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Cavity-mediated cooling of a trapped �-type three-level atom using a standing-wave laser field
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We propose a ground-state cavity-mediated cooling scheme for a trapped atom, which is in the � configuration
and confined inside a high-finesse optical cavity, using a standing-wave cooling laser. The carrier transition
can be prohibited by placing the atom at the node of the cavity field, and the blue-sideband transition can be
simultaneously eliminated by exploiting quantum interference via tuning the frequency of the cooling laser.
As a consequence, the ground-state cooling for the trapped atom can be achieved. Moreover, we numerically
demonstrate the superiority by placing the atom at the antinode of the standing-wave cooling laser as compared
with the running-wave cooling laser, and the robustness of the scheme using the standing-wave laser. Meanwhile,
the cooling rate can reach the same order of magnitude as that obtained in the cavity–electromagnetically-
induced-transparency cooling scheme, and the explicit expression for the final phonon number in higher order is
also presented.
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I. INTRODUCTION

Laser cooling is now the basis of many areas of physics
and technology, from the probe of quantum properties of
matter [1], to atomic clocks with high accuracy [2], to the
realization of an optical one-way barrier for neutral atoms [3].
Thus variants of cooling methods, such as Doppler cooling
[4], Sisyphus cooling [5], dark-state cooling schemes [6,7],
resolved-sideband cooling [8], etc., have been proposed to cool
down the atoms or ions. These technical developments greatly
promote atom manipulation and have opened a new period
in cavity quantum electrodynamics (QED) experimentation,
since a single emitter strongly coupled to optical resonators
forms a promising basis for the implementation of quantum
networks [9,10]. Therefore, the control of the motional degrees
of an atom inside the resonator is a vital step in cavity-QED
implementation in an optical domain. Cavity QED, as a
workhorse of the investigation of open quantum systems,
plays an important role in quantum information science and in
the fundamental testing of quantum coherence and quantum
measurement [11–13].

It has been experimentally demonstrated that quantum
interference effects between the atomic states play a key role in
the cooling of atoms or ions [14]. If the cavity field couples to
the motion of the trapped atom, further quantum interference
effects can emerge that will increase the cooling efficiency
[15–18]. By combining the quantum interference [19] and
the cavity QED, the phenomenon of cavity-induced electro-
magnetically induced transparency (EIT) has been exploited
to obtain a ground-state cooling scheme with high cooling
efficiency [20], which has been demonstrated in the experiment
of confining a single cesium atom by a dipole trap inside a
high-finesse optical resonator, in which theoretical predictions
and experimental results show remarkable agreement [21].
These results open the possibility for the realization of an
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efficient photonic interface based on single atoms. However,
due to the existence of the blue-sideband transition, the zero
heating rate in the leading order of the Lamb-Dicke parameter
cannot be achieved. For a ground-state cooling scheme for
a trapped atom outside the optical resonator using EIT, in
order to eliminate the blue-sideband transition, Zhang et al.
proposed the cooling scheme using a standing-wave cooling
laser [22]. In addition, in 1992, Cirac et al. [23] have pointed
out that by locating the atom at the node or antinode of
the standing-wave laser, substantial cooling behaviors can be
explored, which are extremely different from that using the
running-wave lasers. Thus employing a standing-wave laser
can offer the opportunity to obtain the lower final temperature
for a trapped atom or ion inside a high-finesse optical resonator.

In this paper, we present a ground-state cooling scheme
for a trapped �-configuration atom confined inside a high-
finesse optical cavity, which can be cooled down by using
a standing-wave cooling laser. The carrier transition can be
prohibited by placing the atom at the node of the cavity
field, where the atom can not be irradiated by the field in the
zeroth-order Lamb-Dicke parameters. In addition, the atom
should be located at the antinode of the standing-wave cooling
laser at the same time, where the atomic motion does not couple
to the laser characterized by the leading order of the Lamb-
Dicke parameters. Via tuning the frequency of the cooling
laser so that the involved one cavity and two laser photons
fulfill the three-photon resonance condition, the blue-sideband
transition is eliminated by exploiting the quantum interference
effect. Therefore, the ground-state cooling can be achieved in
the leading-order expansion of the Lamb-Dicke parameter.
More precisely, we present the explicit expression for the
steady-state phonon number in the higher-order Lamb-Dicke
parameter. The cooling rate can also reach the same order of
magnitude as that obtained in the cavity-induced EIT scheme
[20]. The paper is organized as follows: in Sec. II, the model
is introduced and the master equation for the atomic motion
is derived. In Sec. III, the cooling behavior is investigated in
the perturbation method. The numerical simulations for the

