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Pulsed phonon lasing in trapped ions
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Optical laser pulses play important roles in various fields, and the phononlike analog, i.e., phonon laser pulses,
should also be very useful. We show the possibility of pulsed phonon lasing in trapped ions based on our
observation that coherent phonon pulses are generated and then transferred between transverse dimensions due
to nonlinear resonance once the oscillation amplitude of the trapped ions is larger than a threshold. We study the
pulsed phonon output with the multiple-scale method using the first-order nonlinear differential equations which
govern time evolution of the amplitudes and phases of the interacting modes. We also discuss the feasibility of
Q-switched pulsed phonon lasing and the potential application.

DOI: 10.1103/PhysRevA.87.053402 PACS number(s): 37.10.Vz, 05.45.−a, 32.80.Wr, 37.10.Ty

I. INTRODUCTION

Phonon lasers, which provide the source of coherent
acoustic radiation as an analog to optical lasers, are of great
significance in physics. Relevant theoretical analyses have
been carried out in several different systems, e.g., trapped
ions [1], nanomechanics [2], nanomagnets [3], and quantum
dots [4], where coherent amplification of phonons, instead of
phonon lasers, was mentioned. Coherent emission of sound
waves has also been demonstrated experimentally in micro-
cavity systems [5] and in doped superlattice complexes [6].

The coherent amplification of the phonons from trapped
ions, in which the oscillation of a single trapped ion is
stimulated in the axial dimension by a blue detuned laser, has
been investigated both theoretically and experimentally [7,8].
Based on the amplified phonons, an injection locking has been
achieved in the trapped-ion system [9], and such an idea can
be applied to detecting ultraweak oscillation forces [10]. Since
such models [7–9] are established on a single trapped ion in
a single dimension, it is not clear how the generated phonons
are outputted, although the Q factor of the system can be
adjusted in principle. The phonon lasing based on coupled
modes of vibrations has recently been demonstrated in an
electromechanical resonator [11].

In this paper, we demonstrate the observation of pulsed
phonon lasing in an array of trapped ions, where the phonons
are generated in a certain dimension and outputted coherently
to another dimension once the oscillation amplitude of the
ions exceeds the threshold. To this end, we will consider the
generation of phonons in transverse modes (along x and y

axes) instead of the longitudinal mode (along the z axis). The
key point of our work is the intradimensional coupling due to
the nonlinearity in the trap, such as anharmonic potentials [12].
To simplify the problem, we only focus on the center-of-mass
(COM) mode of the trapped ions, by which we may neglect
the phonon-phonon interaction due to Coulomb nonlinearity
[13,14]. As a result, we will show the observation of the pulsed
phonons transmitted to another dimension only due to trap
potential nonlinearity. Moreover, we discuss the possibility of
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Q-switched pulsed phonon lasing based on elaborate control
of the trapped ions.

II. THE EXPERIMENTAL SETUP AND THE MECHANISM
OF PULSED PHONON LASING

Pulsed phonon lasing is observed in our homebuilt linear
ion trap [15] (see Fig. 1), where a radiofrequency (rf) voltage of
the frequency �/2π = 20 MHz is applied on the bladelike rf
electrodes, and a dc voltage Uec = 30 V is applied on the end-
cap electrodes. The secular motion frequencies are measured
to be about ωx/2π = 1.103 MHz, ωy/2π = 1.104 MHz, and
ωz/2π = 0.264 MHz for the three dimensions, respectively.
For our purpose, we have to first accomplish Doppler cooling
using a red-detuned 397 nm cooling laser and a resonant
866-nm repumping laser. Both of the lasers are locked
to an iodine stabilized He-Ne laser by transfer cavity
technology, leading to a long time drift of less than 2 MHz/h.
Throughout this work, the lasers irradiate along the direction
k̂ = (−0.37,0.03,0.93).

In contrast to the situation in [8], the trapped ions in our
case are cooled in both the x axis and the z axis but heated
in the y axis using a single red-detuned 397 nm laser assisted
by a resonant 866 nm laser and a proper dc offset driving. For
heating the motion in the y direction by a red-detuned laser,
five trapped 40Ca+ ion crystals are deliberately pushed away
along the x direction by a dc offset driving for about 10 μm.
This displacement due to driving excites excess micromotion
sideband transitions for the motion along the y direction be-
cause the micromotion excitation is along the ac electric field,
perpendicular to the displaced direction of the ions [16]. As a
result, although it provides energy damping and yields cooling
in the x and z axes, the properly red-detuned 397 nm laser may
play the role of heating in the y axis [17,18] by transferring the
excitation from the micromotion to the secular motion. The to-
tal effect of the heating can be further understood later from the
negative damping in the equation of motion in the y axis (see
Appendix A) [19]. Due to the independence of the two kinds of
phonons, the micromotion phonons would not interfere with
the secular motion phonons outputted as the phonon lasing.

