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Coherent population trapping and polarization fluctuations: The independent-modulator
approximation for coherent-population-trapping line shapes
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In order to understand how stochastic processes enter and influence coherent atomic dynamics, we have studied
the behavior of a � system under random polarization variations. Polarization, in addition to amplitude and phase,
is a defining feature of a classical vector field. However, to date there has been little study of how quantum systems
respond to temporal variations of polarization, even though this problem has practical implications. In our work,
we generate a Bernoulli sequence of random polarization changes, and we then examine the average 87Rb
coherent-population-trapping (CPT) line shape induced by this stochastic field. To quantitatively conceptualize
our results, we have developed an independent-modulator approximation (IMA) theory for CPT line shapes
induced by stochastic-polarization fields. The IMA theory is based on the idea that a power spectrum can be
understood as a probability distribution of Fourier modulation frequencies. We compare the IMA theory with our
experimental results, finding quite good agreement when the polarization correlation time is less than or equal
to the CPT dephasing time, which is the regime of primary experimental and technological interest. The utility
of the IMA theory lies in its intuitive nature, which we believe has merit for guiding experimentalists’ general
understanding of stochastic fields and quantum systems.
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I. INTRODUCTION

Motivated by the development of the chip-scale atomic
clock [1,2] and the chip-scale atomic magnetometer [3],
the field of ultraminiature atomic physics (UAP) has grown
rapidly over the past decade. In brief, UAP is precision spec-
troscopy (typically optical-pumping or magnetic-resonance
spectroscopy [4]) aimed at generating and accurately probing
atomic interactions over millimeter or smaller scales, while at
the same time severely constraining the overall size and power
of the measurement system. Given this definition, it would be
quite natural to think that the underlying phenomena of UAP
are well understood, and that the critical issues center solely on
its engineering. However, the constraints of UAP often force
the atomic phenomena to take place under physical conditions
that are avoided in routine laboratory research, and it is those
conditions that bring interesting dimensions to the basic atomic
physics.

As an example, for reasons of size and power the light
source of choice in UAP is the vertical-cavity surface-emitting
laser (VCSEL) [5]. The VCSEL, however, is not an ideal
light source for precision spectroscopy. In the first place,
the laser has a relatively broad linewidth (∼102 MHz) [6,7],
which not only limits spectroscopic resolution, but implies
that phase-noise to amplitude-noise conversion cannot be
ignored [8,9]. Specifically, a VCSEL’s phase fluctuations will
produce fluctuations in a vapor’s absorption cross section, and
these give rise to fluctuations in the transmitted laser intensity
(i.e., UAP noise). Additionally, VCSELs can suffer random
polarization variations [10]. Not only does this bring modal
partition-noise into the UAP field-atom interaction [11], but the
rapid change in laser polarization can have a direct bearing on
the dynamics of resonant phenomena [12,13]. Consequently,
if UAP devices are to achieve their true potential, researchers
will need to develop a better understanding of the basic
stochastic-field–atom interaction [14].

To be concrete, it is not uncommon for researchers to
account for the stochastic nature of a field by simply con-
volving the field’s spectrum with the atom’s (monochromatic-
field) resonant response. While this “convolution picture” is
certainly valid for weak fields and one-photon processes [14],
it is completely inadequate for describing atomic dynamics
in the presence of strong stochastic fields, or when atoms
undergo multiphoton processes. Perhaps the most telling
demonstration of this comes from the seminal work of
Lecompte et al. [15], where eleven-photon ionization of Xe
by a randomly fluctuating field was enhanced by a factor of
11!. The general stochastic-field–atom interaction, however,
is actually more subtle and complicated than this classic work
would suggest, since one must differentiate phase fluctuations
from amplitude fluctuations [16], and both of these from
polarization fluctuations [17].

