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Determining electronic damage to biomolecular structures in
x-ray free-electron-laser imaging experiments
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The use of femtosecond pulses produced by x-ray free-electron-laser (XFEL) sources to image the structures
of biomolecules involves a competition between the elastic scattering of photons to form a diffraction pattern
and the damage initiated by inelastic collisions with the target. Since the electron density of the biomolecule
changes rapidly throughout its interaction with a femtosecond XFEL pulse, the diffraction process measured in
“diffract and destroy” experiments is, at best, partially coherent. It has been established that a detailed knowledge
of these electrodynamical processes may be used to ameliorate the effects of damage in diffractive imaging
experiments. It is shown here that, subject to conventional assumptions about the nature of the interactions, it is
possible to characterize the extent of electronic damage in biomolecular imaging experiments using XFELs and
to use this information transferably across similar systems. We develop a physical model of the interaction of a
coherent x-ray pulse with a molecular system that describes the dynamical electronic response of the molecule.
The resulting insights open a way forward for the measurement of atomic processes in such systems.
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I. INTRODUCTION

The determination of the structure of a biomolecule is a vital
step in the process of understanding its function. Biomolecular
structures drive the process of rational drug design and
the development of pharmaceuticals for the treatment or
prevention of disease. Of particular interest are membrane
proteins, which typically sit astride the bilipid membranes
that form barriers between cells and their environment. These
biomolecules control the passage of ions and small molecules
and regulate cellular function. X-ray crystallography is a
widely used technique that allows for near-atomic resolution
of biomolecular samples but it is difficult or impossible to
form high-quality crystals of membrane proteins for analysis.
Any advance in our ability to determine membrane protein
structures without forming large crystals is likely to be a
significant driver in the development of new pharmaceuticals.

Coherent diffractive imaging (CDI) [1] has been proposed
as an effective replacement for crystallography in the determi-
nation of biomolecular structures because it does not require
high-quality crystals. In CDI, a finite, noncrystalline sample
is illuminated by a coherent light source and the scattered
photons are collected by an area detector in the far field. The
Fourier-transform mapping between the wave field leaving
the vicinity of the scatterer and the wave field in the far-field
diffraction plane is utilized to enable direct determination of
a two-dimensional projection of the structure. The resolution
attainable using CDI is limited by the largest angle to which
scattered photons can be measured. Only the intensity of the
wave field can be measured so the imaging process necessarily
involves the restoration of the phase of the complex scattered
wave field, typically using an iterative projective algorithm
[2,3].

The interaction between x rays and the principal con-
stituents of biological materials, involving the “low-Z” ele-
ments carbon, nitrogen, and oxygen, is weak. An x-ray source
of immense brightness, such as an x-ray free-electron laser
(XFEL), is required to cause sufficient high-angle scatter to

enable the determination of molecular structures to atomic
resolution. The use of femtosecond pulses produced by
x-ray free-electron sources to determine the structures of
biomolecules has been the subject of active research since the
publication of a detailed theoretical study by Neutze et al. [4].
It was recognized in that article that the electrodynamical
processes driven by the interaction of such an intense pulse
with matter would inevitably destroy the sample. This has led
to the “diffract and destroy” paradigm [5] involving multiple
sample copies that guides current experimental design. The
time that one might expect the nuclear positions to remain in
their equilibrium configuration in such an experiment was also
estimated in [4], setting limits on the coherence of the desired
molecular structural information. This temporal window, of
approximately 10 fs, enables diffraction measurements to
reveal the dominant characteristics of the underlying electron
distribution, which is localized to atomic positions. Extensive
studies have also been performed on the use of tampers to
delay the onset of the Coulomb explosion and to extend the
time over which diffraction data can be collected [6–8].

Implicit in all these approaches are the assumptions
that damage processes lead to irretrievable and, ultimately,
catastrophic loss of structural information and that one must
somehow design the experiment so that all forms of damage are
reduced or eliminated while maximizing the diffracted signal
by increasing the incident flux. These conflicts between the
incidence of inelastic and elastic processes possess, however,
the characteristics of a competition that cannot be won by
brute force alone. The conventional atomic models by which
the rates of these processes are estimated indicate that the
rate of photoionization in first-row atoms exceeds that of
Thomson scattering by a factor of 10 at 10 keV [9]. An
experiment designed to determine a molecular structure by
scattering x rays from the electron density of the target is
actually dominated by photoabsorption events that trigger a
secondary cascade of Auger decay and electron recapture
processes that lead to further collisional ionization; photon
scattering is actually one of the least-favored events in the
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experiment. Nevertheless, it has already been shown that
molecular structures can be determined from diffraction data
under the proposed interaction conditions if due regard is
given to these electrodynamic processes in the reconstruction
algorithm [10].

Recent simulations have also demonstrated that the signal
can be separated from the isotropic background due to the
stochastic nature of the damage processes under realistic
interaction conditions [11]. It has also recently been demon-
strated experimentally [12,13] that the use of femtosecond
x-ray pulses with nanocrystalline biomolecular samples can
outrun both the electronic damage and the radiation-induced
structural disorder that it causes because of the persistence of
the ordered nuclear structure over the duration of the pulse.
Conventional crystallographic structure determination is more
robust than coherent diffractive imaging methods for aperiodic
structures because it utilizes only a finite number of Bragg
reflections as data that are used to fit trial molecular struc-
tures. Structure determination using CDI, however, utilizes a
continuous diffraction pattern and depends for its success on
a highly coherent wave field and the clear identification of the
zeros of that wave field. Even if the pulse is short enough that
there is no disorder to the nuclear structure, electronic damage
undermines both of these fundamental assumptions when
applied to very small nanocrystals or individual molecules.
Electronic processes occur on attosecond time scales, so
that the coupled system involving the electron density and
the radiation field evolves more rapidly than the nuclear
distribution.

Here we consider proposals to determine molecular struc-
tures using the diffract and destroy approach applied to
single molecules. We assume that sufficient data have been
collected to sample the diffraction pattern to a specified
resolution and that a suitable classification, orientation, and
averaging scheme has been implemented in order to construct
a three-dimensional data set from two-dimensional projections
of randomly oriented molecules [14,15]. The full diffraction
volume can then be phased using iterative methods [3] and a
complete molecular structure obtained if detailed knowledge
of the electrodynamical processes is included in the recovery
scheme [10]. We further assume no reliance on molecular
replacement strategies, so that structural information is ob-
tained directly from the scattering data.