053408-11050-2947/2013/87(5)/053408(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.053408


ZHEN YI, GAO-XIANG LI, AND YA-PING YANG PHYSICAL REVIEW A 87, 053408 (2013)

system are presented in Sec. IV and finally the conclusion is
drawn in Sec. V.

II. THE MODEL

A. Basic equation

We consider a �-configuration atom confined inside a
high-finesse optical cavity by an external harmonic trapping
potential with frequency ν and irradiated by a standing-wave
laser field of frequency ωL, while the cavity is weakly pumped
by another laser field with frequency ωp and Rabi frequency
�p. The atomic center-of-mass oscillates in one dimension
along the x axis and is initially centered at the node of the
cavity field and the antinode of the standing-wave cooling
laser at the same time. The physical setup and the atomic level
configuration are sketched in Fig. 1. The atom is comprised of
an upper state |e〉 with level frequency ωe and two ground states
|g1〉 and |g2〉 with level frequencies ω1 and ω2, respectively.
The atomic dipole transition |g1〉 ↔ |e〉 is driven by the
standing-wave laser field with Rabi frequency �L, and the
transition |g2〉 ↔ |e〉 is coupled to the field of the optical
resonator of frequency ωc with the strength g(x). The decay of
the optical cavity to the external environment is characterized
by linewidth κ , and the excited state |e〉 dissipates into the state
|gj 〉 with rate γj (j = 1,2), where the total radiative linewidth

FIG. 1. (Color online) (a) The setup for the cooling dynamics of
the center-of-mass motion of a trapped atom. The atom is confined
inside a high-finesse optical cavity with coupling constant g(x) and
irradiated by a standing-wave laser field with Rabi frequency �L.
Initially, the atom is centered at the node of the cavity field and the
antinode of the standing-wave cooling laser at the same time. The
cavity is pumped by a weak laser field with strength �p and decays
with rate κ . θL(θc) denotes the angle between the axis of the motion
and the laser (cavity) wave vectors. (b) Relevant atomic transitions.
Atomic transition |g1〉 → |e〉 is driven by the standing-wave laser
field, and the cavity field couples to the transition |g2〉 → |e〉. δ1 and
δc2 are the detunings between the photon fields and the corresponding
atomic transitions. The excited state |e〉 dissipates spontaneously into
states |g1〉 and |g2〉 with rates γ1 and γ2, respectively.

γ satisfies the relation γ = γ1 + γ2. In the frame of rotation
with the lasers’ frequencies, the Hamiltonian of this system is
written as (h̄ = 1)

H = Hext + Hat + Hcav + HL−cav + HL−at + Hat−cav, (1)

where the individual Hamiltonians describing the external
atomic motion, atomic internal degrees of freedom, and cavity
mode in the right hand side are

Hext = ν
(
b†b + 1

2

)
,

Hat = −δc2|e〉〈e| + (δ1 − δc2)|g1〉〈g1| + 
|g2〉〈g2|, (2)

Hcav = −
a†a,

and the laser-cavity, laser-atom, and cavity-atom interactions
are described by

HL−cav = �p

2
(a + a†),

HL−at = �L

2
cos(kL cos θLx)(|e〉〈g1| + |g1〉〈e|), (3)

Hat−cav = g(x)(|e〉〈g2|a + a†|g2〉〈e|).
Here b and a are the annihilation operators of the phonon
field describing the vibrational motion of the atom and cavity
field, respectively. The detunings of cavity and laser fields
from the corresponding atomic transitions are given by δc2 =
ωc − (ωe − ω2) and δ1 = ωL − (ωe − ω1), respectively, while

 = ωp − ωc is the detuning of pumping laser from the cavity
field. The coupling coefficient between the cavity field and
the atom is g(x) = g sin(kc cos θcx), where kc(kL) is the wave
number of the cavity mode (the laser field), and θc(θL) gives the
orientation of the cavity wave vector (laser field vector) with
respect to the axis of motion. The atom’s position operator x

is expressed as x = ξ (b + b†), where ξ = √
h̄/2Mν denotes

the size of the ground-state wave packet with M the mass of
the atom.

