component, and
γ12 and γ22 are two-body loss coefficients. During an inelastic
collision two condensed atoms in state |F = 2,mF = 1〉
change their spin states to |F = 2,mF = 0〉 and |F = 2,mF =
2〉. An atom in the |F = 2,mF = 0〉 state is lost from the
magnetic trap and an atom in |F = 2,mF = 2〉 acquires a
potential energy of 624 nK due to the gravitational sag and
moves out of the trap. The atoms in these states do not
contribute to losses of the two-component BEC because they
do not overlap with the condensed atoms. Two atoms in
states |F = 2,mF = 1〉 and |F = 1,mF = −1〉 can spin flip
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to untrappable states |F = 2,mF = 0〉 and |F = 1,mF = 0〉
and do not further contribute to atom losses. Here we neglect
inelastic collisions with the background gas and three-body
losses which do not contribute on a timescale of less than one
second.

In order to measure the γ22 coefficient we produce a BEC
in state |1〉 and then prepare a pure-state |2〉 condensate with
a π pulse. After a variable evolution time t , we release the
condensate and measure the remaining number of atoms in
state |2〉. We apply a magnetic-field gradient to separate in
free fall the atoms in |2〉 and |F = 2,mF = 2〉 states and only
measure the population of state |2〉. If the BEC adiabatically
follows a TF profile during the lossy evolution, the loss of a
single component is described for short times by [11]
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where f̄ = 48.5 Hz is the mean trap frequency. Thus the
value of γ22 is given by the slope of the dependence N

−2/5
2 (t)

[Fig. 5(a), solid line]. In order for the BEC to follow the
trapping potential adiabatically during the loss process, the
characteristic loss rate �2 should be less than the trapping
frequency fz. However, in our experiments these quantities

FIG. 5. (Color online) Measurement of (a) intraspecies γ22 and
(b) interspecies γ12 two-body loss coefficients. The plot of N−2/5

versus hold time t is almost linear in the γ22 measurement. The
measurement of γ12 is plotted on a semilog scale, the increase in loss
rate is observed at the point of maximum density of component 2
(0.17 s) due to the influence of γ22. Black points are experimental
results; blue solid lines represent fits with GPE simulations.

are comparable, and we find the atom loss by fitting the
GPE equations [Eqs. (23)]. However, the results of the GPE
simulations are very close to the linear dependence of Eq. (27)
and are not distinguishable in Fig. 5(a).

For the γ12 measurements we prepare a superposition of two
states with a π/5 pulse (n2 � n1) and measure the remaining
atom numbers in the two components after an evolution time t

[Fig. 5(b)]. Under such conditions the loss process depends
mostly on γ12 rather than γ22. This allows us to slightly
decouple the measurements from the value of γ22. We find
γ12 by fitting the experimental data with the coupled GPE
simulations [Eqs. (23)] using the iterated atom number N .

The exact values of the loss coefficients are strongly
dependent on the initial total number of atoms [Eq. (27)].
Using the converging sequence of Sec. V we determine
the values γ12 = 1.51 (18) × 10−20 m3/s and γ22 = 8.1 (3) ×
10−20 m3/s. These values differ from the previously reported
values of γ22 = 10.4 (10) × 10−20 m3/s measured at a mag-
netic field of 3.0 G in a dipole trap [11] and γ22 = 11.94 (19) ×
10−20 m3/s and γ12 = 7.80 (19) × 10−20 m3/s measured at
8.32 G in a TOP magnetic trap [10]. In a separate measurement
of the evolution of cold noncondensed atoms prepared with a
π pulse in state |2〉 we determine γ ′

22 = 16.9 × 10−20 m3/s
which is a factor of two larger than our measured value of
γ22. The two-particle correlation coefficient for noncondensed
bosons is 2 [5], so our measurements of losses of condensed
and noncondensed atoms are consistent with each other.

