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Magnetic phases of mass- and population-imbalanced ultracold fermionic mixtures in optical lattices
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We study magnetic phases of two-component mixtures of ultracold fermions with repulsive interactions in
optical lattices in the presence of both hopping and population imbalance by means of dynamical mean-field theory
(DMFT). It is shown that these mixtures can have easy-axis antiferromagnetic, ferrimagnetic, charge-density
wave, and canted-antiferromagnetic order or be unordered depending on parameters of the system. We study
the resulting phase diagram in detail and investigate the stability of the different phases with respect to thermal
fluctuations. We also perform a quantitative analysis for a gas confined in a harmonic trap, both within the local
density approximation and using a full real-space generalization of DMFT.
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I. INTRODUCTION

At the present moment, ultracold atoms in optical lattices
can be considered as one of the most powerful tools for testing
Hubbard-type models [1]. In these systems parameters like
the hopping amplitude, interaction strength, number and type
of atomic species, lattice geometry, and dimensionality can
be tuned in a wide range, which makes it experimentally
possible to verify predictions of theoretical models in different
regimes. Despite incredible progress in the field of ultracold
atoms, and, in particular, observation of short-range magnetic
correlations in a recent experiment [2], probing quantum
magnetic phenomena still remains a challenging goal for
experimentalists in this field, because the range of entropies
(and temperatures) that are currently accessible is still several
times higher than the upper limit for observing magnetic
long-range order [3]. Once this important problem has been
solved, it is believed that ultracold atomic systems can give
significant insight into high-temperature superconductivity [4]
and will be highly promising for quantum simulations [5] in
general.

In this paper, we focus on a generalization of the Fermi-
Hubbard model by considering two-component mixtures with
repulsive interactions, which have an imbalance both in
the hopping amplitude (corresponding to different effective
masses) and in the population of the two components. In
ultracold atomic mixtures, this generalization was theoretically
studied for the case of attractive interactions in the context
of competing superfluid and density-wave ground states
[6], Fulde-Ferrell-Larkin-Ovchinnikov superfluidity, and other
long-range ordered phases [7,8]. For the case of repulsive
interactions, it was investigated in the context of itinerant
ferromagnetism (Stoner instability) [9,10]. Antiferromagnetic
phases in ultracold imbalanced Fermi-Fermi mixtures with
moderately strong interactions were studied only separately
in the case of population [11–14] or mass imbalance [15–17].
Evidently, so far the magnetic ordering phenomena in the case,
where both types of imbalance are present, have not been
considered. Our paper aims at bridging this gap.

The paper is organized as follows. In Sec. II we introduce
the model and derive an effective Hamiltonian, which allows
us to interpret our numerical results. In Sec. III we briefly
outline the main steps in the generalization of our numerical

approach, dynamical mean-field theory (DMFT) [18], that are
important for a proper account of magnetic ordering effects
in the case of mass and population imbalance. Section IV is
devoted to our results and their discussion.

II. MODEL

We consider a Fermi-Hubbard Hamiltonian of the following
type:

Ĥ = −
∑
〈ij〉

∑
σ

tσ (ĉ†iσ ĉjσ + H.c.) + U
∑

i

n̂i↑n̂i↓

+
∑

i

∑
σ

(Vi − μσ )n̂iσ , (1)

where tσ is the hopping amplitude of fermionic species σ =
{↑ ,↓}, ĉ

†
iσ (ĉiσ ) is the corresponding creation (annihilation)

operator of species σ at the lattice site i, the notation 〈ij 〉
indicates a summation over nearest-neighbor sites, and U is
the magnitude of the on-site repulsive (U > 0) interaction of
the two different species with corresponding densities n̂i↑
and n̂i↓ (n̂iσ = ĉ

†
iσ ĉiσ ). In the last term, Vi is the external

(e.g., harmonic) potential at lattice site i, and μσ is the
chemical potential of species σ . Note that we have taken the
harmonic potential to be independent of the atomic species.
The Hamiltonian (1) implies a single-band approximation; in
other words, we consider the case of a sufficiently strong lattice
potential, Vlat � 5Er .

It should be noted that within this model, the so-called mass
imbalance depends only on the hopping amplitudes tσ , which
for sufficiently deep lattices are given by [19]

tσ ≈ 4√
π

Erσ v3/4
σ exp(−2

√
vσ ), (2)

where vσ = V
(σ )

lat /Erσ , Erσ = h̄2k2/2mσ is the recoil energy,
k is the wave number determined by the wavelength of the laser
forming the optical lattice, and mσ is the mass of species σ . The
amplitude V

(σ )
lat of the lattice potential can be different for the

two components V
(↑)

lat �= V
(↓)

lat , which results in the possibility
to realize an imbalance in the hopping amplitude even for
different hyperfine states of the same atom (m↑ = m↓) [20]. As
for the population imbalance, its magnitude depends not only
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on the chemical potentials μσ , but also on other parameters,
including the mass imbalance �t = (t↑ − t↓)/(t↑ + t↓). In or-
der to characterize the population imbalance quantitatively, we
introduce the polarization P = (N↑ − N↓)/(N↑ + N↓), where
Nσ is the total number of particles of type σ in the system.

