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Multiphoton ionization and high-order-harmonic generation of Ar atoms
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The exterior complex scaling (ECS) method is applied in the framework of time-dependent density-functional
theory (TDDFT) to study multiphoton ionization (MPI) and high-order-harmonic generation (HHG) of
multielectron atoms in intense laser fields. ECS allows one to impose correct (outgoing-wave) boundary conditions
on the wave functions at large distances. In our implementation, ECS is combined with the time-dependent
generalized pseudospectral method for accurate and efficient solution of the time-dependent Kohn-Sham
equations. We make use of LB94 exchange-correlation potential which proved accurate in calculations of
unperturbed electronic structure of Ar. Calculations of MPI and HHG are performed for the laser pulses with
the wavelength of 800 nm and several peak intensities. The HHG spectrum exhibits an intensity-independent
minimum corresponding to the photon energy of about 51 eV which is closely related to the Cooper minimum
observed in the photoionization cross section of Ar. We found that MPI probabilities and HHG spectra calculated
with the frozen-core potential (that is, not including dynamic response of the electron density) differ significantly
from those obtained by TDDFT.
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I. INTRODUCTION

Strong-field multiphoton processes such as multiphoton
ionization (MPI) and high-order-harmonic generation (HHG)
continued attracting much interest in recent years both experi-
mentally and theoretically due to advances in laser technology
that marked the birth of attosecond physics [1]. In particular,
tunable long-wavelength lasers have become available; they
provide sufficiently high intensities without saturation of
ionization thus probing both valence and core electrons.
MPI and HHG processes have a capability of imaging of
atomic and molecular structures with high resolution in spatial
and temporal domains [2–4]. Electronic structure of atoms
and molecules can be encoded in the HHG signal; the
latter may contain features due to collective multielectron
effects involving inner-shell electrons [3,5]. The multielectron
structural information can be retrieved by means of the HHG
interferometry which is established as an effective approach
to resolving multielectron dynamics [3].

Although most of the atomic and molecular targets are
multielectron systems, traditionally many theoretical studies
of MPI and HHG are based on various implementations
of the single active electron (SAE) model and strong-field
approximation (SFA). However, while SFA theories result
in rather simple analytical expressions, they fail to give a
quantitative description of the processes. The discrepancy
with more accurate approaches or direct solutions of the
time-dependent Schrödinger equation can be as large as several
orders of magnitude. On the contrary, SAE models can be
quite accurate (see, for example, Refs. [6,7] where the SAE
calculations were successfully compared with the experiment
on above-threshold ionization of argon atoms), but they depend
very much on the state-of-the-art effective potentials specific

*telnov@pcqnt1.phys.spbu.ru
†sichu@ku.edu

for each atomic or molecular system. SFA and SAE theories
usually deal with the highest-occupied orbitals only and
neglect the multielectron dynamics of the target atoms and
molecules. However, multielectron effects due to the electron
exchange and correlation may be significant even when the
inner electrons are strongly bound and are not excited by
the driving laser field. Our theoretical method is based on
the extension of time-dependent density-functional theory
(TDDFT) with proper long-range potentials (for a review,
see [8]). The method takes into account the dynamic response
of all the electronic shells to the external fields and has been
applied successfully to the nonperturbative study of MPI and
HHG of atoms and diatomic molecules [9–11] in intense laser
fields.

Atomic systems subject to laser fields can be ionized. At
large distances from the core, only outgoing-wave components
(describing ionization) should be present in the wave function.
Thus the correct boundary conditions are the outgoing-wave
boundary conditions, if ionization takes place. Boundary
conditions can be imposed by an absorber placed at some
distance from the core. The absorber prevents the electron
density from moving back to the core thus imposing the
outgoing-wave boundary conditions. However, the results
(ionization probability and HHG spectra) depend on the
properties of the absorber.

Another way to impose correct boundary conditions is to
apply a complex-scaling transformation [12,13]. The complex-
scaled wave function is supposed to vanish at infinity in the
coordinate space, which means the unscaled wave function
must satisfy the outgoing-wave boundary conditions. Uniform
complex scaling, however, is not suitable for time-dependent
problems since the external field changes sign twice per
optical cycle. Thus the complex-scaled propagator may diverge
at large distances. Exterior complex scaling can solve the
problem. Dipole interaction with external field can be applied
in the interior (not complex-scaled) domain only which should
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be chosen large enough to include all physically important
regions.

