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Classical bifurcation in a quadrupolar NMR system
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The Josephson junction model is applied to the experimental implementation of classical bifurcation in a
quadrupolar nuclear magnetic resonance system. There are two regimes, one linear and one nonlinear, which are
implemented by the radio-frequency and the quadrupolar terms of the Hamiltonian of a spin system, respectively.
These terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the
coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic
liquid crystal sample of an ordered ensemble of 133Cs nuclei with spin I = 7/2 at room temperature. Our
experimental results confirm that bifurcation happens independently of the spin value and of the physical system.
With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously
to a symmetric two-mode Bose-Einstein condensate.
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The Josephson junction (JJ) model remains one of the key
concepts for theoretical advances in the physics of supercon-
ductivity and superfluidity. Within the ultracold-atom scenario,
the description of two-mode Bose-Einstein condensates (BEC)
by means of the JJ model has afforded new insights into
nonlinear tunneling [1,2], owing to nonlinearity as a source,
revealing many kinds of phenomena, from entanglement
to classical bifurcation [3–10]. Lately, classical bifurcation
effects have attracted the attention of researchers, as they can
indicate, for the associated quantum systems, a signature of
quantum phase transitions [11–15] and, more recently, have
been used in the study of an unstable quantum pendulum [16].
In this context and due to the huge advances in experimental
control, the investigation of systems such as two BEC traps
[1,5,10] or two vibrational degrees of freedom in polyatomic
molecules [17–19] has become very active. The Hamiltonians
modeling such systems are well described by raising and
lowering operators and they may be rewritten in terms of
the SU(2) operators and their commutation relations via the
Schwinger pseudospin representation. In this representation,
these Hamiltonians display nonlinear terms that commonly
appear in the z component, as for instance in the case of
a symmetric trap of a two-mode BEC. One may write the
simplest Hamiltonian model as H = χJ2

z − �Jx , where χ

and � represent respectively the nonlinear coupling due to
atom-atom interaction and the linear coupling due to an
external perturbation. By this and similar models, some efforts
have been made to understand the evolution of the wave
function |� (t)〉 in the spin-coherent representation, and to
analyze entanglement [4], chaos in kicked spin systems [20],
and bifurcation [21].

The Hamiltonian H, in the nuclear magnetic resonance
(NMR) scenario, has a direct physical interpretation and in the
rotating frame corresponds to the Hamiltonian of a quadrupolar
nuclear system acted on by a radio-frequency pulse along
the negative x direction [22,23]. In this paper, we explore
this equivalence of interpretation and study the feasibility
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of observing a signature of bifurcation in quadrupolar spin
systems, while also assessing the use of the JJ model in nuclear
systems.

Nuclear spin systems with I > 1/2 are described by the
Zeeman, the quadrupolar, the radio-frequency terms, and weak
interactions with, among other things, nuclei, electrons, and
field fluctuations, which we refer to as an environment term
denoted by Henv [23].

The Zeeman term is the interaction between the spin
nuclear magnetic moment −h̄γ I = −h̄γ (Ix,Iy,Iz) and a strong
constant magnetic field B0 = (0,0,B0) aligned in the z direc-
tion. The quadrupolar term is due to the interaction of the
nuclear quadrupole moment (Q) with an electric field gradient
(EFG) (Vαβ = ∂2V/∂α∂β, with α,β = x,y,z). This kind of
interaction is a characteristic of nuclear spins with I > 1/2
where the EFG plays an important role. The EFG depends on
the distribution of electrical charges surrounding the nucleus,
which produces an electrostatic potential [V (r)]. There are
two configurations of EFG, the first one a symmetric case
which means that any axial orientation is equivalent (I = 1/2),
and the other one, an asymmetric case which means that
there is an axial symmetry which prevails when compared
with other ones. Particularly, the present study considers an
oriented system with axial symmetry; the following inequality
is satisfied |Vzz| � |Vxx | ≈ ∣∣Vyy

∣∣, which allows us to express
the term as eQVzz

4I (2I−1) (3I2
z − I2). The radio-frequency (RF)

term represents the interaction between the spin nuclear
magnetic moment and an external time-dependent magnetic
field, which is perpendicular to the strong constant magnetic
field B0; this term is written as +h̄γB1[Ix cos (ωRF t + φ) +
Iy sin (ωRF t + φ)], where the phase φ defines its direction on
the xy plane. In a rotating frame, the NMR Hamiltonian is
given by