Coherent population trapping (CPT) is of wide use in UAP,
and it is essentially a multiphoton process. Consequently,
one cannot depend on the convolution picture to adequately
describe the influence of the VCSEL’s stochastic nature on
CPT signals. In the present work, we extend our previous
investigations looking at CPT signals in the presence of
deterministic polarization variations [18], in order to address
the question of CPT signals in the presence of stochastic
polarization variations. In the next section, we provide a very
brief overview of CPT in the presence of deterministic laser
polarization variations and then use that understanding to
develop an approximate, but intuitive, theory of CPT driven
by a field undergoing stochastic polarization fluctuations: an
independent modulator approximation (IMA) theory of CPT.
In Sec. III, we describe our experiment to test the theory,
and then in Sec. IV we compare the theory’s predictions with
experiment finding reasonably good agreement. Validation
of the IMA theory not only provides insight into the
stochastic-field–atom interaction, but will likely prove useful
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FIG. 1. In the typical CPT experiment with 87Rb, two modes of a
laser couple the atom’s two mF = 0 5 2S1/2 ground-state sublevels
to the same excited state; here, the common excited sate is the
5 2P1/2 |F ′ = 2, mF = +1〉 state. The simultaneous coupling creates
a coherence in the ground-state, and it this coherence that is at the
heart of the CPT phenomenon. If the laser polarization fluctuates,
then the common excited state will momentarily change to |F ′ =
2, mF = −1〉, and this will affect the ground-state coherence.

as a reasonably accurate yet intuitive guide for researchers’
thinking.

II. THEORY OF CPT IN THE PRESENCE OF
POLARIZATION FLUCTUATIONS

A. CPT and deterministic polarization variations

As illustrated in Fig. 1, realization of the generic CPT phe-
nomenon for the alkali-metal “0-0” hyperfine states requires

a circularly polarized field [19], so that (for example) the
|F = 1,mF = 0〉 and |F = 2,mF = 0〉 ground-state eigen-
functions only couple to the |F ′ = 2,mF = +1〉 excited state.
Of course, the absorption of circularly polarized light transfers
angular momentum from the light field to the atomic system,
and as a consequence the atomic vapor develops a nonzero
electronic spin polarization, 〈Sz〉 [4,20,21]. Electronic spin
polarization plays the role of a noncoherent dark state (or
equivalently a trapping state), which reduces the alkali vapor
density contributing to the coherent dark state (i.e., the dark
state associated with CPT), and thereby reduces the amplitude
of the CPT signal [22].

When the polarization of the field changes abruptly,
two different effects take place. First, the discrete laser-
polarization change produces a discontinuity in the phase of the
ground-state coherence that drives CPT. Consequently, if the
polarization is modulated, the coherence is also modulated,
and this can lead to a splitting of the CPT signal into
a doublet [18]. Additionally, the laser-polarization change
leads to a transfer of atomic population among the ground-
state Zeeman sublevels as the equilibrium electronic spin
polarization changes from +〈Sz〉 to −〈Sz〉. This latter effect
results in a transmitted-laser-intensity transient, which can
be nearly an order of magnitude larger than the CPT signal
itself [12]. However, if the polarization is modulated fast
enough, then the time-averaged transfer of angular momentum
from the light field to the atoms approaches zero (i.e.,
〈Sz〉 → 0), resulting in an overall decrease of population in
the trapping state and thereby an overall increase in the CPT
signal.

These qualitative considerations have been captured quan-
titatively in a density-matrix theory describing CPT in the
presence of a polarization-modulated field [18], and are
summarized by the following closed-form expression for the
relative CPT signal:

�ICPT(2δ,ω)

IT (ω)
=

{
2(Is/Ic)e−κo(1−2〈Sz〉)

1 + 2(Is/Ic)e−κo(1−2〈Sz〉)

}
{2κoRη(1 + f )[(f 2 + 2f + 5)R + 8γ2 + 2κoRη(1 + f )]}

×
{

1

[(f 2 + 2f + 5)R + 8γ2]2 + [8(2δ − ω)]2
+ 1

[(f 2 + 2f + 5)R + 8γ2]2 + [8(2δ + ω)]2

}
. (1)