VII. MEASUREMENT OF a12 SCATTERING LENGTH

We carry out six sets of measurements: three with π/10
pulses and three with π/5 pulses. Oscillations of the axial
width of component 2 are excited (Sec. III) and we image
the column densities of both components in time of flight
after various evolution times (Fig. 6). The experiments are

FIG. 6. (Color online) (a) Absorption images of two BEC
components in the time-of-flight expansion for different evolution
times after a π/5 preparation pulse. (b)–(d) Central cross sections
of the column density of component 2 at evolution times of (b) 0,
(c) 100, and (d) 170 ms. Black dots represent the measured optical
density from the CCD pixels. Blue solid lines are the central cuts of
the 2D Gaussian functions with axial widths of (b) 21.7, (c) 11.1, and
(d) 7.6 μm.
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FIG. 7. (Color online) Temporal evolution of axial width of
component 2 in a superposition of two states prepared with (a) π/10
or (b) π/5 pulse. The expansion times are (a) 6.6 ms and (b) 20.1
ms, and the initial total atom numbers are (a) N = 1.1 × 105 and
(b) N = 7.6 × 104. Black dots are the data extracted with the 2D
Gaussian functions and error bars represent statistical errors of the
fits. Blue solid lines are the results of the GPE simulations [Eq. (23)]
with (a) a12 = 98.025a0 and (b) 97.986a0, and a22 = 95.44a0.

performed with two different times of free expansion (6.6 and
20.1 ms) which are also included in the GPE simulations.
The period of the collective oscillations depends on the ratio
a12/a11 rather than just the value of a12 [Eq. (20)] and we use
the established value a11 = 100.40a0 [10,22].

The two-dimensional (2D) distribution of the column
density of the second component is fit with a 2D Gaussian
function and from here we extract axial widths of the column
density profiles. The axial cross sections in the center of the 2D
profiles are shown in Figs. 6(b)–6(d). The choice of a Gaussian
function to fit the experimental data originates from the fact
that Eq. (15) assumes that the ground state of component 2 has
a Gaussian shape. Even when the initial BEC density profile
has the shape given by the TF approximation, a Gaussian
function fits the experimental cross section well [Fig. 6(b)]
and is a good measure of the BEC width. In our analysis we
do not use second moments of the column density for width
measurements because in this case the extracted BEC width
has error bars larger by a factor of ∼20.

Oscillations of the axial width of component 2 with time
are shown in Figs. 7(a) and 7(b) for π/10 and π/5 preparation
pulses, respectively, and times of flight of 6.6 ms and 20.1 ms.
Each point represents one experimental realization and error

TABLE I. Scattering length a12 extracted from six experimental
sets with uncertainties coming from different sources.

a12
a0

δfa12
a0

∂fc
∂N

(Hz) ∂fc
∂θ

( Hz
rad ) ∂fc

∂a22
( Hz

a0
) ∂fc

∂a12
( Hz

a0
) δa12

a0

98.005 0.028 1.39 × 10−7 0.084 0.020 0.63 0.037
97.961 0.032 2.8 × 10−7 0.084 0.020 0.63 0.046
98.025 0.019 2.8 × 10−7 0.084 0.020 0.63 0.033
98.078 0.018 1.57 × 10−7 0.148 0.062 0.63 0.042
97.950 0.022 2.1 × 10−7 0.148 0.062 0.63 0.050
97.986 0.015 2.1 × 10−7 0.148 0.062 0.63 0.042

Weighted mean: a12 = (98.006 ± 0.016)a0

bars are the statistical uncertainty of the Gaussian fits of the
recorded 2D column densities.

We fit the temporal dependence of the axial width with
the coupled GPE equations [Eq. (23)] varying a12, a22, and
N and using the iteration procedure of Sec. V. The extracted
values of the scattering length a12 for the six measurement
sets are shown in the Table I. Systematic errors are calculated
for each set of measurements assuming 10% uncertainty in
the preparation-pulse area θ and 15% preparation noise in the
initial total atom number N . The combined uncertainty of a12

consists of the fit error δfa12 and the systematics calculated
from the slopes of the corresponding dependencies (Fig. 2),

δa12 =
(

∂fc

∂a12

)−1(
0.10θ

∂fc

∂θ
+ 0.15N

∂fc

∂N
+ δa22

∂fc

∂a22

)
+ δfa12. (28)

There is a larger deviation of the calculated axial width from
data for the zero evolution time compared with other data
points. However, this generates a small contribution to the
uncertainty of the fit error δf a12.