It is important to mention that the introduced mass-
imbalance parameter �t can be experimentally tuned in a
wide range. For example, according to Ref. [7], for a 6Li-40K
mixture it can be effectively tuned from 0.3 to 0.85 by varying
the intensity (in the range of 1 W) and detuning (in the range
of 2 nm from the magic wavelength) of the laser beams
forming the optical lattice. Other systems where hopping
imbalance can be realized and tuned in different ranges include
the 171Yb-173Yb mixture [21], spin-dependent optical lattices
for homonuclear mixtures and mixtures of alkali-metal and
alkaline-earth fermionic atoms. By approaching the limit of
large imbalance, �t → 1, these systems even allow for studies
of the Falicov-Kimball model [22] that is used to model certain
solid-state materials.

By using the Schrieffer-Wolff transformation in the limit
tσ 
 U near half-filling, ni↑ + ni↓ ≈ 1, we can map the
Hamiltonian (1) to an effective spin model [23,24]. For
the system under study, this transformation results in the
anisotropic Heisenberg (XXZ) model,

Ĥeff = J‖
∑
〈ij〉

ŜZ
i ŜZ

j + J⊥
∑
〈ij〉

(
ŜX

i ŜX
j + ŜY

i ŜY
j

)

−�μ
∑

i

ŜZ
i , (3)

with coupling constants

J‖ = 2
(
t2
↑ + t2

↓
)
/U, J⊥ = 4t↑t↓/U, (4)

and a chemical potential difference �μ = μ↑ − μ↓ that plays
the role of an external magnetic field. ŜR

i (R = {X,Y,Z}) are
usual spin- 1

2 operators on the lattice site i, ŜR
i = 1

2 ĉ
†
iασR

αβ ĉiβ ,
where σR are the Pauli matrices. It should be noted that here
and below, all “magnetic” characteristics refer to a pseudospin
made of two different species; thus, the anisotropy in the spin
model is not related to a spatial direction or quantization axis
in the original lattice.

The anisotropy in the Hamiltonian (3) originates from the
imbalance in hopping amplitudes. This reduces the initial
SU(2) rotational spin symmetry of the balanced mixture to the
lower Z2 × U(1) spin symmetry, where the symmetry group
Z2 corresponds to reflections about the XY plane [Ising type;
first term in Eq. (3)] and U(1) corresponds to spin rotations in
the XY plane [second term in Eq. (3)]. The symmetry of the
model is further reduced to U(1) if one has a nonzero chemical
potential difference �μ.

According to Eqs. (4), we note that the coupling J‖ is
always larger than or equal to J⊥. Hence, from Eq. (3) one
concludes that at �μ = 0 and �t �= 0 the ground state of
the system is an easy-axis antiferromagnet (Ising-type; Z-AF).
As was pointed out in Ref. [16], the excitation spectrum is
gapped in this case and the Z-AF phase is also permitted
in low dimensions (d < 3; as the Mermin-Wagner theorem
applies only to continuous symmetries). Evidently, this also
holds for a nonzero but small �μ < (J‖ − J⊥), when the
system’s ground state corresponds to a ferrimagnet (Z-AF

with an additional net magnetization in the Z direction). In
the opposite case, �μ �= 0 and �t = 0, the ground state is
a canted antiferromagnet (easy-plane antiferromagnet with a
net magnetization in Z direction), which obeys the Mermin-
Wagner theorem and was studied in Refs. [11–14]. Therefore,
in the region of intermediate imbalances, �μ ∼ (J‖ − J⊥),
one should expect a phase transition between these two
different types of magnetic ordering.

The effective Hamiltonian (3) gives a good understanding of
the types of ordered phases arising in the system under study.
However, in order to have a more complete picture of the
structure and quantitative characteristics of the magnetically
ordered phases arising in optical lattices at nonzero temper-
ature and governed by the Hamiltonian (1), it is necessary
to use nonperturbative numerical approaches. In this article,
we apply DMFT, which is well suited for the description of
long-range ordered phases in high-dimensional systems and is
able to fully capture effects of inhomogeneity and finite size
that are usually present in optical lattices.