Exterior complex scaling (ECS) [14,15] may have advan-
tages when applied to more complex systems with potentials
which behave nonanalytically (or defined only numerically) in
the interior region of the coordinates. ECS procedure assumes
that the coordinate space is partitioned in two domains, and the
complex scaling is applied in the exterior domain only, while
in the interior domain the wave function remains unchanged.
The derivative of the ECS mapping function may appear
continuous or discontinuous on the boundary between the
two regions; these two cases are termed smooth ECS and
sharp ECS, respectively. Previous implementations of ECS in
theoretical atomic and molecular physics were mostly related
to time-independent photoionization [16] and scattering [17]
problems (see also the review paper [18]). For the time-
dependent Schrödinger equation, complex finite elements
schemes have been used to study propagation of wave packets
in one dimension [19]. Time-dependent approaches have also
been used for construction of time-independent scattering
wave functions [20]. In our previous studies, we applied sharp
ECS to time-independent Floquet eigenvalue problems which
arise in one-electron model potential calculations [21] and
Floquet formulation of TDDFT [22] (see also the review
article [23]).

The organization of the paper is as follows. In Sec. II, we
describe our implementation of smooth ECS in generalized
pseudospectral method. In Sec. III, we give the necessary
details of the Kohn-Sham DFT scheme for the calculation
of the electronic structure of Ar atoms. Section IV contains
a description of the time-dependent computational scheme
which combines the TDDFT and ECS approaches. In Sec. V,
we present the results of the calculations of multiphoton
ionization and high-order-harmonic generation of Ar atoms.
Section VI contains a summary of our results.

II. SMOOTH ECS IMPLEMENTATION IN GENERALIZED
PSEUDOSPECTRAL METHOD

To solve the time-dependent and time-independent
Schrödinger or Kohn-Sham equations, we apply the gener-
alized pseudospectral (GPS) discretization of wave functions
and operators in spherical polar coordinates. Detailed descrip-
tion of the GPS discretization is given elsewhere [24,25] using
prolate spheroidal coordinates in the case of two-center sys-
tems. Here we list basic equations pertinent to the present case
of spherical coordinates. The radial coordinate r is discretized
using the Gauss-Lobatto scheme where the collocation points
are the roots of the polynomial (1 − x2)P ′

Nx
(x), P ′

Nx
(x) being

the derivative of the Legendre polynomial. There are Nx + 2
collocation points within the interval [−1,1], including the
points −1 and 1. The latter two points correspond to the
boundaries of the radial coordinate range when an appropriate
mapping between x and r is established. If zero boundary
conditions are imposed on the wave function at these points,
only Nx internal collocation points are used to represent the
discretized wave function.

The mapping function r(x) and its two derivatives must
be continuous to make sure the wave function and its deriva-
tives are continuous, too. We adopt the following mapping

transformation:

r = r(x), r(x) = R(x) exp[iα(x)], (1)

where R(x) is a real monotonous function which maps the
interval [−1,1] to the radial coordinate range [0,Rb] used to
solve the equations:

R(x) = Rm

(1 + x)2 + 2δ(1 + x)

1 − x + 4Rm(1 + δ)/Rb

. (2)

Here Rm, Rb, and δ are parameters of the transformation.
The end point Rb must be chosen large enough to ensure
the space domain used to solve the equation contains all
important physics. In our calculations for the Ar atom, we
use the following values of the parameters:

Rm = 30 a.u., Rb = 200 a.u., δ = 0.02. (3)

A quadratic term in the numerator of Eq. (2) and a small value
of the parameter δ make the distribution of the radial grid
points denser in the vicinity of the nucleus; this is important
for improving the accuracy of the calculations since the argon
nucleus charge is quite large, and the inner shell wave functions
vary rapidly on small distances around the nucleus.

The complex rotation of the radial coordinate is controlled
by the phase α(x) in Eq. (1). We use the following piecewise
polynomial dependence of α on x:

α(x) = 0, − 1 � x � x0;

α(x) = 10α0

(x1 − x0)5

[
(x − x0)3(x1 − x)2

+ 1

2
(x − x0)4(x1 − x) + 1

10
(x − x0)5

]
,

(4)
x0 � x � x1; α(x) = α0, x1 � x � 1.