In this paper we show that the recovery of molecular
structures from such partially coherent scattering data can
be made without reference to any specific model subject to
a number of general assumptions about the nature of the
scattering. It is shown that the general characteristics of
the electrodynamical processes enable information obtained
from the diffraction data involving a known structure to be
transferred to a general description of the degree of partial
coherence induced by the time-varying electron density of
any molecule of similar mass and composition. This allows
the three-dimensional structures of unknown molecules to
be determined without relying solely on electrodynamical
simulations in spite of the extensive electronic damage that
they endure. We also show that quantitative information
about the rates of these electrodynamical processes can be
inferred from the diffraction data obtained in an XFEL imaging
experiment.

II. CONSTRUCTION OF A SCATTERING MODEL

A. The electronic processes

Structural analysis is based on establishing a relationship
between the electronic structure of a single biomolecule and
the scattered far-field intensity under femtosecond XFEL pulse
illumination within the diffract and destroy approach. The
interaction of the pulse with the molecule causes inelastic
events, the most dominant of which is photoionization. While
any electron in the atom is a candidate for interaction, photons
of the energies produced by the XFEL are almost certain to
interact with the electrons of the inner shells of first-row atoms
and produce a core hole.

Values for the photoionization cross section of atoms or
ions may be obtained from online databases [16]. Using these
cross sections, the rate for a photoionization event is easily
calculated as Rph = σphnphot where nphot is the photon flux
through the material and σph is the cross section.

A secondary electronic process occurs in ionized atoms
with 1s holes. Core-hole states occupy energetically unfa-
vorable electronic configurations and in a very short time
(∼10 fs for carbon [17]), the atom relaxes. In the case of x
rays of energy 8–10 keV incident on low-Z materials, the
vast majority of relaxation (approximately 97% [18]) occurs
via an Auger process. The rate of Auger emission is given
by RAuger = 1/τAuger where τAuger is the Auger lifetime; these
are available in published tables [17]. We also expect some
electron recapture to occur late in an exposure as the molecule
becomes more heavily ionized, but we expect this process to
have little impact on diffraction data.

The occurrence of these processes renders the electronic
occupancies of the atoms which constitute the biomolecule
time-dependent quantities. Within an atomic superposition
model, the calculation of the time-varying occupancies in-
volves the solution of a set of coupled, linear differential
equations. These equations can be written in the form [18]

dNi,j

dt
=

n∑
k �=i,l �=j

(Rkl→ijNk,l − Rij→klNi,j ), (1)

where (i,j ) denotes the state of an atom, i refers to the number
of electrons in the 1s orbital and j refers to the number of
electrons in the 2s and 2p orbitals. The number of atoms in
this state is denoted Ni,j and Rkl→ij is the rate for transitions
from the state (k,l) to (i,j ).

B. The shell electron density

Rather than rely on tabulated form factors for ground-
state atoms we have adopted a simple electronic structure
model that readily accommodates the electronic state of
each atom without superfluous computation. The shell orbital
electron density was constructed using Slater’s rules [19]. This
approach employs a screened hydrogenic approximation to
describe the orbital wave function of an electron in an atomic
orbital. The functional form of these orbitals is given by

ψnlm(r) = Nnr
n−1 exp(−ζnr)Ym

l (θ,φ), (2)

where n is the principal quantum number of the orbital, l is
the azimuthal quantum number, m is the magnetic quantum
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number, and Nn is the normalization constant. The parameter
ζn represents both the effective nuclear charge and the principal
quantum number. For the first three shells this is defined
as ζn = (Z − s)/n where Z is the nuclear charge of the
atom and s is a semiempirical shielding constant, known as
Slater’s number [19]. The effects of orbital relaxation and
consequent modification of the effective exponents due to
the variable occupancies of different electronic states may be
readily incorporated in this model by extending the definition
of s to include highly excited inner-shell core-hole states.
The function Ym

l (θ,φ) is a spherical harmonic which gives
the angular dependence of the shape of the electronic shell.
In these simulations, all angular dependence of the wave
function is ignored, since the scattering is assumed to take
place from spherical centers of electron density. If one wishes,
more complicated descriptions of the electronic wave function
could be used, such as the Hartree-Fock or Hartree-Slater
models with no change to the essential workings of the
model. In the same way the vibrational modes of the system,
while neglected here, may be easily incorporated as nuclear
distribution functions.

Noting that the electron density is given as ρn = ψ∗
nψn, the

normalized orbital wave function yields an orbital density of
the form

ρn(r) = (2ζn)2n+1

(2n)!
r2n−2 exp(−2ζnr). (3)

In this model no distinction is made between orbitals of the
same n and ζn and differing l, which is also reflected in more
sophisticated electronic structure models.

C. The orbital form factor

The average scattered power in the far field for an individual
atom is proportional to the Fourier transform of the electron
density, referred to as the form factor. At the incident x-ray
energies of interest here it can be safely assumed that the
photon energy does not change during the scattering process.
In this model the only inelastic processes considered are
absorption events occurring on localized atomic positions.
The analysis presented here is analogous to the natural orbital
method of electronic structure theory [20] and shares the same
theoretical foundation.

We make the assumption that individual atomic electron
densities can be expanded in an orbital density basis, so that

ρatom(r) =
∑

γ

aγ ργ (r), (4)

where aγ is the occupancy of the orbital labeled by the shell
symbol γ , which generally takes values corresponding to 1s,
2s, or 2p for carbon, nitrogen, or oxygen, extended to 3s

or 3p for phosphorus and sulfur; these five elements and
hydrogen are the elemental constituents of almost all biological
substances. The atomic form factor can also be expanded in
terms of an orbital form-factor basis, so that

fatom(q) =
∑

γ

aγ fγ (q), (5)

where q represents a point in a three-dimensional diffraction
volume. To determine an analytic expression for the orbital
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FIG. 1. (Color online) Plots of the orbital form factors for carbon,
Z = 6, with increasing spatial frequency u, where q = 2πu. The 2s

and 2p orbital (solid line) decays more rapidly, decaying rapidly
for u > 0.2 Å

−1
. The 1s orbital (dashed line) contains almost all of

the high-resolution information (u > 0.5 Å
−1

) corresponding to 2 Å
resolution.

form factor we take the Fourier transform of the orbital electron
density defined in Eq. (3), yielding

fγ=n(q) = (2ζn)2n+1

q(2n)
Im

{
(2ζ + iq)2n

(4ζ 2 + q2)2n

}
. (6)

This formulation of the orbital form factor assumes that
molecular scattering is dominated by a superposition of
spherical atomic scatterers, which is why q in Eq. (5) is
replaced by q in Eq. (6).