III. METHOD

Dynamical mean-field theory [18] is an approach that
makes it possible to bridge two limits on the lattice: the nearly
free fermion gas and the strongly interacting (atomic) limit.
This method maps the lattice problem (which is, in general,
intractable) to an impurity problem (which is chosen to be
numerically solvable), thus substituting the full action with
an effective one. Despite the fact that it is a nonperturbative
approach, it is still an approximate method, since it treats the
lattice self-energy as a local (which for homogeneous systems
means: momentum-independent) quantity, thus neglecting
nonlocal quantum fluctuations. DMFT becomes exact in the
limit of infinite dimensions, d = ∞ (i.e., large coordination
number z � 1). Although it is not an exact method in the
case of square and cubic lattice geometries (z = 4 and z = 6,
respectively), results obtained by DMFT can be used as a ref-
erence point both for experiments and for more sophisticated
methods, such as quantum Monte Carlo simulations, which
could be computationally rather demanding due to the presence
of a sign problem in the case under study (for recent results,
possibilities, and limitations, see [25] and references therein).

A. Impurity model and solver

Most commonly, for solving the auxiliary impurity problem
in DMFT, the lattice model (1) is mapped onto an Anderson
impurity model (AIM). The model Hamiltonian contains the
full local physics of the lattice problem, but the nonlocal terms
are represented by noninteracting bath degrees of freedom. In
the case under study this Hamiltonian can be written in the
following form:

ĤAIM =
ns∑

l=2

∑
σ

εlσ â
†
lσ âlσ +

ns∑
l=2

∑
σ

Vlσ (â†
lσ d̂σ + H.c.)

+
ns∑

l=2

∑
σ

�lâ
†
lσ âlσ̄ +

ns∑
l=2

∑
σ

Wlσ (â†
lσ d̂σ̄ + H.c.)

+ Un̂d↑n̂d↓ −
∑

σ

μσ n̂dσ − μ
(i)
↑↓

∑
σ

d̂†
σ d̂σ̄ , (5)

053602-2



MAGNETIC PHASES OF MASS- AND POPULATION- . . . PHYSICAL REVIEW A 87, 053602 (2013)

where σ and its opposite σ̄ represent the spin indices, σ =
{↑, ↓}, and the index l = {2, . . . ,ns} labels the number of the
bath’s orbital in AIM with ns being the cut-off number. In our
calculations we use the exact diagonalization (ED) solver [26]
with ns = 5, such that there are four orbitals. The operators â

†
lσ

(âlσ ) and d̂†
σ (d̂σ ) are the creation (annihilation) operators of

electrons on the bath’s orbital l and the impurity, respectively;
the quantities εlσ , Vlσ , �l , and Wlσ are the so-called Anderson
parameters that set the amplitude of different processes in
this model. In particular, the two terms in the first line of
Eq. (5) correspond to the energies of electrons in the bath
and the hybridization between the bath and the impurity,
respectively. The second line represents the anomalous terms
that are important for obtaining quantities corresponding to
magnetic ordering in the XY plane. The terms in the last line
have a direct correspondence to the Hamiltonian (1), except the
last (auxiliary) term, which is used in calculations as a small
initial perturbation to break the remaining U (1) symmetry of
the spin model (3).

Using the standard technique (see, e.g., Ref. [27]) of
eliminating bath degrees of freedom in the effective action
corresponding to the Hamiltonian (5), we find analytical
expressions for the Weiss Green’s functions, which rep-
resent effective dynamical fields acting on the impurity
site:

G−1
σ (iωn) = iωn + μσ −

ns∑
l=2

K−1
l

[
V 2

lσ (iωn − εlσ̄ )

+ 2Vlσ Wlσ�l + W 2
lσ (iωn − εlσ )

]
,

(6)

G−1
↑↓ (iωn) = μ

(i)
↑↓ −

ns∑
l=2

K−1
l [Vl↑Wl↓(iωn − εl↓)

+ (Vl↑Vl↓ + Wl↑Wl↓)�l + Vl↓Wl↑(iωn − εl↑)],

where Kl = (iωn − εl↑)(iωn − εl↓) − �2
l , ωn = π (2n + 1)/β

is the Matsubara frequency and β is the inverse temperature,
β = 1/T (we use units such that kB = 1).

Within the ED solver, the basis states of the finite-
dimensional Hilbert space are given by

|n↑
1 ,n

↑
2 , . . . ,n↑

ns
〉|n↓

1 ,n
↓
2 , . . . ,n↓

ns
〉, (7)

with nσ
p = 0,1 and

∑
p nσ

p ≡ nσ . Note that the anomalous
terms in Eq. (5) mix the sectors n↑ and n↓ (i.e., the
magnetization sz is not conserved), which therefore cannot
be diagonalized independently. Although the total charge n =
n↑ + n↓ is still conserved, this leads to a significant increase
of the numerical effort in diagonalization and subsequent
calculations of the corresponding Green’s functions. At finite
temperature, these are calculated from the full set of eigenstates
|i〉 (with eigenvalues Ei) according to