The time-dependent system is described by the master
equation

d

dt
ρ = −i[H,ρ] + Lρ + Kρ, (4)

where the atomic dissipations and the cavity decay are
described by the Liouvillian operators

Lρ =
∑

j

γj

2
(2|gj 〉〈e|ρ̃|e〉〈gj | − |e〉〈e|ρ − ρ|e〉〈e|),

(5)
Kρ = κ

2
(2aρa† − a†aρ − ρa†a),

with γj and κ the damping rates of the excited atomic level
and photons, respectively, and ρ̃ indicating the atomic motional
recoil due to the emission of a photon, related to the angular
distribution Nj (θ ) by the expression [24]

ρ̃ =
∫ 1

−1
Nj (θ )eikj x cos θρe−ikj x cos θd cos θ. (6)

Note that Nj (θ ) are evaluated by taking into account the
geometry of the setup.

In the following, we assume that the strength of the laser
driving the cavity is sufficiently weak and in the regime that the
average photon number of the cavity mode |ε|2 ≡ | �p/2


+iκ/2 |2 is
much smaller than unity. Therefore, it is feasible to investigate
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the cooling dynamics in the cavity-atom Hilbert space that
contains at most one excitation of the cavity mode, which is
spanned by a group of states

{|e,0〉,|g1,0〉,|g2,0〉,|g2,1〉}. (7)

For later convenience we denote the states in the form:
|e,0〉 ≡ |e〉, |g1,0〉 ≡ |g1〉, |g2,0〉 ≡ |g2〉, and |g2,1〉 ≡ |1〉.
Within these states, we rewrite HL−cav and Hat−cav in Eq. (3)
and the superoperators Kρ in Eq. (5) as

HL-cav = �p

2
(|g2〉〈1| + |1〉〈g2|),

Hat-cav = g(x)(|e〉〈1| + |1〉〈e|), (8)

Kρ = κ

2
(2|g2〉〈1|ρ|1〉〈g2| − |1〉〈1|ρ − ρ|1〉〈1|),

and the sum of the Hamiltonians Hat and Hcav becomes the
same form as Hat because of the zero energy frequency of the
state |g2,1〉 in the rotating frame, while the other terms remain
unchanged.

B. Reduced master equation for atomic motion in the
Lamb-Dicke limit

In the Lamb-Dicke regime, we expand the Hamiltonian
up to the first order of the Lamb-Dicke parameter η =
k
√

h̄/2Mν, which scales the mechanical effects of light on
the atomic motion. We define ηL = η cos θL and ηc = η cos θc

to characterize the mechanical effects induced by the cooling
laser and cavity field, respectively, where we have assumed that
wave numbers of cavity kc and the laser kL are approximately
equal: k ≈ kc ≈ kL. Thus the Hamiltonian comes into the form

H = Hext + H0 + H1, (9)

where H0 is the Hamiltonian in the zeroth-order expansion of
η and is given by

H0 = −δc2|e〉〈e| + (δ1 − δc2)|g1〉〈g1| + 
|g2〉〈g2|
+ �p

2
(|g2〉〈1| + |1〉〈g2|) + �L

2
(|e〉〈g1| + |g1〉〈e|),

(10)

while H1 is the Hamiltonian in the first-order expansion of η

and is written in the form H1 = V1(b + b†), in which

V1 = ηcg(|e〉〈1| + |1〉〈e|). (11)

Then we can rewrite the master equation of this system as

d

dt
ρ = L0eρ + L0ρ + L1ρ + L2ρ, (12)

where the zeroth-order Liouvillian operators

L0ρ = −i[H0,ρ] + L0sρ + Kρ (13)

describe the internal atomic and cavity degrees of freedom
without coupling to the phonon mode and