HNMR = −h̄(ωL − ωRF )Iz + h̄
ωQ

6

(
3I2

z − I2
)

+ h̄ω1(Ix cos φ + Iy sin φ) + H′
env, (1)

where ωQ = 3eQVzz

2I (2I−1)h̄ represents the quadrupolar coupling,
ω1 = γB1 is the RF strength, and ωL = γB0 the Larmor
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frequency of a nuclear species. The Larmor frequency and
quadrupolar coupling satisfy the inequality |ωL| � |ωQ|.

To match the Hamiltonian H and the NMR Hamiltonian
HNMR, let us choose ωRF = ωL and φ = π , such that, without
loss of generality, we may drop the constant term − h̄ωQ

6 I2 and
the environment term H′

env. Now the NMR Hamiltonian takes
the form HNMR = h̄ωQ

2 I2
z − h̄ω1Ix . Next, by substituting the

dimensionless parameter � = IωQ

ω1
the NMR Hamiltonian can

be rewritten:

H′
NMR = HNMR

h̄ω1
= �

2I
I2
z − Ix . (2)

We then use this Hamiltonian to look into the classical
bifurcation mechanism in nuclear spin systems. The corre-
sponding semiclassical Hamiltonian is generated by mapping
the quantum mechanical operators onto the complex numbers,
following the usual procedure reported in [3,21]. This amounts
to letting Iz → z and Ix → √

1 − z2 cos ζ , giving

H′ = �

2
z2 −

√
1 − z2 cos ζ , (3)

where, for our purposes, z represents the temporal mean
z magnetization and ζ a relative phase. In classical mechanics,
Eq. (3) describes the motion of a particle in a phase potential
defined by V (ζ ) = −√

1 − z2 cos ζ , where V is shaped by
cos ζ and weighted by

√
1 − z2 as sketched in Fig. 1(a). � is a

P0P0
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FIG. 1. (Color online) Sketch of the spin scenario of the bifur-
cation process discussed in this paper. (a) Initially the spin state
precesses around fixed point P0, such that after the dynamics the
spin system goes to one of the points P± depending on the value of
�. (b) Trajectories drawn on the spherical phase space before
and after the bifurcation process that depends on the value of �.
Left frame represents trajectories at a linear regime which happens
at 0 � � � 1 and right frame represents trajectories at nonlinear
regime corresponding to 1 � �. The typical supercritical pitchfork
bifurcation scenario occurs; i.e., a stable fixed point bifurcates into
two new stable fixed points while the original becomes unstable.

tunable parameter that determines the dynamics of a particle in
a conserved energy configuration. From Hamilton’s equations
of motion ż = −∂H′/∂ζ and ζ̇ = ∂H′/∂z we have

ż = −
√

1 − z2 sin ζ , (4)

ζ̇ = �z + z√
1 − z2

cos ζ , (5)

such that z and ζ are canonically conjugate variables. The fixed
points of the Hamiltonian H′, denoted by P = (z0,ζ0), are
determined by the condition ż = ζ̇ = 0. These are ζ0 = ±nπ

with n = 0,1,2, . . . and z0 = {0,±
√

1 − 1/�2}. Note that
there are many interesting sets of fixed points to analyze. The
trivial one, P0 = (0,0), which corresponds to a stable fixed
point, is located on the positive X axis of the coordinate frame
[see Fig. 1(b)]. Physically, in the NMR scenario, it corresponds
to an extreme situation of null quadrupolar coupling, or to a
linear regime (� < 1). Still in the linear regime, Pπ = (0,π )
matches another stable fixed point, located on the negative
X axis of the coordinate frame [see Fig. 1(b)]. The nontrivial
fixed points are P± = (±

√
1 − 1/�2,π ); here, for � > 1,

it can be seen that the stable fixed point Pπ undergoes a
supercritical Pitchfork bifurcation, becoming unstable, and it
splits up into two others, the P± stable fixed points. These are
divided by a separatrix in Fig. 1(b). In the NMR interpretation,
this picture corresponds to the situation of a quadrupolar
coupling stronger than the RF pulse intensity, or to a nonlinear
regime. Our efforts were focused on finding out how this
theoretical analysis could be reached by using nuclear spin
systems.

