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Two-photon ladder climbing and transition to autoresonance in a chirped oscillator
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The two-photon ladder climbing (successive two-photon Landau-Zener-type transitions) in a chirped quantum
nonlinear oscillator and its classical limit (subharmonic autoresonance) are discussed. An isomorphism between
the chirped one- and two-photon resonances in the system is used in calculating the threshold for the phase-locking
transition in both the classical and quantum limits. The theory is tested by solving the Schrodinger equation in
the energy basis and illustrated via the Wigner function in phase space.
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The transition between the quantum and classical de-
scriptions of dynamical systems played a pivotal role in
the foundation of quantum mechanics. In this context, the
correspondence principle addressed the classical limit of
a quantum system for large quantum numbers [1], such
that the classical equations of motion describe the average
wave packet [2]. Since these early works, studying the
subtleties of the quantum-classical crossover still comprises
a field of active research (e.g., Refs. [3-6]). An instructive
framework for the theoretical and experimental investigation
of this correspondence is the ac-driven nonlinear oscillator.
Recent studies in the field involved nonlinear resonators in a
nanoelectromechanical system [7], parametrically modulated
oscillators [8], and chirped-driven Josephson junctions [9,10].
Here we focus on the quantum-classical transition in an
oscillator exhibiting the classical subharmonic autoresonance
phenomenon, i.e., a continuing phase-locking with a driving
perturbation slowly passing, say, half the natural frequency of
the oscillator.

Autoresonance (AR) is a continuing phase-locking be-
tween a classical nonlinear oscillatory system and a chirped
frequency driving perturbation. The phenomenon was first
utilized in relativistic particle accelerators [11]. In the last
two decades, AR was recognized as a robust method of the
excitation and control of nonlinear systems, ranging from
atoms [12] and molecules [13] through plasmas [14,15] and
fluids [16] to nonlinear optics [17]. The most recent appli-
cations involved the antihydrogen project at CERN [18] and
superconducting Josephson junctions [9,10,19]. The salient
feature of the AR is a sharp threshold for capture into resonance
by passage through the fundamental linear resonance [20].
The width of this threshold depends on the temperature of
the initial state [21], while in the low-temperature limit, this
width saturates to a finite value associated with the zero-point
fluctuations of the quantum ground state [9,22].

The quantum counterpart of the AR is the ladder climb-
ing (LC), characterized by continuing successive two-level
Landau-Zener [23] transitions. This process was studied by
Marcus et al. [24,25] in application to driven molecules, where
chirped frequency laser radiation resonantly interacts with
successive energy gaps of the molecule. In addition, the LC
was studied in the context of Morse oscillator [26] and more
recently in Josephson junctions [10] and Rydberg atoms [27].
The transition between the classical AR and the quantum LC
was studied in [22,24].
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The classical subharmonic autoresonance (SHAR) is the
phase-locked response of a nonlinear oscillator to a chirped
driving force passing through a rational fraction of the
fundamental linear frequency. This phenomenon was studied
in classical nonlinear oscillators [28] and plasmas [29]. On the
other hand, quantum multiphoton processes were studied both
experimentally and theoretically via adiabatic Floquet analysis
in association with atomic systems [30-33], but the issue of
the quantum counterpart of the classical SHAR in a driven
chirped nonlinear oscillator was not addressed previously.
These processes may be important in such applications as
quantum Josephson circuits and nanomechanical systems.

Here we discuss this problem and show that the quantum
counterpart of this process is indeed the multiphoton ladder
climbing (MPLC). We will use the isomorphism between
the fundamental and the subharmonic 1 : 2 ARs (the gener-
alization to the 1 : n resonances can be obtained similarly)
to estimate the chirped subharmonic (SH) resonant capture
probability in both the classical and quantum limits and
compare our predictions with numerical simulations.

We focus on a driven weakly nonlinear oscillator governed
by the dimensionless Hamiltonian

H=%(p2+x2)+%Ax3+%ﬁx4+sxcoswd, (1)

where @, is the driving phase, such that the driving frequency
wy(t) = dgg/dt is a slowly varying function of time. The
classical fundamental AR and the corresponding quantum
LC processes in the problem are associated with the case,
when the driving frequency passes through the fundamental
linear frequency of the oscillator, e.g., wy(t) =1+ of, o
being the chirp rate. This problem was studied quantum
mechanically by the authors of Refs. [22,24]. The analysis was
based on the expansion of the wave function of the oscillator
[¥) =3, cul¥h,) in the energy basis |,) of the undriven
Hamiltonian, i.e., H(e¢ = 0)|¥,) = E,|¥,), where (Y |¥,) =
8k.n- In this basis, the dimensionless (& = 1) Schrédinger
equation yields

.dc,
l
dt

= Eyco+€ ) cu(Wilflvn) cos gq. 2)

k

The energy levels in Eq. (2) for sufficiently small n can be
approximated as [34]