Gσ1σ2 (iωn) = 1

Z
∑
i,j

〈i|d̂σ1 |j 〉〈j |d̂†
σ2

|i〉
Ei − Ej − iωn

(e−βEi + e−βEj ), (8)

Fσ1σ2 (iωn) = 1

Z
∑
i,j

〈i|d̂σ1 d̂
†
σ̄1

d̂σ̄1 |j 〉〈j |d̂†
σ2

|i〉
Ei − Ej − iωn

(e−βEi + e−βEj ),

(9)

where Z = ∑
i e

−βEi is the partition function. Next, following
Ref. [28], the self-energies can be defined as

	σσ = U
FσσGσ̄ σ̄ − Fσσ̄Gσσ̄

GσσGσ̄ σ̄ − G2
σ σ̄

, (10)

	σσ̄ = U
Fσσ̄Gσσ − FσσGσσ̄

GσσGσ̄ σ̄ − G2
σ σ̄

. (11)

In practice, we solve the impurity problem by obtaining
the quantities (8)–(11) for given parameters U , μσ , and β

from the original lattice problem (1) and for a particular set
of auxiliary Anderson parameters {εlσ ,Vlσ ,Wlσ ,�l}, which
is updated in each DMFT iteration. The self-energies (10)
and (11) then allow us to calculate the Green’s functions
corresponding to the initial lattice problem. Below we consider
two main approaches for evaluating these Green’s functions: (i)
two-sublattice DMFT, which is important for obtaining phase
diagrams for homogeneous (infinite) systems with magnetic
order and can also be used in combination with a local-density
approximation (LDA) to analyze trapped gases, and (ii) real-
space DMFT, which describes finite inhomogeneous (trapped)
systems without further approximations.

B. Two-sublattice DMFT

Bipartite structures, such as states with antiferromagnetic
order, can be described in an appropriate way by introducing
two sublattices. Within the DMFT approach one then needs to
solve the impurity problem twice on two adjacent sites of the
original lattice. It is important to note that here, in contrast to
the case of balanced mixtures, the observables corresponding
to different sublattices (denoted below by s = 1,2) cannot be
directly associated with observables corresponding to different
species (denoted by σ = ↑, ↓). Hence, we define the lattice
Green’s functions in the following (generalized) way:

G(s)
σ1σ2

(iωn) =
∫ z

−z

dε D(ε)[A−1(ε)](s)
σ1σ2

, (12)

with

A =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
↑↑ ζ

(1)
↓↑ −t↑ε 0

ζ
(1)
↑↓ ζ

(1)
↓↓ 0 −t↓ε

−t↑ε 0 ζ
(2)
↑↑ ζ

(2)
↓↑

0 −t↓ε ζ
(2)
↑↓ ζ

(2)
↓↓

⎞
⎟⎟⎟⎟⎠ (13)

and

ζ (s)
σσ = iωn + μσ − 	(s)

σσ (iωn), (14)

ζ
(s)
σ σ̄ = μ

(s)
σ σ̄ − 	

(s)
σ σ̄ (iωn), (15)

where z denotes the lattice coordination number (z = 4 and
z = 6 for square and cubic lattices, respectively), D(ε) is
the normalized density of states,

∫ z

−z
dε D(ε) = 1, the explicit

form of which is known for a particular lattice geometry. The
local self-energies appearing in Eqs. (14) and (15) are taken
from the impurity solver [see Eqs. (10) and (11)].

To complete the self-consistency equations of the DMFT
scheme, we define the Weiss Green’s functions from the Dyson
equation,

[G(s)(iωn)]−1
σ1σ2

= [G(s)(iωn)]−1
σ1σ2

+ 	(s)
σ1σ2

(iωn), (16)
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where G(s) is a 2 × 2 block of the matrix (12), the inverse of
which is taken separately for different sublattices s = 1,2. By
using the obtained Weiss Green’s functions in the minimization
procedure [according to Eqs. (6) and applying a conjugate
gradient method], we find a new set of Anderson parameters,
which is then used in a subsequent DMFT iteration. These
iterations are performed until final convergence, i.e., until the
initial and final Weiss Green’s functions coincide.

When an inhomogeneous system is considered, the two-
sublattice DMFT introduced above can be used in combination
with LDA. The main advantage of LDA + DMFT is that this
approach allows to consider large systems in three dimensions,
as the numerical effort scales approximately linearly with
the system size for axial-symmetric trapping potentials. The
drawback of this approach is that it fails to reproduce the
detailed structure close to the boundaries of the ordered
phases; i.e., it does not account for a possible proximity
effect. The mentioned effect can be accounted for within
another generalization: the real-space DMFT, which was first
introduced in Refs. [29,30].