The orbital form factors for carbon are plotted in Fig. 1. It
is evident that the high-resolution information required for
atomic-resolution imaging is primarily provided by the 1s

orbital and, therefore, inner-shell photoionization must have a
dramatic effect on the likelihood of successful reconstruction.
These calculations are in qualitative agreement with those of
Hau-Riege [21], but employ a less computationally expensive
approach.

D. Time-dependent atomic form factor

The electron occupancies of an atom in an illuminated
molecule change with time over the pulse. The simulations
here aim to represent an average over many pulses; the
experiment detailed in [5] requires the accumulation of many
repeated exposures in order to obtain atomic resolution in
three dimensions. This large amount of data, when constructed
into a three-dimensional volume using a classification and
orientation scheme, allows us to make the assumption, given
the assertion in Eq. (5), that all changes in the scattering
properties of each atomic type are confined to the occupancies
aZγ (t). That is, the individual atomic orbital occupancies
[Eq. (4)] are averaged over all atoms of the same type,
smoothing out the stochastic nature of the damage mecha-
nisms and making the occupancy a continuous function of
time. This “average atom” approximation is appropriate for
experiments, such as diffract and destroy molecular imaging,
that produce very large data sets, which when combined into a
three-dimensional diffraction volume will resemble a large-
scale ensemble average of the randomly fluctuating electronic
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state of the molecule. The stochastic fluctuations from the
mean inherent to the processes can be accommodated by
subtracting an isotropic q-dependent background term from
the measured intensities [11]. Furthermore, we assume that the
general forms of the orbital wave functions of the electrons
may be included in the Slater s factor, but these are small
effects compared to the variation in orbital occupancy. We
may, therefore, write an expression for the time-dependent
atomic form factor for species Z, as

fZ(q,t) =
∑

γ

aZ,γ (t)fZ,γ (q). (7)

Equation (7) can be regarded as an extension of the
time-dependent form factor presented by Hau-Riege et al. [6].
The principal difference is that our model recognizes the
differential depletion of different orbitals, while the model of
Hau-Riege et al. averages this depletion over all orbitals; the
depopulation of orbitals at different rates makes the variation
in the form factor with time q dependent.

The orbital occupancies aZγ (t) can be calculated by an
appropriate summation of the time-dependent state values
found by solving the rate equation (1). For example the
occupancy of the γ = 1s orbital can be calculated as

aZ,γ=1s(t) =
∑
i,j

NZ
(i,j )(t)

NZ
(i,j )(0)

i, (8)

for the case of the 1s orbital, and similarly for j in the case of
the 2s and 2p orbitals.

Figure 2 compares the form factor of neutral carbon calcu-
lated using this method to that obtained from crystallographic
tables [22]; the two are seen to be in good agreement.

E. Structure factors

A structure factor describes the x-ray scattering properties
of a complex molecule comprised of many atoms. When using
the model described here it is convenient to separate the atoms
into groups of their respective elements. The structure factor
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FIG. 2. (Color online) Plots of the atomic form factor for carbon,
Z = 6. The dashed line represents the form factor calculated using
the analysis presented here, and the solid line represents the tabulated
values [22]. For u > 0.4 Å

−1
the form factor is almost entirely due

to contributions from the 1s orbital density.

for a system of atoms in a molecule can therefore be written
as

F (q,t) =
∑
Z

∑
mZ

fZ(q,t) exp
(
iq · RmZ

)
, (9)

where mZ is the mth atom of element Z, located at position
RmZ

, with an atomic form factor fZ(q). The vector q represents
a point in a three-dimensional diffraction volume, and as the
form factor is assumed to be spherically symmetric, we set q =
|q|. The time dependence of the form factors follows Eq. (7).
It is assumed that the atomic centers at RmZ

are stationary
throughout the pulse, this is considered a valid assumption if
the pulses are shorter than 10 fs [4].

F. Calculation of intensity

The intensity is proportional to the structure factor mul-
tiplied by its complex conjugate, I ∝ F ∗F . The intensity
measured at the detector is assumed to be the time average of
the instantaneous intensities resulting from the time-dependent
structure factor over the life of the pulse. For a square pulse of
duration T we write

I (q) =
∑
Z1,Z2

1

T

∫ T

0
f ∗

Z1
(q,t)fZ2 (q,t)dt

×
∑

mZ1 ,mZ2

exp
[
iq · (

RmZ2
− RmZ1

)]
, (10)

providing an expression for the intensity expected from a
molecule with a time-varying electron density. An example
of the diffraction patterns simulated using this formulation are
shown in Fig. 3. The molecule chosen as a diffraction target is
bacteriorhodopsin, a light-harvesting molecule consisting of
2039 nonhydrogen atoms, including 1391 carbon atoms.

It should be noted that the intensity defined by Eq. (10) sep-
arates the unchanged structural components of the molecule
(the positions of the atoms RmZ

) from the time-dependent
components of the diffraction. Given the average-atom ap-
proximation [Eq. (7)], we now separate these two components
explicitly to yield

I (q) =
∑
Z1,Z2

TZ1 (q)AZ1,Z2 (q)T ∗
Z2

(q), (11)

where we define TZ(q) to contain the structural information
through the relation

TZ(q) =
∑
mZ

exp
( − iq · RmZ

)
, (12)

which is the Fourier transform of a series of Dirac δ functions
centered on the atomic nuclei of all atoms of species Z.
Following [10], we obtain AZ1,Z2 (q) from AZ1,Z2 (q,q), where

AZ1,Z2 (q1,q2) = 1

T

∫ T

0
fZ1 (q1,t)f

∗
Z2

(q2,t)dt

=
∑
γ1,γ2

1

T

∫ T

0
aZ1,γ1 (t)aZ2,γ2 (t)dt

× fZ1,γ1 (q1)fZ2,γ2 (q2)

=
∑
γ1,γ2

PZ1γ1,Z2γ2fZ1,γ1 (q1)fZ2,γ2 (q2), (13)
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FIG. 3. (Color online) A two-dimensional (2D) projection of
the simulated far-field diffracted intensity of bacteriorhodopsin
on a logarithmic scale, calculated according to Eq. (11), for the
(a) undamaged and (b) damaged cases. The insets (c) and (d)
provide a closeup of a region corresponding to ∼6 Å resolution.
The change in contrast between damaged and undamaged cases is
evident: there is an approximately ∼7% loss in contrast between
damaged and undamaged cases at 6 Å resolution; this number varies
with q. The amount of damage corresponds to an incident fluence
of 5 × 1012 photons/(100 nm)2 with a photon energy of 10 keV. The
edge of the array corresponds to a resolution of 1.085 Å.

where the form factors fZ,γ (q) are real-valued quantities
defined by Eq. (6). The elements AZ1,Z2 (q1,q2) form a matrix
A, which contains all of the dynamical information about
the system within the atomic scattering model. It is derived
from the elements of the time-averaged orbital population
matrix P, whose elements are PZ1γ1,Z2γ2 . The intensity is, as a
consequence, the diagonal part of the mutual optical intensity
J (q1,q2), which is defined by

J (q1,q2) =
∑
Z

∑
Z′

TZ(q1)AZ,Z′(q1,q2)TZ′(q2). (14)

This function describes the coherence properties of the
electromagnetic wave scattered by the time-dependent electron
density.