As one can see, α(x) along with its first and second
derivatives are continuous functions at the boundary points
x0 and x1. In the interior domain x < x0, α(x) = 0; within the
range [x0,x1], α(x) gradually increases to reach the value α0 at
x = x1; in the asymptotic region x > x1, the complex rotation
angle is equal to α0. Its first derivative has a simple form within
the middle interval [x0,x1]:

dα

dx
= 30α0

(x1 − x0)5
(x − x0)2(x − x1)2, x0 � x � x1. (5)

In the coordinate space, the radius of the interior domain, R0 ≡
R(x0), should be sufficiently large to accommodate oscillations
in the laser field of a free electron emerging in the vicinity
of the nucleus. For weaker laser fields (peak intensity up to
2 × 1014 W/cm2), we set R0 = 25 a.u., R1 ≡ R(x1) = 60 a.u.,
and α0 = 0.8; the corresponding ECS contour in the complex
plane of the radial coordinate r is shown in Fig. 1. For stronger
fields, larger values of R0 = 30 a.u. and R1 = 65 a.u. have been
used. The number of the radial grid points Nx for weaker and
stronger fields was 256 and 320, respectively.

For the polar angle ϑ , we discretize the variable cos ϑ using
the Gauss scheme where the collocation points are the roots
of the Legendre polynomial PNy

(y). There are Ny collocation
points which lie entirely within the interval [−1,1]. Since
cos ϑ spans the same range, a simple identity mapping can be
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FIG. 1. ECS contour in the complex plane of the radial coordinate
r for R(x0) = 25 a.u., R(x1) = 60 a.u., and α0 = 0.8. Filled circles
indicate positions of the radial grid points.

used between cos ϑ and y:

cos ϑ = y. (6)

For linearly polarized laser fields, the projection m of the
angular momentum on the polarization direction of the field
is conserved (we assume that the unperturbed Hamiltonian is
spherically symmetric). For m fixed, the dependence of the
wave function �(r,t) on the azimuthal angle ϕ is given by the
analytical factor

�(r,t) = ψ(r,ϑ,t) exp(imϕ) (7)

and does not require numerical representation. The remaining
factor ψ(r,ϑ,t) is discretized on the two-dimensional grid [ri =
r(xi) and ϑj = ϑ(yj )]. It is convenient to introduce an array
φij containing scaled values of ψ(ri,ϑj ,t):

ψ(ri,ϑj ,t) = φij

√
(Nx + 1)(Nx + 2)

8πr ′
i

sin ϑj

ri

×PNx+1(xi)P
′
Ny

(yj ) (8)

(r ′
i denotes the values of the derivative dr/dx at the collocation

points xi). Then the normalization integral of the wave function
is calculated as follows:∫

d3r|�(r,t)|2 =
Nx∑
i=1

Ny∑
j=1

|φij |2. (9)

The kinetic energy operator is represented by a matrix acting
on the vector φij . Different forms of the kinetic energy matrix
are obtained for m = 0 and m = 1 (higher angular momentum
projections are irrelevant for Ar):

Tij,i ′j ′ = 1

2

⎡⎣ δjj ′√
r ′
i r

′
i ′

Nx+1∑
k=0

dx
kid

x
ki ′

r ′
k

+ δii ′ sin ϑj sin ϑj ′

r2
i

Ny∑
k=1

d
y

kj d
y

kj ′

⎤⎦ (m = 0), (10)

Tij,i ′j ′ = δii ′δjj ′

r2
i

+ 1

2

⎡⎣ δjj ′√
r ′
i r

′
i ′

Nx+1∑
k=0

dx
kid

x
ki ′

r ′
k

+ δii ′

r2
i

Ny∑
k=1

sin2 ϑkd
y

kj d
y

kj ′

⎤⎦ (m = 1), (11)

where the first derivative matrices dx
ii ′ and d

y

jj ′ are defined as
follows:

dx
ii ′ = 1

xi − xi ′
(i �= i ′), dx

ii = 0 (1 � i � Nx); (12)

d
y

jj ′ = 1

yj − yj ′
(j �= j ′), d

y

jj = yj

1 − y2
j

. (13)

All potential terms are represented by their values on the
coordinate grid and appear as diagonal matrices in the GPS
method; no calculation of potential energy matrix elements is
required.