The spin scenario and the experimental implementations
were performed in a lyotropic liquid crystal sample prepared
with 42.5 wt % cesium–pentadecafluoroctanoate (Cs-PFO)
and 57.5 wt % deuterated water (D2O) [24]. Cesium nuclei
(133Cs) are quadrupolar spin systems with I = 7/2 such that
the dimension of the Hilbert space is d = 2I + 1 = 8. The
experiment was carried out in a Varian 500 MHz premium
shielded (11.7 T) spectrometer at room temperature (25 ◦C).
A liquid NMR 5 mm probe was used in this experiment. The
Larmor frequency and quadrupolar coupling are 65.598 MHz
and 7.7 kHz, respectively. The π -pulse time was calibrated
as 25 μs. The spin-lattice and spin-spin relaxation time, for
cesium nuclei, is T1 ≈ 320 ms and T2 ≈ 4 ms, respectively.
The recycle delay time is d1 = 1.8 s.

To describe a quantum state in NMR implementations, we
use the density operator formalism representing the thermal
equilibrium state, whose populations satisfy the Boltzman-
Gibbs distribution. Theoretically, the density operator is
represented by ρ = 1

Z exp [−βH0], where H0 = −h̄ωLIz is
the secular contribution of the NMR Hamiltonian and β =
(kBT )−1, kB being the Boltzmann constant and T the room
temperature. If the polarization strength is ε = βωLh̄/Z ,
where Z is the partition function, and this factor has a value
∼10−5 then the density operator could be expanded to a
first-order approximation as ρ = 1

Z 1 + ερ0, in which ρ0 = Iz

is called the deviation density matrix.
To initialize the quantum state, we transform ρ0 to prepare a

pseudo–nuclear spin coherent state (pseudo–NSCS) using the
protocol of Refs. [25,26]. This is a coherent state implemented
experimentally in a nuclear spin system. The pseudo-NSCS is

053605-2



CLASSICAL BIFURCATION IN A QUADRUPOLAR NMR SYSTEM PHYSICAL REVIEW A 87, 053605 (2013)

denoted as |ζ (θ,ϕ)〉, so the density operator is ρ = ( 1
8 − ε)1 +

ε�ρ, such that �ρ ≡ |ζ (θ,ϕ)〉 〈ζ (θ,ϕ)|, for any 0 � θ � π

and 0 � ϕ � 2π .
For our purpose, the angular parameters (polar θ and

azimuthal ϕ) of a pseudo-NSCS were chosen in such a way
that the phenomenon of bifurcation appeared as sharply as
possible and therefore these parameters were fixed at a pair of
initial conditions |ζ+ (π/4,π )〉 and |ζ− (3π/4,π )〉, where the
ζ positive (ζ negative) represents an initial condition at the
north (south) hemisphere of a spherical phase space.

To sketch the classical bifurcation, we must monitor the
quantum dynamics of an initial quantum state of the spin
system under the effect of the Hamiltonian (2) at different
τ values and � values to establish a temporal mean value of
an observable of the spin system. In the NMR scenario, the
observable of interest is the quantum dynamics of Iz under
different (�,τ ) values and the temporal mean z magnetization
is the main physical quantity to observe, denoted by z (�) =∑

τ 〈Iz (�,τ )〉. So, we use a control parameter �, such that
ωQ is maintained at a constant strength and ω1 is varied from
highest to lowest values. The different strengths of ω1 are
quantified by the calibration of π pulses at various elapsed
times tπ = 25, 30, 40, 50, 60, 100 μs or for the parameter
� = 0.67, 0.81, 1.08, 1.35, 1.62, 2.70. Once we have chosen
the strength of ω1, the implemented pseudo-NSCS |ζ± (θ,ϕ)〉
is transformed by a RF pulse that depends on the Hamiltonian
in Eq. (2) at various times τ = k�τ and k = 0, . . . ,44 with
�τ = 5 μs. At each step, the pseudo-NSCS is tomographed
by the quantum state tomography (QST) procedure [26,27].
QST enables us to reconstruct the deviation density matrix
(�ρ) corresponding to the last stage of the system evolution. It
comprises essentially the application of a set of rotations on the
different spins that allows us to reconstruct the density matrix
from the measured NMR spectra. Using this experimental
tool, it is possible to obtain information about any desired
observable of the spin system at different τ values. Next,
the average value of the z component of the spin angular
momentum, 〈Iz (�,τ )〉 = Tr {�ρ (�,τ ) Iz}, is computed.