C. Real-space DMFT

The main idea of real-space DMFT (R-DMFT) is not
to divide the lattice problem into several sublattices, but to
solve the impurity problem on each lattice site corresponding
to the original finite-size system directly. Then, after we
obtain the self-energies 	(i)

σ1σ2
(iωn) [see Eqs. (10) and (11)]

for each lattice site i = {1, . . . ,N}, we collect them in the
real-space matrix consisting of inverse local Green’s functions
and hopping elements,

G−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ
(1)
↑↑

ζ
(1)
↑↓ ζ

(1)
↓↓

t↑ 0 ζ
(2)
↑↑

0 t↓ ζ
(2)
↑↓ ζ

(2)
↓↓

0 0 t↑ 0 ζ
(3)
↑↑

0 0 0 t↓ ζ
(3)
↑↓ ζ

(3)
↓↓

. . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

which is Hermitian and of size 2N × 2N . Here, the diagonal
matrix elements ζ (i)

σσ have the form

ζ (i)
σσ (iωn) = iωn + μσ − Vi − 	(i)

σσ (iωn), (18)

and the off-diagonal elements ζ
(i)
↑↓(iωn) are defined accordingly

to Eq. (15).
As in the two-sublattice case, we close the DMFT-loop with

the lattice Dyson equation,

[G(i)(iωn)]−1
σ1σ2

= [G(i)(iωn)]−1
σ1σ2

+ 	(i)
σ1σ2

(iωn), (19)

where G(i) is a 2 × 2 block of the real-space Green’s function
matrix G obtained by inversion of (17). Finally, one defines a
new set of Anderson parameters (as in the two-sublattice case)
for each lattice site.

In case of a large system size (when the total number
of lattice sites N � 103) the inversion of the real-space
matrix (17) becomes a time-consuming task in the numerical

calculations (in comparison with the impurity solver with a
moderate number of bath orbitals). Nevertheless, even with
this limited total number of lattice sites R-DMFT is capable
of a proper description of proximity-induced effects in lattice
systems with magnetic order.

IV. RESULTS

A. Homogeneous systems

1. Unpolarized mixtures with mass imbalance

First, let us discuss the effects originating only from the
mass imbalance in the system. We set μ↑ = μ↓, which results
in balanced populations (P = 0) in a homogeneous system.
According to Sec. II, we note that the magnetic ground state
of this system at half filling is a Z antiferromagnet (Z-AF) for
any nonzero value of the mass imbalance.

A first important effect that we want to emphasize is that,
according to mean-field analysis and existing Monte Carlo
calculations in the limiting cases �t = 0 and �t = 1 (see
Refs. [31,32], respectively), the critical (Néel) temperature
increases with the mass imbalance. Indeed, by taking the mean-
field definition for the Néel temperature in the Heisenberg
model [33], TN = 6JS(S + 1)/3, where S is the fermions’
spin, one obtains for constant U/t , where t = (t↑ + t↓)/2, and
J = J‖ [see Eq. (4)],

TN (�t) = (1 + �t2)TN (0). (20)

In order to prove that this effect also takes place for the
Hubbard model (1) at moderately strong interactions, U � zt ,
we numerically calculated Tc by means of two-sublattice
DMFT for a cubic lattice. The results are shown in Fig. 1(a),
which clearly confirms this behavior.

According to Ref. [16], this phenomenon can be explained
as caused by the suppression of quantum fluctuations (due
to the emergence of an energy gap for one of the Goldstone
modes) in systems with nonzero mass imbalance.

Another interesting effect concerns the entropy analysis for
homogeneous systems. As pointed out in Ref. [16], one can
approach much closer the ordered state for mass-imbalanced
mixtures with the same entropy values, compared to the
balanced system. In order to show this, we present in Fig. 1(b)
the dependence of the minimal temperature that can be reached
for constant entropy when minimizing over the interaction
strength U/J (thus assuming an adiabatic change of the inter-
action strength) as a function of the mass-imbalance parameter.
Note that for s = 0.7 this curve has a maximum. This is
because for small mass imbalance the lowest temperature
is reached for large U/t such that the system is in a Mott
insulator. In this regime the minimal temperature increases
when the mass-imbalance is made larger. For even larger mass
imbalance the lowest temperature is reached at small U/t such
that the system is in the Fermi liquid phase. In this phase the
lowest temperature decreases with the mass imbalance, giving
rise to the observed maximum.