III. ELECTRONIC STRUCTURE CALCULATIONS
OF ARGON ATOMS

As a first step of our calculations, we solve the set of time-
independent Kohn-Sham equations for the unperturbed spin
orbitals ψnσ (r) and spin-orbital energies εnσ :[− 1

2∇2 + V 0
σ (r)

]
ψnσ (r) = εnσψnσ (r),

(14)
n = 1,2,...,Nσ .

Here Nσ (= N↑ or N↓) is the total number of electrons for a
given spin σ ; the total number of electrons in the system is
N = N↑ + N↓. The electron spin densities ρσ (r) and the total
density ρ(r) are related to the spin orbitals as follows:

ρσ (r) =
Nσ∑
n=1

|ψnσ (r)|2, (15)

ρ(r) = ρ↑(r) + ρ↓(r), (16)

and the effective single-particle potential V 0
σ (r) can be repre-

sented as a sum of three different contributions:

V 0
σ (r) = vn(r) + vH(r) + vxc,σ (r). (17)

Here vn(r) is a Coulomb interaction of the electron with the
nucleus,

vn(r) = −Z

r
, (18)

with Z = 18 being the nuclear charge; vH(r) is the Hartree
potential due to electron-electron repulsion,

vH(r) =
∫

ρ(r ′)d3r ′

|r − r ′| . (19)

The remaining term vxc,σ (r) is the exchange-correlation poten-
tial. Its exact form is unknown but high-quality approximations
are becoming available. In this work, we make use of an
approximate exchange-correlation potential LB94 by van
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TABLE I. Absolute values of spin-orbital energies of Ar. (A)
Present DFT calculations (eV). (B) Experimental binding energies
(eV) [27].

Spin orbital A B

1s 3158.8 3206.3
2s 311.7 326.3
2p 247.0 248.5
3s 29.3 29.3
3p 15.7 15.8

Leeuwen and Baerends [26]:

vLB94
xc,σ (r) = vLSDA

x,σ (r) + vLSDA
c,σ (r)

− βx2
σ (r)ρ1/3

σ (r)

1 + 3βxσ (r) ln
{
xσ (r) + [

x2
σ (r) + 1

]1/2} .

(20)

Here vLSDA
x,σ (r) and vLSDA

c,σ (r) are the exchange and correlation
potentials in the local spin-density approximation (LSDA),
respectively, and xσ (r) = |∇ρσ (r)|/ρ4/3

σ (r). The last term in
Eq. (20) depends on the parameter β; its value (β = 0.05) was
adjusted to fit the exact exchange-correlation potential for the
beryllium atom [26]. As our results show, this potential is also
very accurate in calculations of the electronic structure of argon
atoms. Since Ar is a closed-shell atom, the electron densities
for spin up and spin down are the same, and the set of equations
(14) can be solved for one spin projection only (either spin
up or spin down). The equations are solved self-consistently,
starting from some reasonable approximation for the potential
V 0

σ (r), until convergence is achieved.
We list the orbital energies in Table I and compare them

with the experimental binding energies. As one can see, the
accuracy is very good for 2p, 3s, and 3p energy levels. In
our calculations, we do not take into account the spin-orbit
interaction. Experimental observations do resolve spin-orbit
splitting of p1/2 and p3/2 energy levels; it constitutes about
1%, which is the same order as the accuracy limit of our
calculations. In Table I, we show the experimental binding
energies for the p3/2 sublevels only. For the inner shells (1s and
2s), deviation of our results from the experiment is somewhat
larger but still does not exceed 5%.

IV. TDDFT-ECS CALCULATIONS FOR ARGON ATOMS

For the atoms subject to external time-dependent fields, we
apply TDDFT and solve the set of time-dependent Kohn-Sham
equations:

i
∂

∂t
ψnσ (r,t) = H (t)ψnσ (r,t), n = 1,2,...,Nσ ; (21)

H (t) = −1

2
∇2 + V 0

σ (r,t) + vext(r,t). (22)

The potential vext(r,t) in Eq. (22) describes the interaction
with the laser field. Using the dipole approximation and the
length gauge, it can be expressed as follows:

vext(r,t) = F(t) · r. (23)

Here F(t) is the electric field strength of the laser field, and the
linear polarization is assumed. In this study, we use the laser

pulses with the sine-squared envelope:

F(t) = F0 sin2 πt

T
sin ω0t, (24)

where T and ω0 denote the pulse duration and the carrier
frequency, respectively; F0 is the peak field strength. In all
our calculations, we use the laser wavelength 800 nm (ω0 =
1.55 eV) and the pulse duration of 20 optical cycles (full width
at half maximum is about 27 fs).