L0sρ =
∑

j

γj

2
(2|gj 〉〈e|ρ|e〉〈gj | − |e〉〈e|ρ − ρ|e〉〈e|) (14)

represents the atomic spontaneous emission without the
influence of the recoils by the emission of photons. The
Liouvillian operators

L0eρ = −i[Hext,ρ] (15)

and

L1ρ = −i[H1,ρ] (16)

describe the vibrational motion of the trapped atom and the
mechanical effect on the atom induced by the cavity field. The
remaining Liouvillian operator

L2ρ =
∑

j
αj

γj

2
η2

j |gj 〉〈e|(bρb† + b†ρb

− bb†ρ − b†bρ + H.c.)|e〉〈gj | (17)

describes the diffusion caused by the recoils of the emission
of photons, with

αj =
∫ 1

−1
d cos θ cos2 θNj (θ ) (18)

the angular dispersion of the atom momentum due to the
spontaneous emission of photons and equal to 2

5 for the usual
dipole transition [24]. By adiabatically eliminating the internal
atomic and cavity degrees of freedom and making use of
the second-order perturbation method with respect to η [23],
we obtain the time-dependent reduced density matrix for the
phonon mode μ in the form

d

dt
μ = [S(ν) + D](bμb† − b†bμ) + [S(−ν) + D]

× (b†μb − bb†μ) + H.c., (19)

where S(ν) is the two-time correlation function of atomic and
cavity operators and D is the diffusion coefficient, which are,
respectively, expressed as

S(ν) =
∫ ∞

0
dteiνt 〈V1(t)V1(0)〉st,

(20)
D =

∑
j
αj

γj

2
η2

j Tr{σegj
σgj eρst}.

It is noted that the transition operators are σmn = |m〉〈n|, where
{|m〉,|n〉} = {|e〉,|g1〉,|g2〉,|1〉}.

C. Rate equation

According to Eq. (19), one can directly derive the rate
equation for the occupation probability pn = 〈n|μ|n〉 of the
phonon number state |n〉 as

d

dt
pn = (n + 1)A−pn+1 − [(n + 1)A+ + nA−]pn

+ nA+pn−1, (21)

where

A± = 2Re{S(∓ν) + D} (22)

are the heating and cooling coefficients. Hence the mean
phonon number 〈n〉 with the time evolution obeys the equation

〈ṅ〉 = −(A− − A+)〈n〉 + A+. (23)

Then we can easily obtain the steady-state mean phonon
number and cooling rate

nst = A+
A− − A+

, W = A− − A+, (24)
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respectively. Obviously, when the heating coefficient A+
becomes zero, the mean phonon number arrives at zero in
the long time limit.

III. ANALYSIS OF CAVITY-MEDIATED COOLING
BEHAVIOR FOR THE TRAPPED ATOM IN THE

PERTURBATION METHOD

A. Explicit expressions for the heating and cooling coefficients

By using the quantum regression theory [25], the two-time
correlation function S(ν) can be calculated from single-time
averages 〈σmn〉 = Tr{|m〉〈n|ρ}, and the time evolution of
these elements can be derived from Eq. (13) and governed
by the equations