E,~n+3+yn?+n)+ p— 532 3)
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n=0,1,2,...,andy = %ﬂ — 15—2A2. The linear approximation
81+ n+ 18 ni

(V| X) ~ =K, @&

V2

for the coupling terms in Eq. (2) was used by the authors of
Ref. [22] in analyzing the passage though the fundamental
resonance in the problem. One can define three characteristic
times in the problem of passage through the fundamental
resonance [22,24], i.e. Typ = 2y /a (the time of passage
through the nonlinear frequency shift between the first two
transitions on the energy ladder), Tk = ~/2/¢ (the inverse Rabi
frequency), and Ts = 1/./« (the frequency sweep time scale).
These three times yielded two dimensionless parameters P; =
Ts/Tr = ¢/ V2 (measuring the strength of the drive) and
P, = Ty /Ts = 2y /+/ (characterizing the nonlinearity). It
was shown that P;, fully characterizes the phase-locking
transition in the fundamental resonance case [22]. To address
the problem of two-photon LC (slow passage through the 1 : 2
resonance), we use

wa() =31 +at). (5)

The numerical solutions of Eq. (2) in this case with the
coupling terms of Eq. (4) show no two-photon transition.
This different process requires the inclusion of additional
higher-order coupling terms associated with the nonlinearity.
Consequently, we replace Eq. (4) by

(Wil21Yn) ~ Kigy + A Qun + B Ria, (©)
where, by standard perturbation theory [34]
Qin = £[=3Q2n + Ddn + V0 + D+ 2)8kn42
+/n(n — 1Ddi 2]

and

1
Rin = mm\/(n + D(n 4+ 2)(n + 3)8.n43

—2(2n 4+ 3)y/(n + D i1 — 22n + 1)/ndy
+3y/nn — D(n — 2)8k n—31.

At this stage, we illustrate the MPLC and SHAR in
simulations. We have solved Eq. (2) numerically, subject to
ground-state initial conditions c,(fp = —10//a) = §,¢ for
two sets of parameters, in the quantum MPLC (Fig. 1) and the
classical SHAR (Fig. 2) regimes. Figure 1(a) corresponds to
the set of parameters {o, 8,A,€} = {10_6,0.016,0.05,0.18}and
shows the energy of the system versus the slow time T = /at.
Taking 40 levels into account was sufficient in this example.
One can see that the response of the quantum nonlinear
oscillator to the chirped frequency drive is by successive
transitions between neighboring energy levels. The (red) line
in the figure is the time average over an interval of At = 0.1,
eliminating fast oscillations in the dynamics, similar to the
procedure used in Ref. [28]. The theoretical, perfect energy
LC scenario is illustrated in Fig. 1(a) by the solid black
line. We also observe that, similar to the fundamental LC,
the nonlinearity parameter P, = 2y //a = 10 in the MPLC
regime is much larger than unity and that the transitions
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FIG. 1. (Color online) (a,c) The dynamics in the energy basis and
(b,d) the corresponding Wigner functions at time T = 25 in (a,b) the
1 : 2 subharmonic and (c,d) the fundamental quantum ladder climbing
regime, with the same P, = 10, but P; divided by €A.

between neighboring levels occur at times t, = n P, [22]. For
further illustration, we have calculated the Wigner function
[35] in phase space and show a snapshot of time T = 25 in
Fig. 1(b). The Wigner function exhibits structure characteristic
to the n = 3 level of the quantum ladder as is expected at
this time from Fig. 1(a), while the probability of capture
into resonance (total occupation of resonant levels) was 74%.
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FIG. 2. (Color online) (a,c) The dynamics in the energy basis and
(b,d) the corresponding Wigner function at time t = 6 in (a,b) the
1 : 2 subharmonic and (c,d) the fundamental classical autoresonance
regime, with the same P, = 0.1, but P, divided by €A.
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It is instructive to compare these results with those for the
fundamental LC case presented in Figs. 1(c) and 1(d) and
obtained by using the same set of parameters, but ¢ replaced
by &2 (P, multiplied by e1). The resonant capture probability
in this case was 84%, while Fig. 1 exhibits a similarity between
the simulations results for the fundamental and SH resonances
with this choice of parameters.

The second numerical example shown in Figs. 2(a)
and 2(b) uses the same initial conditions, but parameters
{o,B,A,6} = {1074,0.0016,0.0155,1.9}, and the calculation
involves 250 quantum levels. Here, P, = 0.1 describing the
classical limit (P, < 1) [22], where the energy does not
vary in steps, but grows monotonically with superimposed
slow oscillations, as expected from the theory of the classical
nonlinear resonance [36]. As above, the thin (red) line in
the figure is the time average of the results over a window
of At =0.1 for eliminating fast oscillations. A snapshot
of the calculated Wigner function in this example at time
7 = 6 is shown in Fig 2(b) and the probability of capture
into AR was 85%. The figure shows that the most populated
part of the phase space is a crescent corresponding to the
resonantly trapped phase space area of the oscillator, while the
characteristic interference patterns (which can be eliminated
by coarse graining) is seen in nonresonant regions of phase
space. As in the previous LC example, we compare these
results with the corresponding fundamental resonance case
shown in Figs. 2(c) (energy evolution) and 2(d) (Wigner
function), where P is the same, but P; again multiplied by
the factor eA. The capture probability in this case was 99%.
One observes again a noticeable similarity between the SH
and rescaled fundamental AR cases.