For TDDFT energy functional, we adopt the adiabatic
approximation. That means the time-dependent single-particle
potential V 0

σ (r,t) is defined by the same expression (17) as
in the time-independent case but with the time-dependent
electron densities. The initial values (t = 0) of Kohn-Sham
spin orbitals and unperturbed (field-free) Hamiltonian come
from solution of Eq. (14). Originally, a real (not complex-
scaled) potential V 0

σ (r,0) is obtained on the GPS grid. In the
time-dependent ECS scheme, this original numerical potential
is used in the interior domain r � R0 = R(x0). In the exterior
domain r > R0, an analytical approximation is applied:

V 0
σ (r,0) = 1

r

(
− 1 + c1

r
+ c2

r2

)
, (25)

which can be readily complex scaled on the smooth ECS
contour in the complex r plane. Coefficients c1 and c2

are obtained by matching the numerical potential with the
analytical approximation on the last two grid points in the
interior domain. Note that Eq. (25) preserves the correct
asymptotic behavior of the potential (∼−1/r).

The total Hamiltonian of Eq. (22) can be represented as a
sum of the unperturbed Hamiltonian H0 and interaction V (t)
term due to the external field:

H (t) = H0 + V (t), (26)

H0 = − 1
2∇2 + V 0

σ (r,0), (27)

V (t) = V 0
σ (r,t) − V 0

σ (r,0) + vext(r,t). (28)

To propagate the Kohn-Sham spin orbitals in time, the short-
term propagator

U (t,�t) = exp
{− i�t

[
H0 + V

(
t + 1

2�t
)]}

(29)

is applied sequentially from t = 0 to t = T . The smaller
�t , the more accurate is time propagation. The calculation
of U (t,�t) at each time step is greatly facilitated by the
second-order split-operator formula:

U (t,�t) = exp
[−i 1

2�tH0
]

exp
[−i�tV (t + 1

2�t)
]

× exp
[−i 1

2�tH0
]
. (30)

Here the field-free propagator exp[−i(1/2)�tH0] is time-
independent and calculated only once using the spectral
expansion:

exp

[
−i

1

2
�tH0

]
=

∑
k

exp

[
−i

1

2
�tEk

] ∣∣ψR
k

〉〈
ψL

k

∣∣, (31)

where Ek are the complex eigenvalues of the non-Hermitian
ECS Hamiltonian H0. The right eigenvectors ψR

k and
left eigenvectors ψL

k are subject to biorthogonality and
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normalization condition:〈
ψL

k′
∣∣ψR

k

〉 = δk′k. (32)

The external field propagator exp[−i�tV (t + 1
2�t)] is time

dependent and must be calculated at each time step; however,
upon GPS discretization it is represented by a diagonal matrix,
and its computation is not time consuming. To avoid numerical
instabilities related to the complex-scaled long-range dipole
term, the interaction with the external field V (t) in the
propagator is restricted to the interior domain only, r � R0.

V. MULTIPHOTON IONIZATION AND
HIGH-ORDER-HARMONIC GENERATION

OF ARGON ATOMS

A. MPI probabilities and rates

The time-dependent electron spin densities and total elec-
tron density in the interior domain are calculated according to
the equations similar to those in the time-independent case:

ρσ (r,t) =
Nσ∑
n=1

|ψnσ (r,t)|2, (33)

ρ(r,t) = ρ↑(r,t) + ρ↓(r,t). (34)

Since the ECS Hamiltonian is non-Hermitian, the time prop-
agation is not unitary. For any spin orbital, the normalization
integral within the sphere r � R0 decreases in time. One
can calculate the time-dependent survival probability Ps(t)
(probability that the atom is not ionized at time t) as follows:

Ps(t) =
∏
n,σ

∫
r�R0

d3r|ψnσ (r,t)|2. (35)