It is important to note that it is now well established that
DMFT quantitatively overestimates the critical temperature
and critical entropy values in comparison with more exact
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FIG. 1. (Color online) (a) Critical temperature for Néel ordering
in the half-filled Hubbard model (μ↑,↓ = U/2) versus mass imbalance
at different values of the interaction strength in a cubic lattice,
obtained within DMFT. (b) Dependence of the minimal temperature
that can be reached for a fixed entropy s per particle by minimizing
over the interaction strength U/t , as a function of the mass-imbalance
parameter �t .

methods for balanced mixtures. According to our analysis,
this is also the case for systems with nonzero mass imbalance.
However, we should stress that the DMFT approach becomes
more precise in the limit of large mass imbalance not only
regarding the quantitative estimates of the critical temperature,
but also in the critical entropy, the value of which does not
depend on mass imbalance within the dynamical mean-field
description for U > zt , smf

c = ln 2 ≈ 0.69. This can be seen,
in particular, from the comparison with known results for the
Heisenberg model [34] (U � t , �t → 0), where sc ≈ 0.34,
and results for the Ising model [35] (U � t , �t → 1), where
sc ≈ 0.56. Hence, the discussed advantages of imbalanced
mixtures should be even more pronounced in studies based
on more exact methods.

It should be noted that in addition to the spin-density wave
in mass-imbalanced mixtures one also observes a weak charge-
density wave (CDW) modulation. This is directly related
to the presence of both Néel ordering and mass imbalance
in the system and corresponds to the fact that in the Z-AF state
the sites occupied by a heavier component have an enhanced
double occupancy due to hopping from adjacent sites, which
are occupied by the lighter component (in the same way, the
opposite mechanism works for the sites occupied by a lighter
component). The magnitude of this CDW, according to the
estimates presented in Ref. [36] for U > zt , is proportional
to �t(U/t)−2. Hence, the CDW is more pronounced at
moderate interaction strength, and it vanishes in the large U/t

limit.

2. Polarized mixtures with mass imbalance

The presence of both population and mass imbalance in
ultracold mixtures according to the effective Hamiltonian (3)
results in competition between different types of antiferro-
magnetic ordering. In Fig. 2 we present the phase diagram
showing the structure of the ordered phases in the intermediate
parameter region at half filling. [For moderate polarizations
P < 0.8 and U > zt , the condition of half filling is fulfilled
by taking the average chemical potential μ̄ = U/2, where
μ̄ ≡ (μ↑ + μ↓)/2, but for larger population imbalances it
must be adjusted by hand.] When the hopping amplitude
of both species is low in comparison with the interaction
strength, the system is in a paramagnetic Mott insulating state.
In the opposite case, the system is in the unordered Fermi
liquid phase, which is compressible and characterized by an
enhanced double occupancy of the lattice sites. In the central
region, two different phases appear: a canted antiferromagnet,
which is characterized by a staggered magnetization in the
X direction and a net magnetization in the Z direction, and
a ferrimagnet (labeled by Z-AF in this diagram), which has
both a staggered and a net magnetization in the Z direction.
Note that in the canted-AF phase, the occupation of each site
by heavy and light species is equal; thus, an additional CDW
does not appear in this case. In the region of intermediate
mass imbalance, a first-order phase transition (with a narrow
coexistence region) takes place between the phases with
different magnetic order.

We now discuss how the phase diagram presented in Fig. 2
changes when �μ (which defines the polarization P ) is
increased (see also Fig. 3). At �μ = 0 the whole region with
magnetic order corresponds to the Z-AF phase, except the
central part (namely, the diagonal line t↑ = t↓), where the AF
order can be set in any direction. When population imbalance
appears, the central phase characterized by canted order
develops. This phase increases in width (towards the regions
with large mass imbalance) when �μ becomes larger. As for
the ferrimagnetic region, it shrinks not only from the side of the

FIG. 2. (Color online) Phase diagram for a population- and mass-
imbalanced mixture at half filling and finite temperature, obtained
within DMFT for a cubic lattice. Dashed and solid lines correspond
to the first- and second-order phase transition lines, respectively. The
CDW parameter is defined in terms of the double occupancy Di =
〈n̂i↑n̂i↓〉, c = (Di − Di+1)/(Di + Di+1); m

stag
z,x = 〈ŜZ,X

i 〉 − 〈ŜZ,X
i+1 〉.
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FIG. 3. (Color online) Set of phase diagrams for a population- and
mass-imbalanced mixture at half filling, T = 0.4t , and different �μ,
obtained within DMFT for a cubic lattice, including easy-axis anti-
ferromagnetic (Z-AF), charge-density wave (CDW), ferrimagnetic,
canted AF, unordered Mott insulator (PM-I), and unordered Fermi
liquid (PM-FL) phases.

canted-AF phase, but also from the sides of unordered phases,
as the net magnetization in Z direction suppresses weak Z-AF
order in the region close to phase boundaries. Close to the
critical value of the chemical potentials difference (�μ = 1.0t

in Fig. 3) we observe an asymmetry in the vanishing of weak
ferrimagnetic phases in the phase diagram. We see that the
ferrimagnetic phase is slightly more stable, when one one
realizes a system with a majority of heavy particles. One
can understand this in a way that weak magnetic correlations
are less suppressed by excitations in this region due to a
lower kinetic energy of the remaining uncorrelated fraction
of the system. At large population imbalances (�μ � 1.3t

for T = 0.4t) the ferrimagnetic phase completely vanishes,
leaving only the region with canted-AF order in the central
part.

