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Optimizing the efficiency of evaporative cooling in optical dipole traps
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We present a combined computational and experimental study to optimize the efficiency of evaporative
cooling for atoms in optical dipole traps. By employing a kinetic model of evaporation, we provide a
strategy for determining the optimal relation between atom temperature, trap depth, and average trap frequency
during evaporation given experimental initial conditions. We then experimentally implement a highly efficient
evaporation process in an optical dipole trap, showing excellent agreement between the theory and experiment.
This method has allowed the creation of pure Bose-Einstein condensates of 87Rb with 2 × 104 atoms starting
from only 5 × 105 atoms initially loaded in the optical dipole trap, achieving an evaporation efficiency γeff of 4.0
during evaporation.
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I. INTRODUCTION

Over the last 30 years, the control and study of ultracold
atoms has continued to impress the research community. Initial
studies in both optical [1] and magnetic [2] confinement of
neutral atoms led to the realization that forced evaporative
cooling could create colder atom temperatures [3]. Forced
evaporation proceeds by a lowering of the trap depth, which
allows the hotter atoms to escape the trap while the colder
atoms remain and rethermalize. This method of evaporative
cooling played a critical role in realizing atomic Bose-Einstein
condensates (BECs) [4–6] and degenerate Fermi gases [7].
Though primarily used as a tool in the creation of quantum
degenerate gases, evaporative cooling also presents interesting
physics in itself [8–13].

Most early experiments in evaporative cooling were per-
formed in magnetic traps. Optical dipole trapping and evap-
oration, however, have been increasingly popular, because
optical traps give access to all magnetic spin states, have
less stringent vacuum requirements, and allow the use of
Feshbach resonances to modify atomic interactions. A key
difference between optical and magnetic forced evaporative
cooling is the modification of the trap frequency during
evaporation. In magnetic traps, since evaporation is carried
out by using an rf “knife” to remove atoms from the trap,
the trap frequency can remain constant as the trap depth
is lowered [14]. In optical dipole traps, the simplest forced
evaporative cooling is done by lowering the trapping laser
power. In contrast to magnetic trapping, for such evaporation
the average trap frequency ω̄ is reduced as ω̄ ∝ U 0.5 where U is
the trap depth [15,16]. Since the elastic collision rate (and thus
the evaporation rate) decreases with decreasing ω̄, efficient
all-optical evaporative cooling can be hindered by stagnation
of the cooling process. To address this limitation, various
techniques have been developed to change the relationship
between the trap frequency and trap depth during evaporation
in optical dipole traps, such as the zoom lens trap [17], the
tilted trap [18,19], and transitioning from a single beam to
cross-beam optical dipole trap geometry [20].
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The typical goal of evaporative cooling is to increase
the number of atoms that reach quantum degeneracy. Atom
losses via three-body recombination and one-body background
collisions limit the attainable efficiency for most experimental
evaporative cooling efforts. To optimize evaporation, the rates
of three-body and one-body losses should be kept small
compared to the rate of evaporation. Generally, if evaporation
proceeds too slowly, one-body losses become the major loss
mechanism and limit achievable efficiency. If evaporation
proceeds rapidly with nearly constant trapping frequency,
three-body losses may be dominant.

In this paper, we report a general strategy for optimizing the
efficiency of evaporation in optical dipole traps. This strategy
involves selecting a relationship between the trap frequency,
trap depth, and atom cloud temperature during evaporation
to minimize one-body and three-body losses, and thereby
maximize the number of atoms that reach the desired final
phase-space density. We first introduce a theoretical model
for evaporative cooling. We demonstrate using this model to
find optimal evaporative cooling routes for experiments. We
then present results utilizing this strategy in our experiment,
in which a highly efficient optical evaporative cooling is
achieved.