Here, �ICPT(2δ,ω) is the change in transmitted intensity due
to coherent population trapping, and IT (ω) is the magnitude
of the transmitted light intensity in the absence of CPT; Is/Ic is
the laser’s single sideband-to-carrier intensity ratio, with 2�s

the frequency separation between the sidebands: 2δ ≡ 2�s −
ωhfs; κo is the absorbance of the vapor in the absence of any spin
polarization, 〈Sz〉; R is the photon absorption rate, and γ2 is the
dark dephasing rate of the 0-0 transition (i.e., the dephasing rate
in the absence of the field, so that the total dephasing rate, 	2,
is R + γ2); ω is the polarization modulation frequency; and f

is a parameter describing a “filtered-response” approximation
for the density matrix when counter-rotating terms cannot
be easily ignored (as is done in the secular approximation):

f ≡ (R + γ2)/
√

(R + γ2)2 + 4ω2. In Eq. (1), the average spin
polarization in the vapor 〈Sz〉 is given by

〈Sz〉 = 1

2

(
R

R + γ1

)[
1 − 2

π

(
ω

R + γ1

)
tanh

(
π (R + γ1)

2ω

)]
,

(2)

where γ1 is a “longitudinal” relaxation rate (necessarily an
approximate rate, since the system is often described by mul-
tiple longitudinal relaxation rates [20]); and η is determined by
〈Sz〉 through the equation η = (1 − 2|〈Sz〉|)/(2I + 1), where
I is the nuclear spin. As an illustration, Fig. 2 shows several
normalized CPT signals for different modulation frequencies,
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FIG. 2. This figure shows the CPT spectra predicted by Eq. (1)
for several values of the polarization modulation frequency ω. Other
parameters in the computation include the single sideband-to-carrier
intensity ratio, Is/Ic = 0.18, the absorbance, κo = 0.57, the photon
absorption rate, R = 347 s−1, the longitudinal relaxation rate, γ1 =
57 s−1, and the dephasing rate, γ2 = 240 s−1.

where it is clear that as ω increases there is an increase in
the CPT signal amplitude (due to a decrease in 〈Sz〉), and
then a splitting of the CPT signal into a doublet. Of course,
the CPT spectra of Fig. 2 correspond to one well-defined
polarization-modulation frequency, while in the present work
we are concerned with the shape of CPT signals when the
polarization varies randomly.

B. CPT and stochastic polarization variations

Superficially, the response of an atom to a stochastic-
polarization field will be akin to that of an atom responding to
an amplitude-fluctuating field: in both cases the field’s fluctu-
ations enter the atomic dynamics through the Rabi frequency.
Of course, there are differences. For one thing, an amplitude-
fluctuating field changes the magnitude of the Rabi frequency,
whereas a polarization-fluctuating field primarily changes the
Rabi frequency’s sign. For another, multiple Zeeman states
are necessarily involved in the fluctuating polarization case,
which is not necessarily true for the fluctuating amplitude
case (e.g., the case of a stochastic-amplitude field interacting
with a two-level atom). Nevertheless, the similarity highlights
the theoretical difficulties of the problem [16], and reinforces
the realization that any accurate theoretical description of CPT
driven by a polarization-fluctuating field will require numerical
solution and likely numerical Monte Carlo simulation [23].
Unfortunately, while accurate numerical solutions/simulations
are important (and necessary) for demonstrating that the basic
physics of the stochastic-field–atom interaction is well in hand,
they are woefully poor at providing intuitive insight. Here,
our primary purpose is to develop an intuitively meaningful
yet reasonably accurate solution to the stochastic-field–atom
interaction problem in order to better guide researchers’
understanding of the important issues.