〈σ̇ee〉 = −γ 〈σee〉 + i
�L

2
(〈σg1e〉 − 〈σeg1〉),

〈σ̇g1g1〉 = γ1〈σee〉 + i
�L

2
(〈σeg1〉 − 〈σg1e〉),

〈σ̇g1e〉 =
(
iδ1 − γ

2

)
〈σg1e〉 + i

�L

2
(〈σee〉 − 〈σg1g1〉),

〈σ̇11〉 = −κ〈σ11〉 + i
�p

2
(〈σg21〉 − 〈σ1g2〉),

〈σ̇g2g2〉 = κ〈σ11〉 + γ2〈σee〉 + i
�p

2
(〈σ1g2〉 − 〈σg21〉),

〈σ̇g21〉 =
(
i
 − κ

2

)
〈σg21〉 + i

�p

2
(〈σ11〉 − 〈σg2g2〉),

〈σ̇1e〉 =
(

iδc2 − γ + κ

2

)
〈σ1e〉 − i

�L

2
〈σ1g1〉 + i

�p

2
〈σg2e〉,

〈σ̇1g1〉 =
[
i(δc2 − δ1) − κ

2

]
〈σ1g1〉 − i

�L

2
〈σ1e〉 + i

�p

2
〈σg2g1〉,

〈σ̇g2e〉 =
[
i(δc2 + 
) − γ

2

]
〈σg2e〉 − i

�L

2
〈σg2g1〉 + i

�p

2
〈σ1e〉,

〈σ̇g2g1〉 = i(
 − δ1 + δc2)〈σg2g1〉 − i
�L

2
〈σg2e〉 + i

�p

2
〈σ1g1〉.

(25)

However, because of the small laser-cavity coupling strength, it
is adequate to employ the perturbation method in �p, and then
we can obtain the analytical expressions of heating and cooling
coefficients A± in Eq. (22) in the order �2

pη2 by neglecting
the terms in higher orders. In the following we use 〈σ (i)

mn〉(i =
0,1,2) to indicate the ith order of the averages in �p. For
steady-state solutions in the zeroth order of �p, we can easily
obtain 〈σ (0)

g2g2
(∞)〉 = 1 and the other elements are equal to zero,

which coincides with the physical situation that when there is
no laser driving on the cavity mode, the cavity field is in a
vacuum and the atom stays in its ground state at the steady
state of the system.

Then the first-order steady-state solutions 〈σ (1)
mn(∞)〉 can be

obtained by substituting 〈σ (0)
g2g2

(∞)〉 = 1 into Eq. (25), which
are given by

〈
σ

(1)
g21(∞)

〉 = i�p/2

i
 − κ/2
,

〈
σ

(1)
1g2

(∞)
〉 = i�p/2

i
 + κ/2
, (26)

and all the other first-order terms are zero. Follow-
ing the same procedure, we can obtain the second-order

steady-state solution

〈
σ

(2)
11 (∞)

〉 = �2
p/4


2 + κ2/4
(27)

with all the other solutions zero. Since the atom is located
at the node of the cavity field, the cavity field can not drive
transition |1〉 → |e〉. Thus the population in the state |e〉 is zero
and the diffusion term D that is proportional to the steady-state
population in state |e〉 also becomes zero.

By making use of the quantum regression theorem, the
two-time correlation function S(±ν) can be obtained after
some calculations. And then A± can be immediately calculated
and written in the form

A± = g2η2
c |ε|2γ (
 − δ1 + δc2 ∓ ν)2

f (
 ∓ ν)
, (28)

where the denominator is

f (
 ∓ ν) =
[

(
 + δc2 ∓ ν)(
 − δ1 + δc2 ∓ ν) − �2
L

4

]2

+ γ 2

4
(
 − δ1 + δc2 ∓ ν)2. (29)

It is obvious that the heating coefficient A+ becomes zero
when the relation δ1 = 
 + δc2 − ν in the leading order of the
expansion in η, which means that both the carrier- and blue-
sideband transitions are eliminated. Meanwhile the cooling
rate W = A− − A+ is given by

W = 4g2η2
c |ε|2γ ν2

[
2ν(2ν + δ1) − �2

L

4

]2 + γ 2ν2
. (30)

We can easily find out that the maximal value of W is

taken under the condition 2ν(2ν + δ1) = �2
L

4 . Therefore, the
detunings of the laser and cavity fields from the atomic
transitions should satisfy the equations

δ1 = −2ν + �2
L

8ν
, δc2 = −
 − ν + �2

L

8ν
, (31)

and the cooling rate becomes

W = 4g2η2
c |ε|2

γ
, (32)

with

|ε|2 =
∣∣∣∣ �p/2


 + iκ/2

∣∣∣∣
2

(33)

the mean number of intracavity photons when no atom is
present.