A few definitions will aid in the ensuing discussion.
We parametrize the relationship between the weakening of
the trap frequency and the trap depth by ν, where ω̄ ∝
Uν . The ratio of trap depth U to atom cloud temperature
T is given by η = U/kBT where kB is the Boltzmann’s
constant. Optimal evaporation is achieved by selecting these
two parameters, η and ν, for the evaporation route such
that rates of one-body and three-body losses, �1B and �3B ,
are kept small. The efficiency of evaporation is quantified
by γeff = − ln(ρf /ρi)/ ln(Nf /Ni), where ρ = n0λ

3
dB is the

phase-space density, N is the number of atoms in the trap, n0 =
Nω̄3[m/(2πkBT )]3/2 is the calculated peak atomic density,
λdB =

√
2πh̄2/mkBT is the thermal de Broglie wavelength,

ω̄ is the geometric mean of the trap frequencies, m is the atomic
mass, and h̄ is the reduced Planck’s constant. Many previous
experiments typically achieve values of γeff ≈ 2.5–3.5. Our
optimized scheme realizes γeff = 4.0, and our theoretical
model gives a guide for other experiments to optimize their
efficiencies.
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II. THEORY

We first present the theory employed to model evaporative
cooling of ultracold atomic gases. While scaling laws have
been derived to describe evaporative cooling in optical dipole
traps and are helpful in gaining a qualitative understanding,
the analyses are limited by their neglect of losses or by only
treating specific cases (i.e., ν = 0.5) [16,18]. To develop our
strategy of optimizing the evaporative cooling, we employ
a kinetic theory of evaporative cooling [9,13,21,22]. In the
kinetic theory approach, a truncated Boltzmann distribution
is used to describe the distribution of atoms in the trapping
potential, U (�r):

f (�r, �p) = n0λ
3
dB exp{−[U (�r) + p2/2m]/kBT }

×
(ηkBT − U (�r) − p2/2m). (1)

In the deep trap limit [η > 6 for three-dimensional (3D)
harmonic traps] the truncation effects are small [9] and the
Heaviside step function 
 in the distribution can be replaced by
unity for calculations of the atom number and energy density.

With this simplification, the spatial density is

n(�r) = 1

(2πh̄)3

∫
f (�r, �p)d3 �p = n0 exp[−U (�r)/kBT ], (2)

and the energy density of the atoms in the trap (neglecting
interactions) is

e(�r) = 1

(2πh̄)3

∫ (
p2

2m
+ U (�r)

)
f (�r, �p)d3 �p

= 3

2
n0kBT exp[−U (�r)/kBT ] + U (�r)n(�r). (3)

The total energy in this deep trap limit is E = 3NkBT , and
the atom number and energy evolution during evaporation can
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FIG. 1. (Color online) (a) Numerical solution of the final number
of atoms Nf to reach a final phase-space density of ρf = 2.6 as a
function of η and ν given our experimental initial conditions. The
total evaporation time is bounded to be Tevap < 10 s (area bounded
by the thick, dashed line). The maximum efficiency γeff,max is 3.93
and is achieved at the maximum in Nf (square). Our experimental
implementation employed a slightly different set of values of η and
ν (circle) that results in a simulated efficiency of γeff = 3.85. Initial
conditions of evaporation are T = 60 μK, N = 5 × 105, ω̄ = 2π ×
1000 Hz, �1B = 1/12 s−1. Since Ni , ρi and ρf are fixed, γeff depends
only on Nf . (b) and (c): Effect of varying the initial atom number
Ni while keeping other initial conditions the same as in (a) on the
optimal value of ν for evaporation (b), and resulting γeff,max (c). The
grey dashed line marks the value of Ni in our experiment.

be modeled by

Ṅ = Ṅev + Ṅθ + Ṅ1B + Ṅ3B, (4a)

Ė = Ėev + Ėθ + Ė1B + Ė3B, (4b)

where, on the right-hand side, the first term in each equation
accounts for effects of evaporation, the second for trap shape
changes (denoted by θ ), and the final two terms for one-
body loss due to background collisions and three-body loss,
respectively. Effects of dipolar loss, heating from fluctuations
in the trapping potential, and off-resonant photon scattering are
small for the experiments considered here and thus neglected.