In the top (bottom) of Fig. 2 we show the experimental
results for z magnetization and its distribution for initial
conditions on the north (south) hemisphere of the spherical
phase space under the linear (nonlinear) regime. On the left of
Fig. 2(a) are shown experimental (dots) and numerical (solid
line) results for 〈Iz (�,τ )〉, for the initial condition on the
north hemisphere under the linear regime, but not too far
from the nonlinear regime, such that � ≈ 0.67. The beats
and fast decay are a typical signature of an intermediate
regime. Notice that we are using a numerical procedure to
verify the fidelity of our experimental results. To explain this
procedure, let us consider the first experimental quantum state
�ρ = |ζ+〉 〈ζ+| at τ = 0 gotten by the QST which corresponds
at north hemisphere under the spherical phase space. Next,
we transform it by an operator that depends on H′

NMR [see
Eq. (2)] at different τ values, such as it happens at quasi-
continuous τ values. The first magnetization value 〈Iz (0)〉
is denoted by a blue circle in Fig. 2(a) and the continuous
line represent z magnetization computed from the evolution
of �ρ(�,τ ) = exp[−ih̄ω1H′

NMRτ ] �ρ exp[ih̄ω1H′
NMRτ ]. We

stress the fact that we are not using any method of fitting
and/or interpolation to predict the experimental data; we
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FIG. 2. (Color online) Experimental results (symbols) and nu-
merical results (continuous lines) for the dynamics of mean av-
erage values of 〈Iz (�,τ )〉-magnetization (left) and its 〈Iz (�,τ )〉-
magnetization distribution (right). Each value was calculated from
the tomographed deviation density matrix at 45 different values of
τ . Results for (a) initial condition on north hemisphere and a linear
regime, (b) initial condition on south hemisphere and a nonlinear
regime.

only are predicting the behavior of magnetization through
the natural quantum evolution of the spin system. On the
right of Fig. 2(a) we display a histogram of the experimental
values of 〈Iz (τ )〉 and the Gaussian distribution Gz (〈Iz〉) =
G0 exp[− (〈Iz〉 − z)2 /σ 2

z ] has been calculated and drawn.
The parameter z (0.67), referred to as the temporal mean
z magnetization, corresponds to the mean value of 〈Iz(�,τ )〉
over 45 different elapsed time points. Similarly, the parameter
σz is the well-known standard deviation. The main information
extracted from Gz is the z value, which depends on �, and this
parameter indicates the stage of bifurcation.

On the left of Fig. 2(b) we show experimental (squares) and
numerical (solid line) results for 〈Iz (�,τ )〉 in the nonlinear
regime, satisfying � = 2.7 > 1. The red square represents
the initial z magnetization computed from the initial quantum
state �ρ = |ζ−〉 〈ζ−| at τ = 0 read out by the QST which
corresponds at south hemisphere under the spherical phase
space, and the continuous line represent prediction using
numerical procedures, as explained above. The smooth beats
are almost completely attenuated and the decay is slower
than in the linear regime. This happens because ω1 is weaker
than ωQ. On the right of Fig. 2(b), there is a histogram for
experimental values of 〈Iz (τ )〉 and a Gaussian distribution
Gz (〈Iz〉).