To that end, we first note that the power spectrum of a
stochastic process, L(ω), can be interpreted in terms of the
likelihood that a Fourier component of the random process will

appear in a long time history of the process. To illustrate this
point, as is well known [24] the average power of a stationary
random process, 〈|A|2〉, is given by

〈|A|2〉 = 1

2π

∫ ∞

−∞
L(ω)dω =

∫ ∞

−∞
A2

o

(
L(ω)

2π〈|A|2〉
)

dω (3a)

or

〈|A|2〉 =
∞∑

i=1

A2
o

(∫ ωi+δω/2

ωi−δω/2

L(ω)

2π〈|A|2〉dω

)
. (3b)

Here, Ao is defined as the root-mean-squared amplitude
of the random process (i.e., Ao ≡

√
〈|A|2〉), and we have

divided the Fourier integral into discrete subintervals of width
δω. The point of these apparently trivial manipulations is
that Eq. (3b) allows us to interpret Ao as the amplitude
of each oscillatory component that appears in a Fourier
transform of any realization of the random process, and the
expression in brackets on the right-hand side of Eq. (3b)
as the probability, P (ωi), that Fourier frequencies between
ωi − δω/2 and ωi + δω/2 will appear in a random-process
realization

P (ωi) = 1

2πA2
o

∫ ωi+δω/2

ωi−δω/2
L(ω)dω. (4)

If we now ignore the transients that will be induced in the
atomic system when the rate of polarization fluctuations
changes (i.e., when ω → ω + dω), then we can make an appeal
to the ergodic theorem to write averages over time in terms of
an ensemble average over ω. In essence, we are assuming
that we can rewrite a long-time average of the stochastic
process in terms of a weighted average over “independent”
modulation responses of the atom. For obvious reasons, we
call this an independent-modulator approximation (IMA) to
the stochastic-field-induced atomic dynamics. Clearly, we can
expect this approximation to be valid if the correlation time of
the stochastic process, 	−1

p , is much longer than the dephasing
time of the atomic system, since in that case (for “well-
behaved” random processes) all variations are relatively slow
and adiabatically followed by the atomic system. However,
we expect that the approximation will become problematic
as the correlation time shortens; in particular, we expect the
approximation to break down for 	p/	2 	 1.

Employing the independent-modulator approximation here,
we write the CPT line shape in the presence of polarization
fluctuations as

�ICPT(2δ)

IT

∼= 1

N

∫ ∞

−∞
L(ω)

�ICPT(2δ,ω)

IT (ω)
dω, (5a)

where L(ω) is the power spectrum of the polarization fluctua-
tions, and N is a normalization factor

N ≡
∫ ∞

−∞
L(ω)dω. (5b)

It is important to note that Eq. (5a) is not a convolution: we
are not convolving a CPT line shape with the laser spectrum.
Rather, we are performing a weighted average of Eq. (1)
over polarization modulation frequencies, with the weighting
factors defined by the power spectrum of the stochastic
polarization fluctuations.
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FIG. 3. Block diagram of our experimental arrangement. The Rb
cell was maintained at a temperature of 48 ◦C, corresponding to an
alkali density of ∼1011 cm−3, and the Rb atoms were contained with
a 50 torr N2 buffer gas. The laser light passed through an electro-
optic modulator that placed sidebands on the laser at ∼3.4 GHz.
Additionally, though not shown, the light passed through a neutral
density filter. In our experiments the single sideband-to-carrier power
ratio was 0.18.