Using the kinetic theory with Eqs. (2) and (3), we obtain
specific expressions for each term in Eq. (4). For our theory,
we use a 3D harmonic trap approximation, and express
the potential U (�r) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) and thus the
mean trap frequency as ω̄ = (ωxωyωz)1/3. While our specific
trapping configuration does introduce a slightly anharmonic
trap shape, we found it to be a small perturbation due to
the high trap depth maintained during evaporation and that
employing a 3D harmonic trap in the theory provides a good
approximation that models well our experimental results.
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FIG. 2. (Color online) A schematic of the experimental setup
(a), and calculated trapping potentials for various optical dipole trap
laser powers along three axes (b–d). For (a), the magneto-optical
trap magnetic field coils are in green, dipole trapping beams in
orange, MOT trapping beams in red, and imaging beam in purple.
Not pictured are the bias coils, which are used to cancel the Earth’s
magnetic field and apply constant offset magnetic fields. Gravity is
along the positive y axis. The calculated trapping potentials indicated
by the dotted red, dashed blue, and solid black lines are shown in
(b-d) for various combinations of the optical trap beam powers,
corresponding to (Pwide,Pnarrow) = (12, 0.20 W), (3, 0.09 W), (1.25,
0.058 W), respectively. The 45 μm offset between the wide and
narrow beams in the y direction, marked by the two vertical dotted
lines, can be seen in (c).
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A. Collision-dependent terms

The truncated Boltzmann distribution treatment of evapo-
ration assumes that any atoms excited to energy greater than
the trap depth by elastic collisions are evaporated. The rate of
the evaporation for a 3D harmonic trap is well approximated
by �ev ≈ (η − 4)e−η�el when η � 6 [9,18]. Here �el is the
elastic collision rate of the atoms, and in a 3D harmonic
trap �el = nσ v̄/(2

√
2), where σ = 8πa2

s is the elastic cross
section for identical bosons, as is the s-wave scattering length
(as = 98a0 for 87Rb where a0 is the Bohr radius [23]), and
v̄ = 4(kBT /πm)1/2 is the average relative velocity of the
atoms. Each evaporated atom carries away energy greater
than the trap depth, and the average energy removed by each
evaporated atom is (η + κ)kBT , where κ ≈ (η − 5)/(η − 4)
for a 3D harmonic trap in the deep trap limit [9,18].

There are no bounds on the achievable efficiency of
evaporation for an atomic gas with only elastic collisions. For
actual experiments, however, the effects on the atom number
and energy due to one-body and three-body losses limit the
attainable evaporation efficiency and must be considered. Such
effects are expressed as

Ṅ1B + Ṅ3B = −�1B

∫
n(�r)d3�r − L3B

∫
n(�r)3d3�r

= −�1BN − �3BN, (5)

Ė1B + Ė3B = −�1B

∫
e(�r)d3�r − L3B

∫
n(�r)2e(�r)d3�r

= −�1BE − �3B

2

3
E, (6)

where �3B = L3Bn2
0/(3

√
3) [L3B = 4.3(±1.8) × 10−29cm6/s

for 87Rb in the F = 1 ground state [24]]. �1B is typically
dominated by the loss rate due to background collisions and
is set by the vacuum conditions of the experimental chamber.
It is measured experimentally from the trapped atom loss rate
in a very deep trap with low atom density [25]. For other
trapping potentials types (e.g., linear 1D), similar equations
can be obtained to find �el and �3B [9,21].

B. Changes in the trap shape

The changing trap frequencies can cause atom loss by the
removal of atoms with energy near the trap depth, so-called
“spilling” [21]. It can also cause adiabatic changes in the
energy. For deep traps (η > 6), the occupation of states that are
spilled during the evaporation is small, and thus Ṅθ ≈ 0. The
adiabatic work done on the trap, however, is non-negligible.
Generally, adiabatic changes in the energy due to changes in
the trap characteristics are modeled in the kinetic theory [21]
by

Ėad = −NkBT

N/n0

(
∂(N/n0)

∂θ

)
T

θ̇ , (7)

where θ is some trap parameter. The N/n0 terms in the
equation can be understood as the effective volume of the
trap. In these experiments, ω̄ is the changing trap parameter.
We thus replace θ with ω̄ in Eq. (7) to obtain

Ėad = 3NkBT
˙̄ω

ω̄
= νE

U̇

U
= νE

Ṫ

T
. (8)

This can be intuitively understood as the work done by
the atoms on the trap as the trap frequency is adiabatically
weakened, and for a fixed trap frequency (ν = 0) this term
would be zero.