Our theoretical analysis uses the following canonical
transformation of the coordinate and momentum

x = e Sxe'S, @)
p/ — e*ispeis’ (8)
where S = %8 (x singg + p cos ¢;). The transformed Hamil-
tonian in this case becomes
) ) ds
H =e¢SHeS + —, 9
7 )
where, as before, we set (2 = 1). The first term in the right-
hand side can be calculated via the identity [34]

e "He'S = H —i[S,H]— A[S.[S,H1+---. (10)
Then one finds that all O(e) terms in the transformed
Hamiltonian H’ vanish. We seek 1:2 SH resonance in
the problem as the driving frequency w,; = ¢y = % passes
through the two-photon resonance. There exist only one O(&?)
two-photon-resonant term in the transformed Hamiltonian,
ie., gezkx’ cos 2¢,. After neglecting all other nonresonant and
higher-order terms, the transformed Hamiltonian becomes

H =1 (p?+x?%) + 1ax" + {Bx" + 8e20x’ cos 2¢q.
(11

One can see that this Hamiltonian with w; = ¢; = % (14 at)
is the same as the Hamiltonian (1) with w; = ¢; = 1 + ot
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studied by the authors of Ref. [22] for the fundamental
resonance case, but with ¢ replaced by gszk. This explains
the similarity between the chirped fundamental and the
SHAR, illustrated in our numerical examples. The same
isomorphism was found in the classical theory of the SHAR
[28]. Consequently, the parameter P; for the fundumen-
tal resonance should be replaced by P, = gskPl for the
two-photon resonance case, while P, remains unchanged.

Note that the classical problem of the fundamental AR is
fully controlled by a singleparameter, u = %Pl P21 /2 [22] (& =

%f’l le /% in the SH case). In contrast, the quantum-mechanical
counterpart in the problem is characterized by two parameters
(Py,P») due to a new scale associated with 7.

The aforementioned isomorphism allows to apply all the
results of the theory of the fundamental chirped resonance to
the SH scenario by replacing P; — P;. For instance, in the
fundamental resonance case, it was found that the separator
between the classical and the quantum regimes in the (P, P;)
parameter space is the line P, = P; + 1 [22]. Hence, we
concluge that in the SH case, the classicality condition is
P, < Py + 1. Furthermore, the probability of capture into
fundamental resonance depends on the parameters P;, and,
thus, in the SH case, this probability is fully described by
the parameters P;,P,. For example, the threshold for the
phase-locking transition by passage through the fundamental
resonance is a line in the parameter space P, = f(P>)defined
as the value of P; for which the capture probability is 50%
[22], Therefore, in the SH case the equivalent threshold line
is Py, = f(P,). Figure 3 compares these predictions with
the results of the numerical solution of Eq. (2) for different
values of P,. The dots in the figure show the numerically
found threshold, while the dashed lines correspond to the
appropriately rescaled theoretical predictions in the classical
SHAR, i.e., P, = 0.82/+/P, (dashed doted line), and in the
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FIG. 3. (Color online) Different regimes of the phase-locking
transition in the chirped, 1 : 2 subharmonic resonance. The dots show
the location of the threshold for the phase-locking transition. The
dashed and dashed-dotted lines represent the theoretical thresholds in
the quantum MPLC and classical SHAR regimes, respectively, while
the solid line separates these regimes.
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quantum MPLC, 1316, = 0.79 (dashed line) limits rescaled
from the fundamental resonance theory [22]. One observes
a very good agreement in both dynamical limits, including
the characteristic transition between these two limits near the
rescaled theoretical separator P, = P; + 1 (solid line).

In conclusion, we have studied the problem of passage
through two-photon nonlinear resonance and identified the
quantum counterpart of the classical SHAR in the nonlinear
oscillator, i.e., the quantum two-photon LC. We have used
the isomorphism between the quantum fundamental and
the two-photon chirped resonance phenomena. A similar
isomorphism for stationary (¢ = 0) quantum resonance exists
as a special case of the chirped resonance. The calculation
can be generalized to similar n > 2 photon processes. The
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theory shows that all the results in the chirped fundamental
resonance process in both the quantum and classical limits can
be extended to the SH resonance case by simply rescaling
the driving parameter. The engineering and control of a
desired quantum state of the oscillator via the LC process
can be achieved by passage through both the fundamental and
SH resonances. However, in the 1 : 2 subharmonic chirped
resonance case, a desired state is achieved with just half of the
driving frequency bandwidth, as compared to the same final
state reached via passage through the fundamental resonance.
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