G. Summary of the scattering model

In formulating Eq. (11) some quite general assumptions
about the electrodynamic processes have been made. These
assumptions form an electrodynamical model of the scattering
process and are reiterated here in concise form.

It is assumed that the positions of the atoms are fixed
throughout their interactions with the x-ray field. This
assumption is considered reliable if the pulse duration is less
than ∼10 fs, and rules out any scattering interaction during the
“Coulomb explosion” of the molecule. The localized, stable
position of atomic centers enables the treatment of the atomic

postions as Dirac δ functions. Consequently, the contribution
of the positions of atoms in the far field is expressed as the
Fourier transform of a set of δ functions centered around the
atomic positions Rm [see Eq. (12)]. This is readily extended
to include vibrational amplitudes caused by thermal motion
provided the characteristic lengths of the associated probability
distributions are not too large.

It is assumed that the atomic electron densities may be
expanded as a set of orbital occupancies and that the electron
densities of the orbitals do not depend strongly on the degree
of ionization, so that the variability in the electronic state
of the molecule through the pulse is expressed in terms of
a time-dependent orbital occupancies. Any scatter from the
diffuse distribution of recaptured electrons is neglected. We
also note that the high-angle scatter that corresponds to the
high-resolution information in the detector plane is largely
dependent on core-shell electrons [21].

All scattering interactions between the molecule and the
x-ray field are assumed to involve interactions with a super-
position of atomic electron densities. The primary inelastic
interaction expected for objects consisting of biological
elements at the wavelengths typical of XFEL illumination
at atomic resolution is photoabsorption; Compton scattering
is neglected. Our expression for the total scattered intensity
[Eq. (10)] contains within it the signature of partial spatial
coherence because the fluctuations in the electron density
render the complex structure factor time dependent. The
total scattered intensity may be regarded as the weighted
superposition of intensities formed by scattering from the
instantaneous electron density. At the beginning of the pulse,
the molecule is presumed to be in its ground electronic state,
but at the end of the pulse it is left in a highly excited
nonequilibrium electronic state. The structure factors for
each electronic state sampled by the scattering process are
nontrivially related by a succession of electronic processes.
The total scattered intensity cannot, as a consequence, be
regarded as being proportional to the complex square of a
single structure factor derived from an electron density whose
spatial extent matches that of the target molecule.

The partially coherent scatter resulting from a damage-
affected molecule invalidates the main assumption of CDI,
which is the full coherence of the wave field leaving the
sample; there is no longer a simple mapping between
the detected intensity and the electron density. In general, if the
spatial coherence length of the wave field leaving the object
is at least twice as large as the largest spatial dimension of
the object, then the field may be considered fully coherent
with respect to the object, to a good approximation [23].
However, coherent imaging techniques are employed regularly
with sources of partially coherent light [24,25] using a modal
decomposition method [26]. It is evident that in the case of
biomolecular imaging at XFELs, the effect of the illumination
is to create disturbances in the electron density of the molecule,
through photoionization, Auger relaxation, and other events.
The spatial extent of these disturbances, when projected onto a
plane perpendicular to the propagation direction of the pulse, is
small compared to the mean diameter of the molecule. This can
induce a coherence length that is smaller than the dimensions
of the scattered field leaving the molecule. The field leaving
the object may be considered to be a certain type of partially
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coherent field produced by a quasihomogeneous secondary
source [[27], Sec. 5.3.2], provided that the likelihood of
photoionization is similar for all elements of the same species
in the molecule.

III. SOLVING FOR THE MODES

A. The molecule as a secondary source

Even if the illumination of the sample is fully coherent,
the mutual optical intensity of the scattered wave, Eq. (14),
may exhibit partial spatial coherence due to the effects of
time-averaged electrodynamical processes; the problem of
propagating partially coherent light fields from entirely static
scatterers is mathematically analogous to the problem of
propagating fully coherent light fields from dynamic scatterers.

It is convenient to write the mutual optical intensity,
Eq. (14), as an equivalent modal expansion in the manner
of Wolf [26],

J (q1,q2) =
∑

k

ηkψk(q1)ψ∗
k (q2). (15)

The diffracted intensity is obtained by setting q1 = q2, so that

I (q) =
∑

k

ηkψk(q)ψ∗
k (q). (16)

The functions ψk(q) represent mutually incoherent optical
modes that satisfy 〈ψj |ψk〉 = δjk , and ηk represents the
occupancy of the kth mode.

If the scattered light can be described as being emitted from
a planar, secondary, quasihomogeneous source, then the degree
of coherence can be approximated by a Gaussian function
based on a few parameters: the size of the molecule, the
wavelength of illumination, and the relative elemental com-
position. The degree of coherence measured for any one such
object holds for all such objects within any electrodynamical
model based on atomic scattering, photoabsorption, and Auger
emission and secondary ionization events determined by a
mean-field model of the molecule-ion potential. The degree
of partial coherence induced by damage can be calculated
by estimating the rates of the physical processes occurring
due to the illumination. We propose a simpler method in
which the matrix A is determined from experimental data
using a known structure of a similar size and composition
to the target molecule as a calibrator. The damage-induced
partial coherence can then be used to update an iterative phase
recovery algorithm for unknown molecules by rescaling the
intensity to compensate for the effect of damage. This is
analogous to using the known structure of a Young’s double
slit to measure the coherence of a source prior to imaging with
partially coherent diffractive methods [24,28]. We now extend
the theoretical framework of Quiney and Nugent [10] to show
how such a measurement could be performed.

B. Derivation of the eigenvalue equation

In terms of the parameters of the electronic structure model,
the mutual optical intensity within the molecular volume is
defined by

J (r1,r2) =
∑

Z1γ1,Z2γ2

ρZ1γ1 (r1)AZ1γ1,Z2γ2ρZ2,γ2 (r2), (17)

where ρZγ (r) is the orbital density of an electron in an atom of
element type Z and, as before, the orbital label is denoted by γ .
The matrix of average atomic populations P, whose elements
are denoted PZ1,Z2 , may be obtained from elemental and orbital
components; following Eq. (13), PZ1,Z2 = ∑

γ1,γ2
PZ1γ1,Z2γ2 .