C. Combined equations and simulation results

Combining the terms discussed above, the energy and atom
number evolution equations for evaporative cooling in deep,
3D, harmonic traps take the form

Ė = −N�ev(η + κ)kBT + νE
Ṫ

T
− �1BE − �3B

2

3
E, (9)

Ṅ = −(�ev + �1B + �3B)N. (10)

By numerically solving this model given the initial experi-
mental conditions after loading atoms in the optical dipole
trap, the ideal values of η and ν can be found to maximize
the number of atoms that reach quantum degeneracy. We
note that in this work we assume constant η and ν for
optimizing the evaporation process. At the cost of additional

TABLE I. Experimental (expt) and simulated (sim) results from Refs. [15,18] and this work. Also shown are the simulated optimal (opt)
results, which are found by optimizing η and ν for the evaporation ramp, as in Fig. 1.

Ref. Ti (μK) Ni ωi (Hz) �1B (s−1) ρi ρf η ν Nf γeff

Ref. [15] 75 2×106 2π×1500 1/6 0.0018 1.4

⎧⎨
⎩

expt
sim
opt

−
7.2
8.3

a
0.50
0.50
0.39

1.8 × 105

1.7 × 105

3.6 × 105

2.76
2.67
3.85

Ref. [18] 0.470 1.9 × 106 2π × (17·34·38)1/3 1/50 0.0445 2.6

⎧⎨
⎩

expt
sim
opt

6.5
6.5
8.2

0.075
0.075
0.000

5.0 × 105

4.5 × 105

6.3 × 105

3.05
2.83
3.68b

This work 60 5 × 105 2π × 1000 1/12 2.59 × 10−4 2.6

⎧⎨
⎩

expt
sim
opt

8.5
8.5
8.4

0.22
0.22
0.18

4.9 × 104

4.7 × 104

4.8 × 104

3.95
3.85
3.93

aValue for η is not provided in Ref. [15]; we use η = 7.2 in simulation because it results in similar values for N , T , and total time of evaporation.
bA result of optimal ν being equal to zero indicates a fixed frequency trap is ideal for evaporation. We do not consider values of ν < 0 (see
[27]).

053613-3



OLSON, NIFFENEGGER, AND CHEN PHYSICAL REVIEW A 87, 053613 (2013)

complexity, η and ν could be varied during evaporation to
achieve slightly more efficient evaporation [26].

Figure 1(a) shows a calculation given our initial conditions
and evaporating to ρf = 2.6 for different values of η and ν.
We find a region of optimal η and ν centered around η = 8.4,
ν = 0.18. As a further study, in Figs. 1(b) and 1(c) we find
that a different initial number Ni of atoms loaded in the optical
dipole trap changes the optimal ν as well as the maximum γeff

(while the optimal η is minimally affected by Ni) [27].

III. EXPERIMENT

We experimentally implement this evaporative cooling
scheme using a misaligned crossed-beam optical dipole force
trap (MACRO-FORT [19]), which allows precise tailoring of
ν. As our laser source for the optical dipole trap, we use a
single-frequency, single spatial mode, erbium fiber laser with
wavelength at 1550 nm (IPG Photonics ELR-50-1550-LP-SF).
The wide dipole trap beam has a beam waist of 88 μm and
18 W of initial power (Pwide). The narrow beam (used to
produce the “dimple” potential) has a waist of 20 μm, 9 W of
initial power (Pnarrow), crosses the wide beam at an angle of
66◦, and is offset 45 μm radially from the wide beam’s focus
(see Fig. 2).