B. Cooling and heating scattering processes

In order to acquire the physical insight into the cooling
scheme, especially the success in eliminating heating pro-
cesses in theory, we sketch the heating and cooling scattering
processes in Fig. 2, where |n〉 represents the phonon number
state. In the following we will illustrate the scattering processes
to explain how the scheme can succeed in the elimination of
carrier- and blue-sideband transitions. Initially, the system is in
the state |g2〉 and transits into the state |1〉 via irradiation of the
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FIG. 2. (Color online) Schematic illustration of the cooling and
heating scattering processes. The carrier transition |g2〉 → |1〉 →
|e〉 is prohibited by locating the atom at the node of the cavity
field. The blue-sideband transition |g2,n〉 → |1,n〉 → |e,n + 1〉 can
destructively interfere with the transition |g1,n + 1〉 → |e,n + 1〉
leading to the elimination of the transition, which is shown by the
blue solid lines. The cooling transition is shown by the red dotted
lines.

driving laser with strength �p. Due to the location of the atom
at the node of the cavity field, the carrier transition |1〉 →
|e〉 is prohibited. In addition, the blue-sideband transition
|g2,n〉 → |1,n〉 → |e,n + 1〉 mediated by the cavity field can
destructively interfere with the transition |g1,n + 1〉 → |e,n +
1〉 that is driven by the standing-wave laser with strength
�L, under the condition that the involved one cavity photon
and two laser photons fulfill the three-photon resonance, i.e.,
δ1 = 
 + δc2 − ν. The complete destructive interference leads
to the elimination of the blue-sideband transition, which is
indicated by the blue solid lines in Fig. 2. Via utilizing
the quantum interference in the blue-sideband transition,
none of the population injects into the states |e,n + 1〉 and
|1,n + 1〉. Therefore, the heating scattering cannot occur and
the coefficient A+ can achieve zero.

As compared with the ongoing EIT-control of a single atom
in an optical resonator, in which the results can set the basis
to the realization of the photonic interface based on the cooled
single atoms, we obtain a zero heating rate in the leading
order of Lamb-Dicke parameters, which can be considered as
an improvement on the experiment. Meanwhile, the cooling
scattering process is indicated by the red dotted lines. Because
of the prohibition of the transition |e,n − 1〉 ↔ |1,n − 1〉 by
locating the atom at the node of the cavity field, there is no
population injection into the state |1,n − 1〉, leading to no
cooling scattering via the cavity decay κ , which coincides
with the cooling rate in Eq. (28). However, in the limit γ � κ ,
the cooling rate can still reach the same order of magnitude as
that obtained in the cavity-induced EIT scheme in the case of
a far-off resonant [20].

Distinct from the results in Ref. [22], where via utilizing
two-photon resonance heating scattering is prohibited, in this
paper one cavity photon is involved to form three-photon
resonance to eliminate the blue-sideband transition. The
obtained cooling limits of atomic motion are both zero in the
zeroth order of the Lamb-Dicke parameter, and cooling rates
are in the same form by letting εg = �g therein. However, in a
higher order of the Lamb-Dicke parameter, we will show that
the cooling behavior is related to the cavity.

IV. NUMERICAL SIMULATIONS

In order to compare the cooling behavior with standing-
wave laser, we apply a running-wave cooling laser to couple the
atomic transition |g1〉 ↔ |e〉. The Hamiltonian in zeroth order
of η is unchanged while the mechanical effects on the atomic
motion are governed by a new Hamiltonian H ′

1 = V ′
1(b + b†)

with

V ′
1 = ηcg(|e〉〈1| + |1〉〈e|) + iηL

�L

2
(|e〉〈g1| − |g1〉〈e|), (34)

where ηL characterizes the mechanical effect caused by the
running-wave laser. Following the same procedure as above,
it can be verified that the new heating and cooling coefficients
A± are the same form as Eq. (28) up to the order of �2

pη2 and
thus the zero cooling limit can be also achieved in the order
of O(�2

pη2). However, the differences in higher order on the
cooling behavior between standing- and running-wave lasers
will be numerically shown in the following.