III. EXPERIMENT

A. Experimental arrangement

Our experimental arrangement is illustrated in Fig. 3. To
generate the �-system coherence, we employ a cleaved-facet
Fabry-Perot diode laser [25], which does not suffer intrinsic
polarization fluctuations. The laser light then passes through
an electro-optic modulator (EOM), which places sidebands on
the laser at ±�s

∼= ±ωhfs/2 with a single-sideband to carrier
intensity ratio (Is/Ic) of 0.18; here, ωhfs is the ground-state
hyperfine transition frequency (i.e., 6834.7 MHz for 87Rb).
The beam diameter is 0.6 cm at the entrance to our resonance
cell, and the total laser power entering the EOM is 2.5 mW;
the intensity of a single sideband Is in the resonance cell is
therefore ∼1.2 mW/cm2. [Though not shown, the light also
passes through a neutral density filter (ND) allowing variation
of the laser intensity.] The modulated and linearly polarized
field then passes through a ferroelectric liquid crystal (FLC)
polarization rotator (manufactured by Micron Technology
Inc.), which has a bandwidth of 10 kHz and changes the field’s
linear polarization by ninety degrees depending on an applied
voltage. Following this, the field passes through a quarter-wave
plate, creating right or left-circularly polarized light, and then
into a resonance cell containing isotopically enriched 87Rb and
50 torr of N2 as a buffer gas; using N2, the dominant relaxation
mechanism in our system is electron-spin randomization (also
known as S-damping) [21]. Pressure broadening of the optical
transitions by N2 also implies that the excited-state hyperfine
structure is unresolved [26].

Our Pyrex resonance cell is 3.9 cm long with a diameter
of 2.2 cm, and for these experiments was maintained at 48 ◦C
with braided heating wire wrapped around the cell body; the
absorbance of the vapor, κo, was measured as 0.57: I (L) =
Ioe

−κo with Io defined as Is10−ND (i.e., the sideband intensity
after passing through the neutral density filter). The resonance

FIG. 4. (a) An example of our CPT line shapes in the absence
of stochastic polarization variations (i.e., p = 0); the data was taken
with a relative light intensity, Io/Is , of 0.06, and the solid line through
the data is a Lorentzian least-squares fit: Amplitude = 0.28% and
�νHWHM = 576 s−1. (b) An example of our CPT line shape in the
presence of stochastic polarization variations (i.e., p = 0.3: 	p =
916 s−1); the data was taken with a relative light intensity, Io/Is , of
0.06, and the solid line through the data is a Lorentzian least-squares
fit: Amplitude = 0.22% and �νHWHM = 1480 s−1.

cell was located in a set of three mutually perpendicular
Helmholtz coils with a diameter of 66 cm [27]: two pairs
cancelled out the Earth’s magnetic field, while the third
provided a quantization axis for the atoms along the laser
beam’s propagation direction (i.e., Bz = 0.5 gauss).

Figure 4(a) shows an example of our CPT line shape in the
absence of stochastic polarization fluctuations for a relative
light intensity, Io/Is , of 6.3 × 10−2. In our experiments we
sweep the sideband frequency detuning, 2δ, at a relatively
slow rate (i.e., 2.9 kHz/s), and the entire time to generate one
spectral line shape, T , is one second. The solid line through the
data is a Lorentzian fit, which has a half-width half-maximum,
�ν1/2, of 580 s−1 (i.e., 92 Hz).

Figure 5 shows our measured values of �ν1/2 as a
function of relative light intensity, and from this data we
infer that our intrinsic dephasing rate, γ2, is 240 s−1, and
that the optical excitation rate R is given by R = 5.64 ×
103(Io/Is) s−1. At our nominal light intensity of Io/Is =
6.3 × 10−2, which maximizes the relative CPT signal in the
absence of polarization fluctuations (and is employed through-
out these experiments), we therefore have R = 347 s−1 and
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FIG. 5. Half-width half-maximum, �ν1/2, of the CPT line shape
as a function of the relative light intensity. The slope and intercept
yield R and γ2 as reported in Table I.

	2 = 587 s−1. Further, using Eqs. (1) and (2) with ω = 0, and
�ICPT/IT = 0.28% for no polarization modulation as shown
in Fig. 4(a), we find that γ1 = 57 s−1. The complete set of
parameters required by Eqs. (1) and (2) as determined for our
experimental situation are collected in Table I.