For this optical dipole trap geometry, ν is determined by
both the offset of the narrow beam from the wide beam and
by the relative powers of each beam. Therefore, achieving
different values of ν for an evaporative route is simply changed
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FIG. 3. (Color online) (a) Measured average trap frequency ω̄ vs
trap depth U for the near-optimal evaporation trajectory used in our
experiment. The trap frequencies were measured by the parametric
heating method. The experiment used ν = 0.22 for the first 3 s of
evaporation. For comparison, the dashed line indicates the ω̄ ∝ U 0.5

relationship used in conventional optical evaporative cooling. (b)
Extracted η during evaporation based on the T of atoms measured
from time of flight, and trap depth U calculated (assuming ideal
Gaussian beams) from the measured dipole trap laser powers and
beam geometry.

by adjusting the laser powers or the offset of the beams.
Limitations in the laser power available restrict ν to be between
0.15 and 0.50. Different values of η are simply achieved by
varying the total time of the evaporation route. The moderate
tolerance of the parameters as seen in Fig. 1 allow for some
flexibility in the experimental choice of η and ν, and we have
designed our experimental evaporation ramp to have η ≈ 8.5
and ν = 0.22, so as to preferentially avoid three-body losses
while still maintaining a high efficiency.

To confirm that we follow the optimal evaporation route
modeled in Fig. 1, measurements of the trap frequency, atom
temperature, and a calculation of the trap depth allow us
to determine the experimental η and ν values during the
evaporation ramp (Fig. 3). After loading the optical dipole
trap with 5 × 105 atoms as described in the Appendix, forced
evaporation with ν = 0.22 and η ≈ 8–10 (noting the relative
insensitivity of γeff to small deviations of η and ν from
the optimal target values in Fig. 1) was implemented by
exponentially decreasing the power in both beams over the
course of 3 s to 12 and 0.068 W, respectively. At this point,
there are 105 atoms at just over 1 μK (see Fig. 4). The average
trap frequency is 475 Hz so that the BEC critical temperature
is TC ≈ 900 nK, where kBTc = h̄ω̄(N/1.202)1/3. Continuing
to evaporate in such a tight trap, however, would yield high
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FIG. 4. (Color online) The experimentally measured atom num-
ber, atomic density, and phase-space density vs time during evap-
oration. The theoretical calculations utilize the model of Eqs. (9)
and (10) for ν = 0.22, η = 8.5, ω̄i = 2π × 1000 Hz, and assuming
our experimental initial conditions. The slight overestimate of the
theoretical n and ρ during the first 2.5 s is likely due to the presence
of atoms in the “wings” of the narrow beam trap (e.g., see Ref. [20]).
The insets show resonant absorption images (taken after 10 ms of
time-of-flight expansion) of the atomic cloud at three different times
along the evaporation ramp, showing the thermal cloud to BEC
transition.
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FIG. 5. (Color online) Comparison between experimental and
simulated evaporation trajectories for three different experiments.
The circles (squares) indicate the experimental results of the initial
(final) atom number and phase-space density from Refs. [15] (red,
filled shapes) and [18] (light grey, open shapes). Dashed lines
indicate simulation of evaporation given reported experimental initial
conditions and evaporation parameters (see Table I). Solid lines
indicate the simulated optimized evaporation route by using the
optimizing strategy for η and ν developed in this paper. For our
work, the solid line overlaps the dashed line almost completely.
The results of the simulation match each of the experiments well,
and further details of the quantitative agreement are presented in
Table I.

three-body losses. Thus, over the final 1.35 s, the power in
the wide beam is lowered to 1.25 W and the narrow beam to
0.020 W. This results in a nearly pure BEC of 2 × 104 atoms
in a trap with measured frequencies of 2π×(60, 100, 270) Hz.
During the transition to BEC, the evaporative process is aided
by bosonic enhancement [28,29] and no longer well described
by the classical evaporative theory as described in Sec. II. This
yields efficiencies even higher than the simulated values.