The antiferromagnetic order is therefore at a given tem-
perature most unstable against imbalances in the triple-point
region of a diagram of the type presented in Figs. 2 and 3,
where canted, ferrimagnetic, and paramagnetic phases coexist.
In Fig. 4 we show this effect for different temperatures of
the imbalanced mixtures. The critical polarization clearly
reveals the sensitivity of the magnetically ordered phases to
an increase of imbalance in the triple-point regions, where

FIG. 4. (Color online) Dependence of critical polarization de-
stroying AF order on the mass-imbalance parameter, obtained by
DMFT.

corresponding minima are observed. Also, the effect that
ferrimagnetic states are suppressed by population imbalance
can be seen from this plot by comparing the left-hand (canted)
and right-hand (ferrimagnetic) sides of curves presented in
Fig. 4. Interestingly, DMFT predicts that at zero temperature
antiferromagnetic order develops for any polarization. This is
different for the case of attractive interactions and superfluidity,
which is destroyed at a finite Chandrasekhar-Clogston limit for
the polarization [37–39], which was beautifully demonstrated
in experiments with ultracold Fermi gases [40].

B. Finite systems in a harmonic trap

Finally, we turn our analysis to the case where an additional
external trapping potential is present in the system. For
simplicity, below we assume that the trapping potential Vi in
Eq. (1) has an axial-symmetric form, Vi = V0r

2
i /a2, where V0

is the strength of the harmonic potential, ri is the distance from
the lattice site i to the trap center, and a is the lattice constant.
Evidently, all the results of this section can be extended to
include anisotropies usually present in real experiments.

We start our analysis by applying the LDA in combination
with two-sublattice DMFT introduced in Sec. III B. Within
LDA, we perform calculations for a particular lattice site by
taking μ(i)

σ = μ(0)
σ + Vi in the DMFT calculations. In all results

presented in this section the average chemical potential in the
center of the trap is taken as (μ(0)

↑ + μ
(0)
↓ )/2 = U/2, such that

the system is at half filling in the trap center [at least for
|�μ| 
 U (�μ = μ

(0)
↑ − μ

(0)
↓ )], which is the most relevant

case for our investigation.
Performing calculations for fixed mass imbalance and

varying chemical potential differences �μ in the trap center,
we obtain distributions of the total filling and magnetization
in various directions, which are presented in Fig. 5. There are
several details in those plots that are worth discussing. First of
all, we note that for nonzero mass imbalance and �μ = 0 one
has a (globally) polarized mixture due to a “ferromagnetic”
shell originating from a wider distribution of the lighter
component in a trap. Hence, for the purpose of obtaining Z-AF
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FIG. 5. (Color online) Real-space density and magnetization
distributions for a cubic lattice in a harmonic trap obtained by
LDA + DMFT. Parameters used in (a)–(d): U = 12t , T = 0.2t ,
�t = 0.2, and Vi = 0.1t(ri/a)2, where a is the lattice constant.

order in the trap center, one should account for this effect
and adjust the total polarization (or make the harmonic trap
also species dependent). One could also use this adjustment
in a combination with the additional cooling mechanism in
mass-imbalanced mixtures, pointed out in Ref. [17] (removing
from the system a part of the heavy component that carries a
larger amount of entropy at U = 0). Note, however, that as
long as one only specifies the chemical potential difference,
there is no problem here.

Possible advantages of the Z-AF phase could be not only
the issues related to cooling as pointed out in Ref. [16] and
in Sec. IV A1, but also a more convenient detection, e.g., by
single-site resolution imaging with a quantum gas microscope
[41], where the alternating density of one spin (species)
component can be directly detected. In contrast, in the canted-
AF phase, the density of the spin components does not alternate
from site to site; thus, one has to analyze the behavior of the
double occupancy [42,43], merge nearest-neighbor lattice sites
[2] or introduce additional methods to detect nearest-neighbor
spin-spin correlation functions in the XY plane, such as Bragg
spectroscopy [44] or noise correlations analysis [45].