B. Stochastic polarization variations

To generate random laser polarization fluctuations, we
first divide the sweep time, T , into subintervals δt , with
δt = 10−3 sec, and for each of these subintervals we define a
Bernoulli distributed random variable, x(t), that can be either
zero or one [28]. Every time a one appears in the Bernoulli
process, the function generator controlling the FLC changes:
0 → 5 V or 5 → 0 V. In other words, a zero in the Bernoulli
process means that the laser field’s polarization remains
constant, while a one implies that the laser field’s polarization
changes. Consequently, the number of polarization changes
that occur over the entire time period of the sideband frequency
sweep is equal to the number of ones that appear in the
Bernoulli process over this period. If we define p as the
probability for a one to appear in the Bernoulli process, then
the mean number of polarization changes during a sweep, 〈n〉,
will be given by pT /δt , and therefore the average polarization
changing rate Rp is just 2π〈n〉/T = 2πp/δt . Further, the
fastest polarization-changing rate we access in our experiment
is 2π/δt = 6283 s−1.

If we now define ζ (t) as a random process describing the
polarization state of the laser: ζ = + 1 ⇒ right-circularly
polarized light and ζ = − 1 ⇒ left-circularly-polarized light,

TABLE I. Experimental parameter values.

Parameter Value

Is/Ic 0.18
κo 0.57
R 347 s−1

γ2 240 s−1

	2 = R + γ2 587 s−1

γ1 57 s−1

and if we constrain our random polarization changes so that
ζ (0) = + 1 (i.e., the random process always begins with the
laser as right-circularly polarized), then the polarization state
of the field at some time t later is just

ζ (t) = (−1)k(t) = cos[k(t)π]. (6)

Here, k(t) is a binomial random process [28] given by

k(t) =
n∑

i=1

x(ti), (7)

where n = t/δt (i.e., the number of “draws” of the Bernoulli
random variable, or equivalently the number of time steps in
the time interval t).

The average value of ζ (t), 〈ζ (t)〉, is just given by

〈ζ (t)〉 =
n∑

k=1

cos(kπ )

(
n

k

)
pk(1 − p)n−k = (1 − 2p)t/δt ,

(8)

where ( n
k ) is a binomial coefficient. Clearly, with p < 1.0

the mean value of the polarization goes to zero as t → ∞.
Here, we shall restrict our considerations to p � 0.5; not only
are these the cases of most interest for UAP, but for p > 0.5
Eq. (8) shows that the average value oscillates between right
and left-circularly polarized light at each time step. Though
the p > 0.5 cases may be of interest academically, they add a
level of complication to the analysis that is unlikely to be of
much practical import to experimentalists.

To compute the power spectrum of the polarization varia-
tions, we first compute the correlation function of ζ (t)

ζ (t)ζ (t ± τ ) = (−1)2k±m = cos(mπ ), (9)

where m is the number of polarization draws in the time
interval τ . This, however, is just given by Eq. (8) with n

replaced by m = |τ |/δt
〈ζ (t)ζ (t ± τ )〉 = (1 − 2p)|τ |/δt . (10)

To obtain the power spectrum, we take advantage of the
Wiener-Khintchine relations [29]

L(ω) =
∫ ∞

−∞
e−iωτ 〈ζ (t)ζ (t ± τ )〉dτ

=
∫ ∞

−∞
e−iωτ (1 − 2p)|τ |/δtdτ , (11)

which yields

L(ω)

N
= − 1

π

δt ln(1 − 2p)

[ln(1 − 2p)]2 + (ωδt)2

= − 1

π

δt ln[1 − (Rpδt/π )]

{ln[1 − (Rpδt/π)]}2 + (ωδt)2
. (12)

The normalized spectrum of polarization fluctuations is thus a
Lorentzian with a correlation time, 	−1

p , equal to − δt/ln(1 −
2p); this is shown in Fig. 6 for several values of p given
δt = 10−3 sec. Note that for 2p � 1, 	p