The time-dependent ionization probability Pi(t) and ionization
rate �(t) can be obtained according to

Pi(t) = 1 − Ps(t), (36)

�(t) = − d

dt
ln Ps(t). (37)

We have calculated MPI probabilities and rates of Ar
for several peak intensities of the laser field in the range
1 × 1014 W/cm2 to 5 × 1014 W/cm2. Besides the all-electron
TDDFT analysis, we have also performed frozen-core model
potential calculations which do not take into account dynamic
multielectron response of the atom to the external field. In
the latter case, the electronic motion is influenced by the
static potential V 0

σ (r), Eq. (17), and time-dependent external
field vext(r,t), Eq. (23), only. This is similar to one-electron
models which are frequently used in strong-field calculations
of multielectron targets. In our present approach, however, we
propagate in time all spin orbitals which represent a multi-
electron noninteracting system through a Slater determinant.
Consequently, the Pauli principle is satisfied, and there are no
spurious transitions to occupied one-electron states. We should
also note that the initial unperturbed systems are the same in the
frozen-core model and TDDFT, thus the energy spectrum and
ionization potential are also the same. After the laser pulse, the
system is still the same in the frozen-core model but may have
changed in TDDFT if substantial excitation and/or ionization
occur.

0 1 2 3 4 5 6
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FIG. 2. (Color online) Ionization probability of Ar versus the
peak intensity of the laser pulse: (a) TDDFT results; (b) frozen-core
model potential calculations.

In Fig. 2, we show the intensity dependence of the MPI
probabilities at the end of the laser pulse (t = T ). As one
can see, the frozen-core results significantly overestimate
those obtained by TDDFT. At the intensity 4 × 1014 W/cm2,
according to the frozen-core model, Ar atoms get ionized with
98% probability; TDDFT calculations give a much smaller
ionization probability of 38%. To explain this difference
qualitatively, we note that the TDDFT approach does contain
dynamic response of the electrons to the external field
and incorporates the polarization effects. Because of the
polarization of the core, the effective time-dependent electric
field acting upon the electron is weaker than that of the
laser. Accordingly, the MPI probability obtained by TDDFT is
smaller than the frozen-core model result which does not take
the polarization of the core into account. An important role of
multielectron polarization effects in strong-field ionization of
Ar was recently demonstrated by the experiment on attosecond
angular streaking and accompanying calculations within the
tunneling ionization model in parabolic coordinates [28].

In Fig. 3, we present the time-dependent MPI rate for
the peak intensity of the laser field 2 × 1014 W/cm2. In the
upper panel, shown are the MPI rate and appropriately scaled
squared electric field F 2(t) [see Eq. (24)]. According to a
simple picture of tunneling ionization, one can expect that the
rate reaches its maximum at those times when the oscillating
electric field of the laser is the strongest, twice per each
optical cycle. As one can see from Fig. 3(a), this is the case
for relatively weak fields only, at the beginning and at the
end of the laser pulse. In the middle of the pulse, where the
intensity is close to its peak value, the MPI rate and squared
electric field oscillate out of phase. A similar picture is seen in
our calculations for all the peak intensities higher or equal to
1 × 1014 W/cm2; only for the relatively weak laser pulse with
the peak intensity 5 × 1013 W/cm2, the MPI rate oscillates in
phase with the squared field at all times. To reveal the origin of
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FIG. 3. (Color online) Time-dependent MPI rates of Ar for a sin2

laser pulse with the carrier wavelength of 800 nm and duration of
20 optical cycles at the peak intensity 2 × 1014 W/cm2. (a) MPI
rate (solid black line); scaled squared electric field (dashed green
line). (b) Full MPI rate (solid black line); inner region (r � 10 a.u.)
contribution (dot-and-dashed blue line); outer region (r > 10 a.u.)
contribution (dashed red line).

this behavior, we split the survival probability Ps(t), Eq. (35),
in two parts—one of them [P (1)

s (t)] describing a close vicinity
of the nucleus (r � 10 a.u.), and another one [P (2)

s (t)]—the
remaining contributions to Ps(t):

P (1)
s (t) =

∏
n,σ

∫
r�10

d3r|ψnσ (r,t)|2, (38)

P (2)
s (t) = Ps(t) − P (1)

s (t). (39)

Then the MPI rate is also represented as a sum of two terms:

�(t) = �(1)(t) + �(2)(t), (40)

�(1)(t) = − 1

Ps(t)

dP (1)
s (t)

dt
, (41)

�(2)(t) = − 1

Ps(t)

dP (2)
s (t)

dt
. (42)

In Fig. 3(b), we plot �(t) along with the contributions from the
different spatial regions �(1)(t) and �(2)(t). The contribution
from the inner region �(1)(t) always oscillates in phase with the
squared electric field. For weaker fields (optical cycles 3–5),
this contribution is dominant since the electron density in the
outer region is small; the total MPI rate �(t) follows �(1)(t)
closely at these times. However, as the electric field becomes
stronger (optical cycles 6–8) and the MPI rate increases,
the electron density in the outer region increases too. Then
the contribution of �(2)(t) becomes more significant, and the
maxima of �(t) coincide with those of �(2)(t). The latter are
shifted in time with respect to the electric field because of the
retardation effect for the electrons traveling from the vicinity
of the nucleus to the outer region.

B. HHG spectra

To calculate the HHG spectra, we use a semiclassical
approach, where the basic expressions come from the classical
electrodynamics but the classical quantities such as dipole mo-
ment and its acceleration are replaced with the corresponding
quantum expectation values. The spectral density of radiation
energy can be expressed through the Fourier transforms of the
acceleration a(t) or dipole moment d(t) [29]:

S(ω) = 2

3πc3
|̃a(ω)|2 = 2ω4

3πc3
|̃d(ω)|2; (43)

ã(ω) =
∫ ∞

−∞
dt a(t) exp(iωt), (44)

d̃(ω) =
∫ ∞

−∞
dt d(t) exp(iωt) (45)

(c is the speed of light) and the expectation values of the dipole
moment and acceleration are defined as follows:

d(t) =
∫

d3r rρ(r,t); (46)

a(t) = −
∫

d3r ∇[vn(r) + vext(r,t)]ρ(r,t). (47)

They satisfy the same relation as the corresponding classical
quantities:

d2

dt2
d(t) = a(t). (48)

The expression for a(t) can be derived from that for
d(t) with the help of the Ehrenfest theorem. We note that
only the nuclear and external field potentials are present
in Eq. (47). When multielectron targets are treated exactly,
the electron-electron interaction does not contribute to the
expectation value of acceleration due to Newton’s third law
since the electrons are identical and have the same masses and
charges. In TDDFT, that means the exact exchange-correlation
potential (as well as the Hartree potential) does not contribute
to the expectation value of acceleration [30]. For approximate
exchange-correlation potentials, this is not always the case.
Consequently, the dipole and acceleration forms of the HHG
spectra (43) with the expectation values defined in Eqs. (46)
and (47) are not necessarily identical in TDDFT. For the
expectation value of acceleration, spatial integration in Eq. (47)
emphasizes short distances; for the expectation value of dipole
moment, spatial integration in Eq. (46) emphasizes long
distances. In our calculations of the HHG spectra, we adopt
the acceleration form. We assume it is more accurate since our
numerical wave functions are more accurate at short distances
due to denser spatial grid.

In Fig. 4, we present the HHG spectra for the laser
peak intensity 2 × 1014 W/cm2; the upper panel contains the
TDDFT spectrum, while the lower panel shows the results of
the frozen-core model potential calculations. For the frozen-
core model, Eq. (47) for the expectation value of acceleration
must contain the full model potential V 0

σ (r), and not just the
interaction with the nucleus. Although all the spin orbitals are
being propagated in time and contribute to the time-dependent
electron density in the frozen-core model, the HHG spectrum
is strongly dominated by the highest-occupied 3p(m = 0)
subshell. In this sense, the frozen-core model appears a single-
active-electron model. On the contrary, the TDDFT spectrum
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FIG. 4. (Color online) Spectral density of harmonic radiation
energy for a sin2 laser pulse with the carrier wavelength of 800 nm and
duration of 20 optical cycles at the peak intensity 2 × 1014 W/cm2:
(a) TDDFT results; (b) frozen-core model potential calculations.