As mentioned in Sec. II B, we apply a nodeless hydrogenic
spherically symmetric approximation to our orbital densities,
and therefore the 2s and 2p orbitals are indistinguishable in
our model.

We expand the mutual optical intensity in terms of a set of
orthonormal modes ψk , weighted by the modal occupancy ηk ,
using Mercer’s theorem [29]∑

Z1γ1,Z2γ2

ρZ1γ1 (r1)PZ1γ1,Z2γ2ρZ2γ2 (r2)

=
∑

k

ηkψk(r1)ψ∗
k (r2). (18)

To simplify we multiply both sides by an arbitrary mode
ψm(r2) and integrate over all space, so that∑

Z1γ1,Z2γ2

ρZ1γ1 (r1)PZ1γ1,Z2γ2

∫
ρZ2,γ2 (r2)ψm(r2) dr2

=
∑

k

ηkψk(r1)
∫

ψk(r2)ψm(r2) dr2. (19)

Orthonormality of the modes requires that 〈ψk|ψk′ 〉 = δkk′

where δkk′ is the Kronecker δ. The integral on the right-hand
side of Eq. (19) then vanishes except for the case k = m. By
analogy with the natural orbital method [20], we expand the
modes in terms of a complete shell-orbital density basis, so
that ψm(r) = ∑

Z3γ3
cm
Z3γ3

ρZ3γ3 (r). We also define SZ1γ1,Z2γ2 ,
the squared orbital density, to be

SZ1γ1,Z2γ2 =
∫

ρZ1γ1 (r)ρZ2γ2 (r)dr. (20)

This enables us to rewrite the integral on the left-hand side
of Eq. (19) as∫

ρZ2γ 2(r2)ψm(r2)dr2 =
∑
Z3γ3

cm
Z3γ3

SZ2γ2,Z3γ3 . (21)

Multiplying Eq. (19) by an arbitrary shell density ρZ4γ4 (r1) and
integrating with respect to r1 yields∑

Z1γ1,Z2γ2,Z3γ3

SZ4γ4,Z1γ1PZ1γ1,Z2γ2SZ2γ2,Z4γ4c
m
Z3γ3

= ηm

∑
Z1γ1

cm
Z1γ1

SZ4γ4,Z1γ1 . (22)

This may be rewritten as a matrix equation

SPScm = ηmScm, (23)

where S is a matrix whose elements consist of the orbital
density values SZ1γ1,Z2γ2 . The other elements in the equation,
ηm and cm, represent the modal occupancy and the expansion of
the mode in terms of orbital densities. Expressing the left-hand
side of Eq. (23) in terms of the matrix J = SPS, we arrive at
the form of the generalized eigenvalue equation,

JC = ηSC, (24)
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where η is a diagonal matrix whose elements are the modal
occupancies, and C is a matrix whose columns are the
eigenvectors containing the expansion coefficients of the
modes. It is more convenient to write the orbital density
expansion of the modes in terms of its Fourier transform,
involving the orbital form factors

ψ̃k(q) =
∑
Zγ

ck
Zγ fZγ (q). (25)

The structure of a large molecule can be easily incorporated
into the expansion of the mode in terms of orbital densities as

ψk(r) =
∑
Zγ

ck
Zγ

∑
mZ

ρZγ

(
r − RZ

mZ

)
, (26)

where RZ
mZ

is a vector defining the location of the mth atom
of type Z in the molecule. In the far field, this is given by its
Fourier transform,

ψ̃k(q) =
∑
Z

TZ(q)
∑

γ

ck
Zγ fZγ (q), (27)

where TZ is the structure vector defined in Eq. (12).

C. Orbital density matrix

Given the elements of S that have been defined as the
integral of orbital densities, shown in Eq. (20), an analytical
expression for the elements of this matrix can be found using
expressions for the orbital density given in Eq. (3). Using the
integral identity

∫ ∞
0 xn exp(−αx)dx = n!/αn+1, the elements

of S become

SZ1γ1,Z2γ2 =
(
2ζγ1

)2γ1+1

(2γ1)!

(
2ζγ2

)2γ2+1

(2γ2)!

(2γ1 + 2γ2 − 4)!(
2ζγ1 + 2ζγ2

)2γ1+2γ2−3 .

(28)

Here we apply the tight-binding approximation [30,31], which
assumes that the atomic wave functions vanish at distances
corresponding to the nearest-neighbor distance, to the matrix
S. Assuming that the electron densities of different atomic
species never overlap allows us to set SZ1γ1,Z2γ2 = 0 when
Z1 �= Z2, for all γ1 and γ2.

D. Resultant modes

The eigenvectors ck that form the expansion of modes
in terms of orbital densities [Eq. (26)] have values that
represent a normalized occupancy of that orbital density.
Determining these modes involves solving the eigenvalue
equation [Eq. (24)] for a given damage matrix A. For a
large complex molecule such as bacteriorhodopsin the modes
are difficult to represent. To gain physical insight into the
modes we present the modes for a simple test molecule,
3-hydroxypyridine, a heterocyclic molecule with chemical
formula C5NH3OH. The hydrogen atoms contribute negligible
scattering, so this is considered a seven-atom molecule,
consisting of three different elements of interest. These
elements of interest have two distinct orbitals given spherical
symmetry, the 1s and the 2s and 2p orbitals. To these two
we add a third orbital to account for electrons lost to the
continuum due to photoionization events. Keeping track of

x
(a)1st mode η1 = 95.6%

x

y

(b)2nd mode η2 = 4.2%

x

y

(c)3rd mode η3 = 0.13%

y

FIG. 4. (Color online) The first three modes and respective
occupancies for 3-hydroxypyridine, illuminated by a uniform pulse
of duration 5 fs with fluence of 5 × 1012 photons/(100 nm)2. The
modes are represented in Hartree atomic units of electron density.

these electrons ensures that the transformation from static
scatterer to damaged scatterer is unitary. The orbital density of
the continuum states is set to zero when calculating diffraction,
reflecting the negligible contribution of free electrons to
x-ray diffraction. The calculation of the modes ψk(r) for
3-hydroxypyridine illuminated by a square pulse of fluence
5 × 1012 photons/(100 nm)2 is given in Fig. 4.