∼= 2p/δt .
Figure 4(b) shows an example of a CPT line shape in the

presence of our stochastic polarization fluctuations. For this
particular case, 	p = 916 s−1 (i.e., p = 0.3). Comparison
with Fig. 4(a) shows that the stochastic polarization fluc-
tuations have led to a decrease in the CPT amplitude (i.e.,

053419-5



M. HUANG, T. U. DRISKELL, AND J. C. CAMPARO PHYSICAL REVIEW A 87, 053419 (2013)

FIG. 6. L(w)/N for several values of the probability of polariza-
tion changing per time step, p, and with δt taken as 10−3 second.

�ICPT/IT = 0.22%), and a significant broadening of the CPT
line shape (i.e., �ν1/2 = 1480 s−1). Nevertheless, we find
that the stochastic CPT line shape is still well described by
a Lorentzian.

IV. RESULTS AND COMPARISON WITH THEORY

Figure 7 shows several examples of our normalized CPT
line shapes with a polarization-fluctuating field: (a) 	p =
223 s−1 (p = 0.1 and 	p/	2 = 0.38), (b) 	p = 511 s−1

(p = 0.2 and 	p/	2 = 0.87), and (c) 	p = 1609 s−1 (p = 0.4
and 	p/	2 = 2.7). The solid black line through the data
is the CPT line shape predicted by our IMA theory using
the parameters of Table I, while the dashed line in the
graphs is the CPT line shape in the absence of polarization
fluctuations. Without any free parameters, the IMA theory
does a surprisingly good job predicting the stochastic-field
CPT line shapes up to 	p/	2

∼= 0.9. For short correlation
times (i.e., 	p/	2 � 1), the IMA theory still does a credible
job, especially with regard to the overall broadening of the
CPT line shape and its behavior in the wings. It does, however,
predict a doublet structure for the CPT line shape that is not
observed experimentally (at least not within the signal-to-noise
ratio). Part of the value of the IMA theory, however, is not
just in terms of its predictive capabilities, but in terms of
its interpretive capabilities. Specifically, in the IMA theory
broadening is seen to come from those Fourier components
in the random process that produce a slitting of the CPT line
shape as illustrated in Fig. 2.

Figure 8 shows the CPT linewidth, �ν1/2, as a function of
	p, while Fig. 9 shows the relative amplitude of the CPT line
shape, �ICPT, as a function of 	p (i.e., we normalize �ICPT

to its value in the absence of polarization noise). As suggested
by the data of Fig. 7, Fig. 8 provides further evidence that the
IMA theory does a reasonably good job in predicting the CPT
linewidth, having an error of less than 20% for the conditions
shown in the figure. Interestingly, a better predictor of the
CPT linewidth over this polarization-bandwidth range is the
simple empirical formula, �ν1/2 = 	p + 	2, though it lacks
theoretical justification.

For the amplitude of the CPT line shapes shown in Fig. 9,
the IMA theory actually does a very good job: the CPT
amplitude reaches its maximum value for 	p/	2

∼= 0.25, and

FIG. 7. Comparison between the independent-modulator approx-
imation (IMA) theory of CPT line shapes driven by a polarization-
fluctuating field and experiment: (a) p = 0.1, 	p = 223 s−1,
	p/	2 = 0.38; (b) p = 0.2, 	p = 511 s−1, 	p/	2 = 0.87; (c) p =
0.4, 	p = 1609 s−1, 	p/	2 = 2.7. The solid black line through the
data is the CPT line shape predicted by our IMA theory using the
parameters of Table I, while the dashed line in the graphs is the CPT
line shape in the absence of polarization fluctuations.

the amplitude increase is about 60%. Employing the IMA
theory for interpretation, we see that the amplitude increase
of the CPT signal comes from fast Fourier components of
the random process destroying the vapor’s electronic spin
polarization (i.e., decreasing the population density in the
trapping state) as illustrated in Fig. 2.
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FIG. 8. CPT line widths, �ν1/2, as a function of the bandwidth of
the polarization fluctuations, 	p. The solid black line is the prediction
from the IMA theory, while the dashed line corresponds to the simple
empirical equation �ν1/2 = 	2 + 	p .