The final value of a12 = (98.006 ± 0.016)a0 is calculated
as the weighted mean of the six results, where the weight
coefficients are obtained from the errors of individual mea-
surements (Table I). The inclusion of quantum noise [23] and
finite temperature effects [24] can improve the precision of the
measurements and will be the subject of further studies.

VIII. MEASUREMENT OF a22 SCATTERING LENGTH

In this series of measurements we perform Ramsey interfer-
ometry of a BEC initially prepared in state |1〉 using a θ = π/2
(or θ = π/10) preparation pulse and a π/2 interrogation
pulse (Fig. 8, top). Our measured quantity, the normalized
number difference Pz = (N2 − N1)/(N2 + N1) [Figs. 8(a) and
8(a)], where N1 and N2 are the populations of the two
states after the interrogation pulse, oscillates with frequency
determined by the detuning of the MW-rf radiation from
the two-photon resonance and the collisional shift. Two
experimental sequences are intermixed in time in order to
minimize effects of long-term drifts in the atom number N and
the MW frequency. For the detuning measurement we perform
Ramsey interferometry (two π/2 pulses) with a noncondensed
cold atomic ensemble [N ≈ 1.8 × 104, T ≈ 120 nK, Fig. 8(b)]
in the same magnetic trap and find the two-photon detuning
� = 6.82 (10) Hz. For the cold atoms the collisional shift
is estimated to be ∼0.1 Hz. There is a damping of Ramsey
interference fringes [Fig. 8(a)] driven by two factors: the
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FIG. 8. (Color online) Ramsey interferometry with variable-area
θ for preparation pulse used in measurements of scattering length a22.
(a) The normalized number difference Pz oscillates with the evolution
time t . Dots are data points, blue solid line is fit GPE simulations
for θ = π/10, red solid line is fit GPE simulations for θ = π/2.
(a) Two-photon detuning �/(2π ) = 6.82 (10) Hz was measured in
Ramsey interferometry of noncondensed atoms. Dots are data points,
solid line is a sinusoidal fit.

spatially nonuniform growth of the relative phase (and the
corresponding dephasing of the condensate wave functions)
and asymmetric loss of the populations of two states (state |2〉
has larger atom losses) [7,20].

The collisional shift of dense condensed atoms depends
not only on the particular values of the scattering lengths a11,
a12, and a22 but also on the total number of atoms N . We
use two different values of the preparation-pulse area θ for
the following reason: If we assume that the atom number
density n(r) does not change with time, then the collisional
shift is proportional to n(r)(a11 − a22) for θ = π/2 [5]. For
a θ = π/10 preparation pulse the interaction-induced shift is
proportional to n(r)(a11 − a12). Thus the ratio of the two shifts
is independent of the atom number density and, therefore,
independent of N . In order to obtain a precise value of a22, we
run the GPE simulations with iterative values of the scattering
lengths (Sec. V) and fit the Ramsey fringe of θ = π/10
[Fig. 8(a), solid line], keeping N as a free parameter and taking
into account that the fringe frequency is largely decoupled from
the a22 value. Using the fit value of N we fit the θ = π/2 data
with the GPE simulations with the single variable parameter
a22 [Fig. 8(a), dashed line]. After convergence of the analysis
of all measurements the value of the intraspecies scattering
length for atoms in state |2〉 is found to be a22 = 95.44 (7)a0.

IX. DISCUSSION

A number of different approaches have been used to
evaluate the s-wave scattering lengths of 87Rb atoms prepared
in the two lowest hyperfine states. Here we restrict our
discussion to the modeling and measurements of the scattering
lengths a11, a22, and a12 at reported values of the magnetic field.