One may make a physical interpretation of the modes. The
differing rates of atomic processes for different atomic species
leads to a differential change in the average populations of, say,
carbon and oxygen. In the modal analysis this appears like a
polarization, although there is, of course, no actual electronic
transport involved. This general behavior is reflected in the
modal decomposition of bacteriorhodposin in which the Z-
dependent rates of photoionization and Auger recombination
cause differential depletion of electron density.

IV. MEASUREMENT OF THE MODES

The measurement or characterization of the damage to a
sample given an XFEL pulse is performed completely by
determining the matrix A. This can be achieved by measuring
the modes ψk and modal coefficients ηk that characterize the
damage. Figure 5 shows the variation of the time-averaged
occupancy of the carbon orbitals, that is, 〈aZγ 〉 for Z = carbon
and γ = 1s, 2s, and 2p for incident photon fluences over a 5 fs
pulse.

As the level of incident photon flux increases we see the
values of the orbital occupancies decay, indicating the damage
is affecting the sample. It is observed that the occupancy
of the 1s orbital decreases, corresponding to an increase in
the number of core hole vacancies in carbon for pulses with
large X-ray fluxes. The variability of occupancies and, hence,
modes, with incident flux means one set of modes cannot be
used to describe all damage conditions. This makes impossible
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FIG. 5. (Color online) The time-averaged occupancy for the 1s

orbital (dashed line) and the 2s and 2p orbitals (solid line) of carbon
for increasing incident photon fluence, and hence damage. Photon
energy was set to 10 keV.

a measurement of A by measuring occupancies in the manner
described in [28]. Our measurement of the damage must now
include a determination of both the form and occupancies of
the damage modes.

This measurement of the modes relies on their completeness
and orthonormality. This property can be ensured by enforcing
the unitarity of the matrix A, which can be accomplished
by keeping track of all electrons lost during exposure using
continuum states. Given these conditions, we can expand a
single mode that forms part of a complete description of a
damage scenario, ψ0

k , as an expansion in terms of a set of
approximate, “trial” modes ψ ′

m, or

ψ̃0
k (q) =

∑
m

bmψ̃ ′
m(q) (29)

where we are considering modes in the far field, and where
bm are auxiliary expansion coefficients. These trial modes ψ̃ ′

m

are similar in form to the target modes ψ̃0
k , but are calculated

using an initial estimate of the damage matrix A.
A new expression for the diffracted intensity is therefore

obtained by substituting Eq. (29) into Eq. (16), yielding

I (q) =
∑

k

η0
k

∑
mm′

bmb∗
m′ψ̃

′
m(q)ψ̃∗′

m′ (q). (30)

We require an expression for the damage matrix in terms of
the trial modes ψ ′

m. To obtain this, we equate two of our
expressions [Eqs. (11) and (16)] for the intensity,∑

Z1,Z2

TZ1 (q)AZ1,Z2 (q)T ∗
Z2

(q) =
∑

k

ηkψ̃
0
k (q)ψ̃0∗

k (q). (31)

Expressing our exact modes in terms of a trial mode basis
[Eq. (29)] and writing our trial modes as an explicit expansion
in terms of an orbital form-factor basis set [Eq. (27)] enables
Eq. (31) to be rewritten. After some simplification we obtain
an expression for the elements of P, which is

PZ1γ1,Z2γ2 =
∑

k

∑
b1,b2

ηkbm1bm2c
m1
Z1,γ1

c
m2
Z2,γ2

. (32)

This is the principal result of this section. Equation (32) indi-
cates that the task of measuring the effects of damage processes

becomes one of determining the auxiliary coefficients bm and
the modal occupancies ηk , given an arbitrary set of trial modes
defined, after Eq. (27), by the expansion coefficients cm

Z,γ

and a known structure T (q). We therefore endeavor to take a
simulated intensity measurement and to determine these values
by a fitting procedure, given our assumed structure and modes.

A. Fitting modes to intensities

We now fit a set of modes to the simulated far-field
diffraction expected from illumination of the protein bacte-
riorhodopsin. To perform this fitting with respect to η and bm

we require some objective function marking the deviation in
our fit. We select the metric

E =
∑

i

(Ii − I0,i)
2, (33)

where Ii is the ith pixel in the current guess of the diffracted
intensity, and I0,i is the ith pixel in the simulated inten-
sity measurement corresponding to experiment. Using this
objective function and its derivative allows the use of standard
conjugate gradient techniques to fit a measured intensity to an
arbitrary damage matrix via a nonlinear least-squares method;
for these methods convergence is defined as determination
of the solution to within a tolerable error metric; indeed the
presence of noise in these simulations precludes a pointwise
solution. As a guide to convergence we define a second
metric ρ, the average ratio of the fitted intensity I ′ to the
input simulated intensity I 0, that is, ρ = (1/N )

∑
i(I

′
i /I

0
i ) for

I 0
i �= 0, and where N is the number of nonzero elements in I 0.

A perfect fit would have a ratio equal to unity, with a standard
deviation close to machine error.

The first trial example of the fit procedure was initialized
as follows: a diffracted intensity corresponding to an incident
flux of 1.5 × 1011 [photons/(100 nm)2]/fs was calculated. To
fit to this damage-effected intensity, the trial modes ψ ′

m(q) and
the initial modal occupancies ηk were chosen to correspond
to an incident flux of 3.0 × 1011 [photons/(100 nm)2]/fs,
precisely double the incident flux used to calculate the intensity
distribution. The coefficients bm,k were chosen such that
bm,k = 1 when m = k, and bm,k = 0.01 when m �= k. Setting
the m = k coefficients to unity and the cross terms m �= k to
zero corresponds to the ideal scenario where ψ0

k (q) = ψ ′
m(q).

In other words the trial modes are indistinguishable from the
exact modes. This will generally not be the case, so it is
expedient to set the cross terms to some small, nonzero number
rather than zero, reflecting their small, yet non-negligible,
contribution in likely fits. Initially, this fit began with an
average ratio ρ of 0.976, with standard deviation σ of 0.003.
This shows the general decrease in intensity as the damage is
increased. After 600 iterations, the final ratio was ρ = 1.0002
with σ = 3 × 10−5.

A second fit was attempted, this time initializing the
procedure using eigenvectors and modal occupancies for a
minimal amount of damage, corresponding to an incident flux
of 4 × 105 [photons/(100 nm)2]/fs. This fit started with an
initial ratio ρ = 1.6 with σ = 0.5. After 200 iterations the
intensity converged, leaving ρ = 0.9826 with σ = 0.0003.
The value of the objective function with each iteration for
both fits is given in Fig. 6.
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FIG. 6. (Color online) The value of the objective function E on
a logarithmic scale, for increasing routine iteration, for the case
of intialization with double incident flux modes and occupancies
(solid line) and for the case of minimal incident flux mode and
occupancy intialization (dashed line). The routine performs most of
the minimization within the first 50 iterations.