V. SUMMARY

In this work, we have experimentally investigated the
line shapes of CPT signals for a � system, when the
optical field producing the lower-level coherence undergoes
random polarization variations. We find that as the bandwidth
of the polarization fluctuations, 	p, increases, so too does
the CPT linewidth. Additionally, as 	p increases the CPT
amplitude first increases and then decreases; the maximum
CPT amplitude is achieved for 	p/	2 ∼ 0.25 with 	2 the CPT
dephasing rate.

To explain our results both quantitatively and intuitively, we
developed an independent-modulator approximation (IMA)
theory of stochastic-field CPT line shapes. Essentially, this
theory assumes that each Fourier component in a realization
of a random process produces a static CPT line shape
(i.e., the CPT line shape that would be produced by a

FIG. 9. The amplitude of the CPT signal (normalized to its value
for p = 0: no polarization noise) as a function of the bandwidth of
the polarization fluctuations, 	p . The solid black line is the prediction
from the IMA theory, and the open data point actually corresponds to
p = 0. (To place the p = 0 data point on this logarithmic plot, we set
	p equal to one tenth its smallest possible value for our experimental
conditions: 	p = − ln[1 − 0.2δt/T ]/δt .)

FIG. 10. The change in transmitted light intensity for the CPT
signal and the transients induced by the change in electronic-spin
polarization, 〈Sz〉, plotted on the same scale. The 〈Sz〉 transients are
large, and would make an important contribution to CPT-signal noise.

field undergoing deterministic polarization oscillations at the
Fourier frequency). The stochastic-field CPT line shape is then
obtained by averaging over these static line shapes weighted
by the likelihood that a particular modulation frequency will
appear in a long-time history of the random process. With this
theory, the broadening of CPT line shapes is seen to arise from
those Fourier components of the stochastic process that lead
to a splitting of the CPT line shape, and the amplitude increase
comes from the fast Fourier components of the stochastic
process that lead to destruction of electronic-spin polarization.

While the present work has looked into the CPT signal
amplitude S and the CPT linewidth, the actual utility of
CPT signals in UAP devices is defined by the quality
factor S/(N�ν1/2), where N is the CPT-signal noise. For
the typical CPT signal generation process discussed here,
where an electronic-spin polarization, 〈Sz〉, is developed in
the vapor, changes in polarization lead to large transients in
the transmitted light intensity as atomic population transitions
across the Zeeman sublevels. This is illustrated in Fig. 10,
where we show the CPT signal (p = 0) on the same scale as
the 〈Sz〉-induced transients in the transmitted light intensity.

UAP device quality factors including CPT-signal noise are
a subject for future research. However, it is worth noting
that various research groups have devised more sophisticated
techniques for CPT signal generation, which essentially elim-
inate 〈Sz〉 generation: push-pull optical pumping [30], lin⊥lin
excitation [31], and CPT by phase-delayed bichromatic fields
[32,33]. The common thread to these techniques is that the field
is modulated between right-circularly and left-circularly polar-
ized light at a microwave frequency. As a consequence, while
no net angular momentum is transferred to the vapor (i.e., the
noncoherent dark state is eliminated), the coherent dark state is
preserved. For these more sophisticated techniques, it is quite
likely that the stochastic polarization fluctuations considered
here would have relatively little effect on the CPT signal’s
noise, so that our results regarding S and �ν1/2 would likely
apply directly to UAP devices employing those techniques.
We intend to explore CPT signals and polarization noise for
these other CPT signal generation procedures in future work.
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