An early calculation of the value a11 = 106 (6) a0 [25]
was based on knowledge of the s-wave bound-state ener-
gies of 87Rb2. Later, using the results of high-resolution
molecular spectroscopy, the parameters of the atomic scat-
tering potentials were calculated which allowed evaluation
of a11 = 100.4 (1) a0 and a12 = 98.175a0 [4] at a magnetic
field of 3.2 G. Cornell’s group used the same parameters
of the scattering potential to evaluate a11 = 100.44a0, a12 =

98.09a0, and a22 = 95.47a0 [5] for the same magnetic field.
Improved modeling of the atomic interaction potentials [3]
produced the latest theoretical values of the scattering lengths:
a11 = 100.40a0, a12 = 98.13a0, and a22 = 95.68a0 [26].

Experiments with two-component BECs provided another
way to measure the scattering properties of 87Rb atoms.
The transfer of the entire population from state |1〉 to state
|2〉 produced a sudden change of collisional interactions
in the condensate and triggered radial and axial collective
oscillations of component 2 in a time-orbiting-potential trap
[27]. GPE simulations were used to fit the temporal evolution
of the radial and axial widths and yielded the ratio a11/a22 =
1.062 (12). If we assume a11 = 100.40a0 then this measure-
ment yields a22 = 94.5 (1.1) a0. Collisional-shift measure-
ments [5] in Ramsey interferometry of a two-component BEC
and uncondensed atoms at the bias magnetic field of 3.23
G produced a value for the difference of scattering lengths
a11 − a22 = 4.85 (31)a0. Collisionally driven spin oscillations
of atom pairs trapped in an optical lattice at 0.24 G allowed
measurements of the scattering length differences in the
F = 1 and 2 manifolds [22]. The reported results consistently
deviated by up to 10% from the calculated values [4]. Use of
the computed value a11 = 100.40a0 and a fit of the observed
oscillating ring-like structures in a two-component BEC at
a bias magnetic field of 8.32 G with the simulations of
the coupled GPE equations have yielded a12 = 97.66a0 and
a22 = 95.0a0 [10]. These three values of the scattering lengths
are commonly used for modeling the Ramsey contrast and spin
squeezing evolution in atom chip experiments on entangled
atomic ensembles [8,28,29] carried out at a bias magnetic field
of 3.23 G or spin dynamics of 2CBEC in |F = 1,mF = 1〉 and
|F = 2,mF = −1〉 states [30,31].

In Table II we compare the results of our measurements
with previously reported values of a12 and a22. Our value of
a12 is within 0.17% of the theoretical values [4,5,26]; however
the statistical uncertainty of our measured value is ten times
smaller. All reported theoretical values are consistently shifted
towards higher values. Our value of a12 = 98.006a0 deviates
from that of Ref. [10] by 0.35%. The dependence of a12 on the
magnetic field can explain this very significant deviation. Our
measured value of a22 is very close to that of Ref. [5] and is
within 0.25% of the latest theoretical evaluation [26] but is well
outside the statistical uncertainty 0.07% of our measurement.

Precise knowledge of collisional loss rates is important as
this limits the BEC coherence time [7,23], the effectiveness
of spin-squeezing [23,32], and contains important information
about the properties of interatomic interaction potentials [4].

TABLE II. Calculated and measured values of s-wave scattering
lengths in 87Rb for magnetic field of 3.2 G. Paper [10] reported the
results for a magnetic field of 8.32 G.

a12/a0 a22/a0

Matthews et al. [27] 94.5 (1.1)
van Kempen et al. [4] 98.175
Harber et al. [5] 98.09 95.47
Mertes et al. [10] 97.66 95.0
Kokkelmans [26] 98.13 (10) 95.68 (10)
This work 98.006 (16) 95.44 (7)
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TABLE III. Calculated and measured two-body loss coefficients
in 87Rb for magnetic fields of 3.2 G [4], 8.32 G [10], and 3.0 G [11].

γ12 (m3/s) γ22 (m3/s)

van Kempen et al. [4] 1.9 × 10−20

Mertes et al. [10] 7.80 (19) × 10−20 11.94 (19) × 10−20

Tojo et al. [11] 10.4 (10) × 10−20

This work 1.51 (18) × 10−20 8.1 (3) × 10−20

Two-body losses are usually the dominant source of losses in
binary BECs.