It is evident that the routine converges even from initial
modes and modal occupancies that belong to incident fluences
far different from the intensity being fitted. As the routine
performs better when the initial damage estimate is closer
to the correct result, it may be beneficial to measure the
XFEL flux and perform preliminary simulations of the damage
processes prior to fitting.

B. The recovered damage matrix

To quantify the deviation of the fitted population matrix P
we define the metric

dZ1,Z2 = 1

nγ

√∑
γ1γ2

(
P ′

Z1γ1Z2γ2
− P 0

Z1γ1Z2γ2

)2
, (34)

where nγ is the number of orbitals, P′ is the fitted population
matrix, and P0 is the population matrix for the damage
scenario used to simulate the intensity. These calculations
were performed for cases where Z1 = Z2; the results appear in
Table I.

The fit with modes and occupancies was created with an
incident photon flux exactly four times that used to simulate
the intensity. This approach was adopted to reflect a likely
scenario in which neither the details of the model nor the
experimental interaction parameters are known precisely, but
for which an order-of-magnitude estimate is likely to suffice
to capture the relative kinetic behavior of each element. This

TABLE I. The percentage deviation (for Z1 = Z2) in the elements
of P for three elements of biological interest, at the start of the
fitting procedure, d initial

ZZ , and at the end, dfinal
ZZ . The initial values were

generated by a simulation corresponding to a photon flux four times
that used to generate the diffraction data.

d initial
ZZ (%) dfinal

ZZ (%)

Carbon 18.9 0.785
Nitrogen 25.6 1.27
Oxygen 29.5 1.53

approach enabled the recovery of the elements of P for carbon,
nitrogen, and oxygen to within ≈1% precision.

It is important to recall that A (or P from which it is
derived) completely characterizes the time-varying nature
of the electron densities. All dynamical information during
the pulse is encoded in this quantity and, therefore, this
matrix is all that is needed to incorporate the damage for
an unknown structure. This information can be included in a
subsequent single-molecule phase reconstruction, for instance,
by updating the modulus constraint using the method proposed
by Quiney and Nugent [10].

V. RECOVERY OF CROSS SECTIONS

The recovery of the damage inflicted on the illuminated
molecule, contained in the time-averaged population matrix P
can be extended to infer an effective photoionization cross sec-
tion for carbon. A measurement of the cross section performed
in this way will enable certain assumptions about the damage
processes as they exist in large biomolecules to be tested
directly. This measurement could quantify precisely what
physical mechanisms are dominating the damage process, as
well as determining the applicability of established rates to
large molecular environments under XFEL illumination.

A nonlinear optimization is used to fit a cross section to the
elements of the population matrix P. Following the approach
adopted in previous sections we define an objective function
denoting the difference between our guess of P using our
assumed cross section and the measured P that comes from
the fitting of modes and occupancies. Restricting ourselves to
the case of Z1 = Z2 = 6, corresponding to carbon, we write

E(σph) =
∑
γ1,γ2

[
Pγ1,γ2 (σph) − P 0

γ1,γ2

]2
, (35)

and seek the derivative of E with respect to σph. We make
the assumption that the photoionization cross section remains
largely constant with respect to time and is the same for atoms
with one core hole; ionization from n = 2 orbitals is neglected
entirely. To obtain the derivative with respect to the cross
section, we must find the derivative of the population matrix
with respect to the cross section. An easy way is to solve the
equation

d

dt

dPγ1,γ2 (q)

dσγ1

= aγ1 (t)
daγ2 (t)

dσγ1

+ aγ2 (t)
daγ1 (t)

dσγ1

(36)

over the interval 0 � t � T with the initial condition

dPγ1,γ2 (q)

dσγ1

∣∣∣∣
t=0

= 0. (37)

The solution at t = T is then equal to the value of the integral.
Therefore, one must calculate not only aγ1 (t) over the length
of the pulse, but also its derivative with respect to the rate,
which is also time dependent. This derivative is dependent on
the rate and, hence, the photon flux, which is a time-dependent
quantity, so this calculation must be repeated for each guess
of the cross section. It also means that recovery of the cross
section requires an accurate measurement of the incident flux
that interacted with the molecule. Such measurements are
now possible at XFEL facilities. The integration itself can
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be accomplished using a standard fourth-order Runge-Kutta
integrator.

Fitting our photoabsorption cross sections in this way
yields a value of 2.09 ± 0.09 cm2/g when the modal fit for
Aγ1,γ2 (q) is initialized assuming pulse fluences two orders
of magnitude less than that used to calculate the intensity,
and a value of 2.03 ± 0.07 cm2/g when the modal fit for
Aγ1,γ2 (q) is intialized assuming pulse fluences one order of
magnitude less than that used to calculate the intensity. This
compares favorably with the value used in initial simulations
of 2.06 cm2/g at 10 keV incident photon energy taken from
the tables of Henke et al. [16]. The uncertainty of the fitted
value may be reduced by collecting more signal in diffraction
regions corresponding to atomic resolution; these fits were
performed assuming the ability to measure ten photons out to
atomic resolution. In these simulations tabulated Auger decay
rates were assumed; however, it should be possible to expand
the fit to measure them, and any of the rates of any other
applicable processes, as well.

VI. CONCLUSION

We have proposed a measurement scheme for femtosecond
x-ray diffraction experiments that removes the reliance on
detailed simulation of the molecular electrodynamics for
their structural interpretation. It is based on the assumption
that inner-shell processes, such as Thomson scattering, K-
shell photoionization, and Auger decay are primarily atomic
processes, with characteristic rates that are largely independent
of chemical environment. The measurement of the diffraction
from a biomolecule containing, for example, carbon, nitrogen,
and oxygen will contain the signatures of these electronic
processes in a manner that is transferable between systems
of similar chemical composition. The characterization of
the electronic component of the mean scattering amplitude
under given experimental conditions using experimental data
is equally valid in any biomolecule of similar composition.
Rather than rely on electrodynamical simulations, which carry
with them considerable uncertainty regarding the validity of
atomic model parameters under XFEL interaction conditions,
one can instead extract the relevant electronic parameters from

a calibration experiment on a molecule of known structure
and similar chemical composition to the target. This approach
retains the convenience of an atomic scattering model while
recognizing that the rates of each process may be modified
significantly when the atoms are embedded in a rapidly
evolving, highly ionized biomolecular system.