The strategy of optimizing the evaporative cooling by
selecting the optimum values of η and ν is general and not
limited to the specific trap configuration used in our work.
The theory we have presented above is limited to deep traps
that are approximately 3D harmonic. Many optical dipole trap
implementations, however, are well approximated by these
assumptions, because tighter confinement afforded by optical
dipole traps allow for rapid evaporation even with η > 6, and
the intensity profiles of the laser beams are harmonic to first
order. To demonstrate the general applicability of the theory
and strategy, we model two other experiments of evaporation
in optical dipole traps, one in 133Cs by Hung et al. [18] and
the other in 87Rb by Barrett et al. [15] (see Fig. 5). We find
excellent agreement between our theoretical simulations and
their experimental results, and our simulation results show
that both experiments could further improve their evaporation
efficiency by optimizing both η and ν [30].

IV. CONCLUSION

In summary, we have described a scheme to optimize the
efficiency of evaporative cooling by optimizing the relation

between the trap frequency, trap depth, and atom temperature
during the evaporation process. As a result, we achieve a
γeff = 4.0, a high value for all-optical evaporation. Different
from previous treatments of evaporative cooling in optical
dipole traps [16,18,19], this approach includes atom losses
in modeling the evaporative process and optimizes both η and
ν for our experimental conditions. Different from the evapora-
tion optimization scheme in Ref. [13], our scheme optimizes
evaporation by tuning ν and η for the whole evaporation ramp,
rather than just changing η during evaporation. In addition, we
have highlighted the utility of experimental techniques (such
as MACRO-FORTs) that allow selecting the η and ν values
for all-optical evaporation, and we demonstrate that BECs can
be obtained even when starting from a small number (5 × 105)
of trapped atoms. The method shown here of optimizing the
efficiency by finding optimal η and ν is not specific to 87Rb and
can be applied to achieve optimal γeff for any atomic species
that is evaporatively cooled in optical traps.
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APPENDIX: LOADING THE OPTICAL DIPOLE TRAP

To load the optical dipole trap, we follow a procedure
similar to that in Ref. [19], which was developed to allow
for the loading of a dipole trap from a magneto-optical trap
(MOT) when the dipole trap laser creates a strong ac Stark shift
on the cooling transition of the MOT (≈ − 150 MHz shift of
the atomic transition relative to the cooling light frequency for
our experiment) [31]. To load the optical dipole trap, we first
load ≈ 1 × 108 atoms in the MOT. During this time the cooling
beams’ detuning from the resonance, δcooling, is set to −20 MHz
with a total cooling beam power of 70 mW, the repump beam
is set to resonance and an intensity Irepump = 1.8 mW/cm2,
and the magnetic field gradient is set to GB = 15 G/cm. To
maximize atoms loaded into the optical dipole trap, we apply a
four-stage compression and cooling process. First, the δcooling

is decreased in 10 ms to −30 MHz and held for 20 ms. Next,
GB is increased to 51 G/cm in 5 ms and held for 25 ms. Then,
GB is ramped to 1 G/cm in 5 ms. Simultaneously, δcooling is
decreased to −35.5 MHz in 2 ms, and Irepump is instantly
decreased to a few μW/cm2. Finally, an optical molasses
stage is applied for 1 ms, where Irepump is restored to 1.8
mW/cm2, GB is ramped entirely off, and δcooling is ramped to
−130.5 MHz. At the start of the 50 ms optical dipole trap
loading stage, δcooling is changed to −195 MHz, Irepump is
dropped to a few μW/cm2, and the dipole trap wide beam
is turned on to full power (18 W). During that 50 ms, the
dipole trap narrow beam is linearly ramped on to 9 W. After
loading for 50 ms, the MOT cooling beams are turned off with
the repump beams turned off a few hundreds of μs before
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the cooling to optically pump the atoms to the F = 1 ground
state. If only the wide beam is applied we observe n = 1 × 1011

atoms/cm3 and T = 10 μK. For such initial conditions, the �el

is too low for efficient evaporation. The addition of the narrow

beam potential after loading increases �el, aiding efficient
evaporation [32–34]. After the 500 ms hold time in the optical
dipole trap with the dimple on, there are 5 × 105 atoms at
60 μK and a density of 3.5 × 1012 atoms/cm3.
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[29] M. Köhl, M. J. Davis, C. W. Gardiner, T. W. Hänsch, and
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