We follow the parameters taken in the EIT-control experi-
ment of a cesium atom [21], in which the atom is located in a
dipole trap and subsequently transported into a high-finesse
cavity. The trap frequency and damping rate are, respec-
tively, ν/2π = 0.2 MHz and κ/2π = 0.4 MHz. The relevant
�-configuration atomic levels are comprised of the hyper-
fine ground states |g1,2〉 = |2S1/2,F = 3,4〉 and the excited
state |e〉 = |2P3/2,F = 4〉. With the fixed experimental pa-
rameters γ /2π = 2.6 MHz,�p/2π = 0.23 MHz,�L/2π =
2.8 MHz,
/2π = 2.3 MHz, and g/2π = 3.6 MHz. The
mean intracavity photon number 2.5 × 10−3 validates the
assumption that there is at most one photonic excitation in
the cavity-atom system, and the values of two detunings δ1,δc2

are determined by Eq. (31). The Lamb-Dicke parameters are
ηc = ηL = 0.1 along the cavity and laser wave vectors [24].
With these parameters, we carry out a numerical simulation
by directly calculating the master equation in Eq. (12) in a
truncated basis with N = 10 phononic excitations [26], which
is presented in Fig. 3. Dashed curve (i) displays the cooling
by using a running wave to couple the transition |g1〉 ↔ |e〉,
where the final phonon number achieves about 1.37 × 10−3.
Solid curve (ii) displays the cooling by using a standing wave
to drive the transition |g1〉 ↔ |e〉, and the final phonon number
achieves a lower value of about 8.7 × 10−4. The dash-dotted
line (iii) is plotted with the analytical time-dependent solution
of the phonon number determined by Eq. (23), which shows a
match with the numerical simulation in curve (ii). Comparing
curve (i) with (ii), we can easily find that for the standing-wave
laser case the final phonon number is lower and the cooling rate
is faster than those for the running-wave laser case. Although
the cooling limits are both zero in the order O(�2

pη2
c ), the

differences can be numerically shown which are caused by the
higher-order scattering processes.

In order to clearly see the higher-order scattering processes
on the cooling behavior, especially the exact numerical result in
final phonon population different from zero, which is obtained
analytically in the order of O(�2

pη2), we calculate the cooling
limit for the atomic motion to a higher order in �2

pη2 for
the standing-wave case. For the much low phonon occupation
shown numerically, it is adequate to calculate the steady state
of the system within the space containing at most one phonon
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FIG. 3. (Color online) Numerical simulation of the cool-
ing dynamics with the parameters: ν/2π = 0.2 MHz, κ/2π =
0.4 MHz, γ /2π = 2.6 MHz, �p/2π = 0.23 MHz, �L/2π =
2.8 MHz, 
/2π = 2.3 MHz, and g/2π = 3.6 MHz, and ηc = ηL =
0.1. The values of two detunings are determined by Eq. (31). In dashed
curve (i), the running-wave cooling laser is applied, and in solid curve
(ii), the standing-wave cooling laser is applied. The dash-dotted line
(iii) shows the analytical result governed by Eq. (23).

excitation. The space is spanned by the states |i,j 〉, in which
|i〉 is the cavity-atom states shown by Eq. (7) and |j 〉(j =
0,1) is the phonon number states. The time evolution for the
elements of the density matrix ρij,i ′j ′ is governed by the master
equation in Eq. (12), which contains 64 equations. Under the
assumptions of three-photon resonance δ1 = 
 + δc2 − ν and
the mean number of intracavity photons |ε|2 much lower, the
steady state of the system is approximated in the form

ρst ≈ |�〉〈�| + P (11)
g2g2

|g2,1〉〈g2,1| + O
(
�4

pη2
c

) + O
(
�2

pη4
c

)
(35)

with the state function

|�〉 = |g2,0〉 + �p/2

h(
)
|1,0〉 − gηc�p

�Lh(
)
|g1,1〉 + O

(
η2

c

)
, (36)

and the population probability on state |g2,1〉

P (11)
g2g2

= 4κ|ε|2
γ�2

L

{ γ 2

4 + ν2

|h(
)|2 |h(
 − ν)|2 + 2νg2η2
c

|h(
)|2

×
[

 − ν + κ

2νγ

(
γ 2

4
− ν2

)

+ κ

γ
(2
 − ν)

ν2 + γ 2

4

|h(
)|2
]}

. (37)