The foundation of the atomic model adopted here involves
approximations that can be justified only by comparison with
experimental data for single-molecular diffraction which are
not yet available. The most obvious potential failing of this
approach is that the details of the biomolecular structure play
no explicit role in the electrodynamics, either within existing
simulations of the interaction or within the proposed method
of experimental analysis. In addition to electron recapture
and collisional ionization processes, the dominant effects not
included here most likely arise because of the formation of
a large positive charge distributed over the molecule and the
consequent decrease in the kinetic energy of the photoelectrons
that are ejected. This may impart a position dependence within
the molecule of the electrodynamical properties of atoms
of a given type, each of which experiences an electric field
that depends primarily on the distance of the atom from the
center of charge. This, in turn, may influence the rates of
each of the electronic processes that the atom undergoes.
Also untreated in the present model is the effect, if any,
of the ejected photoelectrons on the measured diffraction
pattern on the proposed time scale of the interaction. Since
these effects are all electronic, however, it is reasonable to
assume that molecules of similar chemical composition and
physical dimensions may possess similar average scattering
properties.

The procedure outlined here offers a scheme by which this
electronic information may be transferred between biomolec-
ular systems to facilitate the determination of unknown
biomolecular structures using a priori information about
their electrodynamic behavior under specified interaction
conditions. This reduces the reliance on modeling of the
electronic processes and on molecular replacement strategies
in structure determination. It also offers a way to measure the
effective rates of fundamental electrodynamical processes in
complex biomolecular systems.
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C. Bostedt, and T. Möller, Phys. Rev. A 84, 033201 (2011).
[9] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey,

R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: Photon cross-

section database. Online at http://www.nist.gov/pml/data/xcom/
(2010).

[10] H. M. Quiney and K. A. Nugent, Nat. Phys. 7, 142 (2011).
[11] U. Lorenz, N.M. Kabachnik, E. Weckert, and I. A. Vartanyants,

Phys. Rev. E 86, 051911 (2012).
[12] H. N. Chapman et al., Nature (London) 470, 73 (2011).
[13] S. Boutet et al., Science 337, 362 (2012).
[14] R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, Nat.

Phys. 5, 64 (2009).
[15] Ne-TeDuane Loh and V. Elser, Phys. Rev. E 80, 026705

(2009).
[16] B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data

Nucl. Data Tables 54, 181 (1993); see also http://henke.lbl.gov/
optical_constants/.

[17] E. J. McGuire, Phys. Rev. 185, 1 (1969).

053407-10

http://dx.doi.org/10.1038/22498
http://dx.doi.org/10.1038/22498
http://dx.doi.org/10.1364/AO.21.002758
http://dx.doi.org/10.1038/35021099
http://dx.doi.org/10.1126/science.1135923
http://dx.doi.org/10.1103/PhysRevLett.98.198302
http://dx.doi.org/10.1140/epjd/e2008-00189-8
http://dx.doi.org/10.1103/PhysRevA.84.033201
http://www.nist.gov/pml/data/xcom/
http://dx.doi.org/10.1038/nphys1859
http://dx.doi.org/10.1103/PhysRevE.86.051911
http://dx.doi.org/10.1038/nature09750
http://dx.doi.org/10.1126/science.1217737
http://dx.doi.org/10.1038/nphys1129
http://dx.doi.org/10.1038/nphys1129
http://dx.doi.org/10.1103/PhysRevE.80.026705
http://dx.doi.org/10.1103/PhysRevE.80.026705
http://dx.doi.org/10.1006/adnd.1993.1013
http://dx.doi.org/10.1006/adnd.1993.1013
http://henke.lbl.gov/optical_constants/
http://henke.lbl.gov/optical_constants/
http://dx.doi.org/10.1103/PhysRev.185.1


DETERMINING ELECTRONIC DAMAGE TO BIOMOLECULAR . . . PHYSICAL REVIEW A 87, 053407 (2013)

[18] S. P. Hau-Riege, R. A. London, and A. Szoke, Phys. Rev. E 69,
051906 (2004).

[19] J. C. Slater, Phys. Rev. 36, 57 (1930).
[20] E. R. Davidson, Rev. Mod. Phys. 44, 451 (1972).
[21] S. P. Hau-Riege, Phys. Rev. A 76, 042511 (2007).
[22] D. Waasmaier and A. Kirfel, Acta Crystallogr., Sect. A: Found.

Crystallogr. 51, 416 (1995).
[23] J. C. H. Spence, U. Weierstall, and M. Howells, Ultramicroscopy

101, 149 (2004).
[24] L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine,

R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele,
E. Balaur, and I. McNulty, Phys. Rev. Lett. 103, 243902
(2009).

[25] B. Abbey, L. W. Whitehead, H. M. Quiney, D. J. Vine, G. A.
Cadenazzi, C. A. Henderson, K. A. Nugent, E. Balaur, C. T.
Putkunz, A. G. Peele, G. J. Williams, and I. McNulty, Nature
Photonics 5, 420 (2011).

[26] E. Wolf, J. Opt. Soc. Am. 72, 343 (1982).
[27] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics

(Cambridge University Press, Cambridge, 1995).
[28] S. Flewett, H. M. Quiney, C. Q. Tran, and K. A. Nugent, Opt.

Lett. 34, 2198 (2009).
[29] R. Courant and D. Hilbert, Methods of Mathematical Physics

(Interscience, New York, USA, 1953).
[30] F. Bloch, Z. Phys. 52, 555 (1928).
[31] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

053407-11

http://dx.doi.org/10.1103/PhysRevE.69.051906
http://dx.doi.org/10.1103/PhysRevE.69.051906
http://dx.doi.org/10.1103/PhysRev.36.57
http://dx.doi.org/10.1103/RevModPhys.44.451
http://dx.doi.org/10.1103/PhysRevA.76.042511
http://dx.doi.org/10.1107/S0108767394013292
http://dx.doi.org/10.1107/S0108767394013292
http://dx.doi.org/10.1016/j.ultramic.2004.05.005
http://dx.doi.org/10.1016/j.ultramic.2004.05.005
http://dx.doi.org/10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1038/nphoton.2011.125
http://dx.doi.org/10.1038/nphoton.2011.125
http://dx.doi.org/10.1364/JOSA.72.000343
http://dx.doi.org/10.1364/OL.34.002198
http://dx.doi.org/10.1364/OL.34.002198
http://dx.doi.org/10.1103/PhysRev.94.1498