In Fig. 3 we present the experimental results (symbols) and
theoretical prediction (solid lines) of the temporal mean z mag-
netization for initial conditions on the north hemisphere (dots)
and south hemisphere (squares). The cyan circle (magenta
square) indicates that the data were calculated from experi-
mental results explained in Fig. 2(a) [Fig. 2(b)]. We observe
that the experimental results match the theoretical prediction
of bifurcation. To explain this phenomenon in a nuclear spin
system, we need to remember that the eigenstates of the secular
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FIG. 3. (Color online) Experimental results (symbols) of bifur-
cation phenomena in spin systems which are described by the JJ
model. Two initial conditions are denoted by dashed lines, which
correspond to |ζ+〉 and |ζ−〉 pseudo-NSCS. The spin system can
be driven under different regimes: a linear (0 < � < 1) and a
nonlinear (1 < �). Theoretical predictions (solid lines) are sketched
by using ±√

1 − 1/�, whose positive (negative) sign corresponds to
the north (south) hemisphere of a spherical phase space. The cyan
circle (magenta square) indicates that the data were calculated from
experimental results explained in Fig. 2(a) [Fig. 2(b)]. The error bars
are bounded at 10% of the maximum value of the time-averaged
z magnetization, which is |±1|.

Hamiltonian are |m〉, with m = −I,−I + 1, . . . ,I − 1,I , and
the operator that depends on Hamiltonian (2) transforms
each eigenstate. In the linear regime, the RF term imposes
the dynamics of spins, maintaining the spin system under
a superposition of the |m〉 eigenstates, leading the quantum
state from |ζ+〉 to |ζ−〉 and vice versa. This is analogous to
what happens in the tunneling phenomenon of a symmetrical
trap of a two-mode BEC [1–5,9,10,12–15] or what happens
in the description of the JJ model in superconductivity, called
the plasma oscillation regime [2]. On the other hand, in the
nonlinear regime, the nonlinear term decides the behavior of
the system. In this case, from the basic principles of quantum
mechanics, we know that I2

z |±m〉 = h̄m2 |±m〉; for |+m〉 and
|−m〉 there is a degeneracy which drives the spin system to
the bifurcation phenomenon, because the initial condition for
the north (south) hemisphere is retained by the operator that
depends on Hamiltonian (2) and the spin system is induced to
precess aligned parallel (antiparallel) to an effective magnetic
field which is aligned along the z axis of a reference frame.
Similarly, in a two-mode BEC, this regime corresponds to the
self-trapping regime [2].

On the other hand, the analogous small number of particles
on a quadrupolar NMR system satisfies limits established by
studies on two mode BEC systems. In fact, the inequality
established by Eq. (13) of Ref. [28] provides us an insight, upon
typical values for ultracold Bose systems, such that N � 200,
where N is the number of particles. In the case of N = 2I for
any quadrupolar nuclei system, this inequality is satisfied.

Our data show that even for I = 7/2, which does not
correspond to a very large N , the quadrupolar system provides
a good picture of the behavior of the two-mode Hamiltonian
in the classical regime described by Eq. (3). Here, we stress
again that these data are obtained by applying the evolution
operator based on the full quantum Hamiltonian given by
Eq. (2). What happens is that in our case, the semiclassical
approximation is guaranteed by the depletion condition of the
Bogoliubov formalism [30] which means that for the total
number of particles of the system (N ), the ground state is
occupied by N0 particles such that N0 ∼ N . In other words,
if it is possible to leave the quantum state of the particles
system onto a coherent state [28] or to establish an order
parameter [11] then the semiclassical approximation will be
satisfied. This condition is achieved in a quadrupolar system
when the pseudo-NSCS [25] is implemented; in that case the
collective behavior of the analogous 2I particles is attached to
the ground state.

It is worthy of notice here that in a quantum simulation
scenario, in the case of quantum information processing, an
invertible map is needed to transform from the Hamiltonian of
the quantum simulator onto the Hamiltonian of the physical
system and vice versa [29]. In the present study we are not
using that kind of mapping; hence we are not dealing with
that simulation scenario. Our results express essentially the
analogy between orbital angular momentum operators (J’s)
and nuclear spin angular momentum operators (I’s) at the level
of their Lie algebra properties.

Finally, we draw our conclusions: We performed a classical
bifurcation in a nuclear spin system that is described and
interpreted by the JJ model. The spin scenario coincides
with other experimental schemes commonly named as the
symmetric double-well trap of the two-mode BEC, with the
possibility of extending to the asymmetric case. We take
advantage of the main physical property of a lyotropic liquid
crystal sample, which is the collective order in the presence
of a magnetic field. This inspired us to explore the nonlinear
regime to study squeezing processes, which are currently being
developed in our laboratory.
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