contains comparable contributions from different Kohn-Sham
spin orbitals thus indicating the significance of multielectron
effects. Both frozen-core model and TDDFT spectra have
a minimum in the central part which is closely related to
the Cooper minimum [31] observed in the photoionization
cross sections of Ar. This minimum originates from the nodal
structure of the 3p wave function of Ar which causes the
bound-continuum 3p − Ed dipole matrix element to vanish
at some energy E in the continuum [31]. According to
the three-step model of HHG [32], the third step of this
process is recombination of the recolliding electron with
the core. Ionization and recombination are mutually inverse
processes, hence a minimum in the photoionization cross
section must have its reflection in the HHG spectra as well. The
Cooper minimum in the HHG spectra of Ar has already been
observed experimentally many times [33–37]. In our TDDFT
calculations, this minimum is clearly seen in the vicinity of the
33rd harmonic (∼51 eV). In the frozen-core model spectrum,
the minimum is less pronounced and shifted to lower energies
(about the 29th harmonic, ∼45 eV). We note that another
one-electron model [38] also gives this minimum at lower
energies (∼40 eV). As one can see, dynamic multielectron
response is quite important in shaping the Cooper minimum
in the Ar HHG spectra.

Figure 5 shows the HHG spectra of Ar calculated by
the TDDFT-ECS method at three different intensities: 2 ×
1014 W/cm2, 3 × 1014 W/cm2, and 4 × 1014 W/cm2. As
one can see, with increasing intensity, the cutoff of the HHG
spectrum shifts to higher energies in fair agreement with the
well-known semiclassical law [39] (Ei + 3.17Up, Ei and Up

being the ionization energy and the ponderomotive potential,
respectively). At the same time, the position of the Cooper
minimum in the spectrum appears intensity independent and
corresponds approximately to 51 eV (33rd harmonic), in
good accord with the experimental observations [34–36]
(51–54 eV). As was noticed in Refs. [35,36], the measured
minimum in the HHG spectra is somewhat shifted to higher
energies compared with the measurements in the photoioniza-
tion [40] and electronic excitation [41] experiments (48 eV and
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FIG. 5. (Color online) Spectral density of harmonic radiation
energy for a sin2 laser pulse with the carrier wavelength of 800 nm and
duration of 20 optical cycles: (a) peak intensity 2 × 1014 W/cm2; (b)
peak intensity 3 × 1014 W/cm2; (c) peak intensity 4 × 1014 W/cm2.

50 eV, respectively). Although ionization and recombination
are mutually inverse processes, an experimentally measured
photoionization cross section contains an incoherent sum of
two contributions (p → s and p → d channels), while in
the HHG recombination amplitude a coherent sum of these
contributions is present [36]. This circumstance can partly
explain the blueshift of the Cooper minimum in the HHG
spectrum [35,36]. We also point out the multielectron effects
and dynamic core polarization; their importance is clearly seen
from the comparison of our TDDFT and frozen-core model
calculations.

VI. SUMMARY

In this paper, we have presented the TDDFT-ECS method
for treatment of multielectron atoms subject to laser fields. We
have shown that exterior complex scaling can be successfully
implemented in the framework of time-dependent density-
functional theory. It ensures that the outgoing-wave boundary
conditions are imposed on the wave function at large distances;
this is important for correct description of ionization caused by
external time-dependent fields. When combined with the gen-
eralized pseudospectral discretization, TDDFT-ECS method
provides an accurate and efficient computational scheme for
calculations of multiphoton processes in multielectron atoms.
We have applied the method for calculations of MPI and
HHG in Ar. Our results show that dynamic multielectron
response is extremely important in both processes. The
calculations performed using a static single-electron model
potential, without taking multielectron effects into account,
significantly overestimate the MPI probabilities compared
with those obtained by TDDFT for the same parameters of the
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laser field. In the HHG spectra of Ar, the effect of multiple
electronic shells is clearly seen in shaping of the Cooper
minimum. In the TDDFT-ECS calculations, this minimum
appears approximately at the photon energy of 51 eV, in good
agreement with the experimental observations, while in the
static potential model the minimum is less pronounced and
shifted to lower energies.
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B. Carré, R. Taı̈eb, and P. Saliéres, Nat. Phys. 6, 200 (2010).

[5] A. D. Shiner, B. E. Schmidt, C. Trallero-Herrero, H. J. Wörner,
S. Patchkovskii, P. B. Corkum, J. C. Kieffer, F. Légaré, and D. M.
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