In this work we have focused on collisions of 87Rb atoms
in states |1〉 and |2〉 and the two-body loss coefficients γ12 and
γ22. The coefficient γ12 was initially calculated by analyzing
spectroscopic studies [4]. The reported value of the imaginary
part of a complex scattering length Im[a(B)] = −0.02a0 at the
magnetic field of 3.23 G can be used to evaluate the two-body
loss rate by γ12 = −(4h/m)Im[a(B)] = 1.9 × 10−20 m3/s.
Also this work predicted a weak Feshbach resonance at a
magnetic field of 1.9 G (where γ12 increases by a factor
of two) which, however, has not yet been observed. The
two-body loss coefficients γ12 = 7.80 × 10−20 m3/s and γ22 =
11.94 × 10−20 m3/s were first experimentally characterized
at the magnetic field of 8.32 G [10]. Another experimental
measurement provided γ22 = 10.4 (10) × 10−19m3/s at a bias
magnetic field of 3.0 G assuming the two-body loss coefficient
for state |F = 2,mF = −1〉 to be the same as for |F = 2,

mF = +1〉 at low fields [11]. The latter work carried out a
comprehensive study of two-body losses of F = 2 87Rb atoms
trapped in an optical trap. All magnetic states were trapped
and the presence of mF = 0 or +2 atoms may have influenced
the reported results.

In Table III we compare the results of our measurements
with previous theoretical and experimental investigations. Our
value of the interspecies two-body loss coefficient γ12 is
much closer to the theoretical result [4] than the previous
experimental result [10]. Also our measurement of γ22 is
slightly smaller than the results obtained in other experimental
works [10,11].

X. CONCLUSION

We have presented a technique for precision measurement
of the interspecies scattering length a12 in two-component
Bose-Einstein condensates which employs collective oscilla-
tions of a less populated component. The oscillations can be

described either by simulations using coupled Gross-Pitaevskii
equations or by the analytical model which we have developed.
Systematic errors such as uncertainty in the total number of
atoms, the effect of one of the interspecies scattering lengths
and imperfect preparation of the two-component mixture
contribute very little to the uncertainty of the measured a12. We
have applied the technique to measure the ratio of interspecies
to intraspecies scattering lengths a12/a11 for states |1〉 ≡
|F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = 1〉 in 87Rb with
an uncertainty of 0.016%. Using a calculated value of a11 =
100.40a0, which is assumed to be established and error free,
we evaluated a12 = 98.006 (16) a0. The relative uncertainty of
our measurement of 1.6 × 10−4 is applied to the measured
ratio of a12/a11 = 0.97616 (16) and, if the established value
of a11 changes in future measurements, this will proportionally
affect our reported value of a12. We also have measured
the intraspecies scattering length a22 = 95.44 (7) a0 using
Ramsey interferometry and the two-body loss coefficients
γ12 = 1.51 (18) × 10−20 m3/s and γ22 = 8.1 (3) × 10−20 m3/s
by fitting atom losses in the two-component BEC with the
results of simulations of the coupled GPE.

Comparison of our results for a12 and a22 with the
theoretical predictions and experimental measurements are
presented in Table II. Our results show good agreement with
recent theoretical calculations [26]. The residual deviations
from the theoretical predictions could be caused either by
uncertainty in the theoretical method or by unaccounted effects
in our experiments. The magnetic trapping potential on the
atom chip is slightly anharmonic; however we have found that
anharmonicity does not affect the GPE simulations. Given
the high precision of our measurements, the results could be
affected by quantum dynamics beyond mean-field theory. An-
other unaccounted contribution is from the finite temperature
of the ensemble. We will include quantum dynamics at finite
temperatures into the simulations in future experiments [23].

The present technique of a12 measurement might be
extremely useful in characterization of narrow interspecies
Feshbach resonances, such as rf-induced Feshbach resonances
[33–35]. Precision measurements of scattering lengths in the
vicinity of narrow Feshbach resonances might also allow drifts
of electron-proton mass ratio to be monitored [36].
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