It is worth noting that the CDW structure peculiar to the
Z-AF phase is clearly seen in the distributions of the total
particle number in Figs. 5(b) and 5(c) (double lines in the
central part), while it is absent in Figs. 5(a) and 5(d), where
the canted-AF phase developed in the bulk. As one sees,
the shell structure also has an interesting dependence on the
population imbalance. The magnetization in it increases with
total polarization (adding light and removing heavy particles
from the system), but with the decrease of total polarization
the “ferromagnetic” shell related to mass imbalance does not

FIG. 6. (Color online) Comparison of real-space magnetization
profiles for a square lattice in a harmonic trap obtained by LDA +
DMFT (lines) and R-DMFT (dots). Shadowed areas correspond to
the regions where LDA fails to reproduce the detailed structure and
has problems with convergence. (Insets) Contour plots representing
real-space distributions of magnetizations obtained by R-DMFT with
the same parameters. Parameters used in (a) and (b) and insets:
U = 12t , T = 0.2t , �t = 0.2, and Vi = 0.1t(ri/a)2.

vanish. Instead, according to Fig. 5(a), a double-shell structure
develops with inner and outer “ferromagnetic” shells originat-
ing from population and mass imbalances, respectively.

There are also discontinuities present in the magnetization
close to the boundaries of the antiferromagnetic phases:
Since the applied LDA + DMFT approach does not include
proximity effects these sharp features are not smeared out by
the trap. Moreover, in these regions this approach has a rather
bad convergence. In Fig. 6 we show that by accounting for
the proximity effect within R-DMFT, the magnetization in
trapped imbalanced mixtures has a smooth behavior with a
larger region of stability of the antiferromagnetic phase than
predicted by LDA.

V. CONCLUSIONS

We studied antiferromagnetically ordered phases that
emerge in two-component ultracold fermionic mixtures
with mass and population imbalance. Our analysis was
based on DMFT and its real-space generalization at finite
temperature.

It is pointed out that two types of imbalance favor different
types of antiferromagnetically ordered phases: The ferrimag-
netic phase is favored by mass imbalance, while the canted-
antiferromagnetic phase is favored by population imbalance. In
the absence of population imbalance, we demonstrated within
DMFT the advantages of mass-imbalanced mixtures, i.e., an
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increase of the critical temperature and the possibility to cool
the system by adiabatic change of the interaction strength
to lower temperatures than possible for balanced mixtures.
Guided by the exact values of the critical entropy in the
limiting cases of the Heisenberg and Ising models, we argued
that DMFT gives a better prediction for the critical entropy
for imbalanced mixtures compared to balanced ones, which
makes systems with mass imbalance even more advantageous
for the purpose of observing magnetic ordering phenomena in
optical lattices.

In the presence of both mass and population imbalance
we obtained the finite-temperature phase diagram with the
corresponding first-order phase transition between the differ-
ent AF states. We revealed that AF order is most unstable
against thermal fluctuations in the triple-point regions. To
this end, we performed a stability analysis of the ordered
phases against population imbalance at different temperatures.

At zero temperature we found that for all polarizations
antiferromagnetic order develops.

We also obtained real-space density and magnetization
distributions of imbalanced mixtures in a harmonic trap.
It is shown that, depending on the total polarization, the
mass-imbalanced mixture can have different ordered phases in
the bulk and different magnetic shell structures. The detailed
description of these effects could help not only in preparing
the mixture closely to its equilibrium state, but also in the
detection of antiferromagnetic correlations in ultracold gases.
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Feiguin, U. Schollwöck, and F. Heidrich-Meisner, Phys. Rev.
A 85, 063608 (2012).

[8] J. Wang, H. Guo, and Q. Chen, Phys. Rev. A 87, 041601(R)
(2013).

[9] C. W. von Keyserlingk and G. J. Conduit, Phys. Rev. A 83,
053625 (2011).

[10] X. Cui and T.-L. Ho, Phys. Rev. Lett. 110, 165302 (2013).
[11] T. Gottwald and P. G. J. van Dongen, Phys. Rev. A 80, 033603

(2009).
[12] B. Wunsch, L. Fritz, N. T. Zinner, E. Manousakis, and E. Demler,

Phys. Rev. A 81, 013616 (2010).
[13] A. Koetsier, F. van Liere, and H. T. C. Stoof, Phys. Rev. A 81,

023628 (2010).
[14] M. Snoek, I. Titvinidze, and W. Hofstetter, Phys. Rev. B 83,

054419 (2011).
[15] M. A. Cazalilla, A. F. Ho, and T. Giamarchi, Phys. Rev. Lett. 95,

226402 (2005).
[16] A. Sotnikov, D. Cocks, and W. Hofstetter, Phys. Rev. Lett. 109,

065301 (2012).
[17] E. A. Winograd, R. Chitra, and M. J. Rozenberg, Phys. Rev. B

86, 195118 (2012).
[18] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[19] W. Zwerger, J. Opt. B 5, S9 (2003).

[20] O. Mandel, M. Greiner, A.Widera, T. Rom, T. W. Hansch, and
I. Bloch, Phys. Rev. Lett. 91, 010407 (2003).

[21] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto,
R. Murakami, and Y. Takahashi, Phys. Rev. Lett. 105, 190401
(2010).

[22] J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333
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