Here h(
) = 
 + iκ/2 and we omit the normalization, and
the cooling limit for the atomic motion is about

nst ≈ (gηc�p)2

�2
L|h(
)|2 + P (11)

g2g2
. (38)

Therefore, in the higher order of �2
pη2, the cooling behavior is

related to the cavity. For example, the large cavity dissipation
rate κ may prevent a lower cooling limit and the high-Q cavity
will benefit for a lower cooling result. Distinct from the results
in Ref. [22], the cooling limit in Eq. (38) can explicitly show
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FIG. 4. (Color online) Numerical simulations of the final phonon
number nst as a function of �L with the atom fixed at the
node of the cavity field and the antinode of the laser field
in (a) and the phase deviation of the atom with the cooling
laser strength �L/2π = 2.8 MHz in (b). The parameters are
ν/2π = 0.2 MHz, κ/2π = 0.4 MHz, γ /2π = 2.6 MHz, �p/2π =
0.23 MHz, �0

L/2π = 2.8 MHz, 
/2π = 2.3 MHz, and g/2π =
3.6 MHz, and ηc = ηL = 0.1.

the role that the cavity plays in the cooling behavior in the
higher-order scattering processes.

It can be verified that our cooling scheme using the
standing-wave laser is also robust against the fluctuation of
Rabi frequencies and the position deviation of the atom. In
Fig. 4(a) we numerically simulate the final phonon number
with the change of the Rabi frequency �L of the standing-wave
laser that couples the transition |e〉 ↔ |g1〉. It can be seen that
when the fluctuations of the Rabi frequencies are about 10%,
the final phonon number may be affected in the range of about
10−3. For the more realistic Rabi frequency fluctuations of
about 2%, the final phonon number will keep in a higher order
of precision. In addition, in our scheme it is required that the
atom should be located at the node of the cavity field and
the antinode of the cooling laser. However, the atom can not
be fixed even if the position of the atom within the standing
wave can be determined with a precision of up to λ/100 in
the experimental realization [27]. In Fig. 4(b) the numerical
simulation of the final phonon number as a function of the
position deviation of the atom is presented. When the position
error reaches up to 1% of the wavelength, the final phonon
number is only affected in the range of the order of magnitude
10−4. Note that when the atom is deviated from the fixed
position, the cavity field dissipation channel will be involved
in the scattering processes. This numerical result will also
indicate the cavity-QED effect on the laser cooling.

Finally, it should be pointed out that even though the cooling
limits induced by the standing- and running-wave cooling
lasers are not distinguished from each other in the order of
O(�2

pη2), they are different in higher-order processes. For
example, for the transition into the state |g1,n + 1〉 in the
order of �2

pη2, in the running-wave case higher-order heating
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transition into the excited state will be induced while in the
standing-wave case by locating the atom at the antinode the
heating transition can be suppressed because of the different
mechanical effects on the atom described in Eqs. (34) and (11).
This also coincides with the numerical results, which can
demonstrate the superiority of the scheme by locating the atom
at the antinode of the standing-wave cooling laser.

V. CONCLUSION

In summary, we have proposed a ground-state cooling
scheme for a trapped �-configuration atom confined inside
a high-finesse cavity by using a standing-wave cooling laser.
Two heating mechanisms, the carrier- and the blue-sideband
transitions, can be simultaneously eliminated. The carrier
transition can be prohibited by placing the atom at the node
of the cavity field, where the atom can not be irradiated by
the cavity field in the zeroth-order Lamb-Dicke parameter.
In addition, the atom has been simultaneously located at
the antinode of the standing-wave cooling laser, where the

laser cannot couple to the atomic motion in the leading order
of Lamb-Dicke parameters. Via tuning the frequency of the
cooling laser to make the involved one cavity and two laser
photons satisfy the three-photon resonance condition, the blue-
sideband transition is eliminated by exploiting the quantum
destructive interference. Therefore, the motional ground state
can be achieved in the leading-order expansion of the Lamb-
Dicke parameter. We also present the more precise cooling
limit in the higher order. Moreover, the cooling rate can reach
the same order of magnitude as that obtained in the cavity-
induced EIT cooling scheme in the case of a far-off resonant.
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