The oscillation amplitude y0 in the y direction is governed
by the following equation (see Appendix A for details on the
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FIG. 1. (Color online) Schematic diagram of the experimental
setup (top view) and the relevant energy levels of the 40Ca+ ion. The
z axis is defined as the trap axis. The compensation electrode located
along the x axis is not shown in the picture. The laser spots in the trap
center are about 60 and 200 μm for 397 nm (arrows in purple) and
866 nm lasers (arrows in red), respectively. Scattered 397 nm photons
are collected by imaging systems and directed to an electron-
multiplying CCD (EMCCD) camera and a photomultiplier tube
(PMT).

phonon amplification in the y axis):

ẏ0 = − 1
2μ′(�,β,y0)y0 + ζ ′(t), (1)

where μ′(�,β,y0) is a complicated function regarding the
laser detuning � to the transition frequency of each ion, the
micromotion modulation index β, and the oscillation ampli-
tude y0. The micromotion modulation index β is proportional
to the displacement of the ions from the trap center and can
be adjusted by the dc offset voltage. ζ ′(t) is a cycle-averaged
white noise. Under a proper condition, e.g., μ′(�,β,y0) < 0,
coherent phonon amplification (or, say, phonon lasing) can be
realized.

III. OBSERVATION OF THE PHONON LASING AND
THE PULSED OUTPUT

As shown in Fig. 2, the threshold behavior of the
phonon lasing is observed by sweeping the frequency of the
397 nm laser toward the resonance frequency or by increasing
the micromotion modulation index. When the laser detuning
increases across −250 MHz or the dc offset voltage increases
across 235 V, the function μ′ turns from positive to negative
and the phonons in the y direction turn from damping to
amplification. The case of the function μ′ = 0 means a
saturation that corresponds to the balance between the damping
and the amplification. Figure 2 records such saturation in the
variation of 397 nm laser frequency and the dc offset voltage.
We may find that the amplification behaves as a hysteresis,
which is due to the high nonlinearity of μ′(�,β,y0) with
bistable solutions regarding � and y0. Similar hysteresis has
been studied both theoretically and experimentally [7,8].

When the saturation amplitude is larger than the transfer
threshold, e.g., 32 μm in Fig. 3, the phonon transfer occurs
between the x and y axes, where the oscillation in the y axis
drops rapidly (see Fig. 3), and the vibration in the x axis is
thereby excited as shown below in our theoretical analysis. As
long as the 397 nm laser is on, this generation and transfer of
phonons will repeat periodically due to constant heating in the
y axis and constant cooling in other directions.

FIG. 2. (Color online) The threshold and amplitude saturation
of the phonon lasing. Micromotion modulation is controlled by a
dc offset voltage applied on the compensation electrodes, for which
130 V is the optimal value for suppressing the excess micromotion.
The arrows in the figure show the sweeping direction. (a) The
oscillation amplitude vs 397 nm laser detuning, where the dc offset
voltage is 231 V and the laser power is about 35 μW. (b) The
oscillation amplitude vs dc offset voltage, where the 397 nm laser
is red-detuned for 280 MHz and the laser power is about 35 μW. The
red stars indicate the threshold points for generating the phonon laser.

Fluorescence is collected during the process above as shown
in Fig. 4(a), which can be considered as complementary
information to Fig. 3(b). Since the sufficiently long exposure
time (> 0.4 s) is required for taking an image on EMCCD due
to the signal-to-noise ratio in our experiment, which limited
the time resolution of the oscillation amplitude measurement,
we only present a single measurement point in Fig. 3(b). From

(a)

(b)

(c)

FIG. 3. (Color online) The oscillation amplification and collapse
along the y axis. (a) Time-averaged images taken during the process.
Each picture is exposed for 0.4 s and the time interval between the
successive exposures is 0.01 s. The dc offset voltage is about 270 V
and the 397 nm laser is red-detuned by 80 MHz with the power of
15 μW. The images are as follows: (1) Laser cooling of the ions in both
dimensions; (2)–(6) gradual excitation of the ions to larger and larger
amplitude oscillation; (7) the amplitude collapsed to a lower value
due to phonon transfer to the x axis. (b) The time-stamped amplitude,
where the red star indicates the transfer threshold for phonon lasing.
(c) The width of the ion crystal in the z axis.
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FIG. 4. (Color online) (a) Fluorescence rate signal for 10 ms accumulation during the same process as in Fig. 2, where the arrow points
to the collapse due to blockage of the 866 nm laser; (b)–(d) the recurrence periods, averaged by 100 samples, with respect to 397 nm laser
detuning and power as well as dc offset voltage, respectively, where (b) the laser detuning � = −40 MHz, (c) the laser power P = 5 W and
the dc offset voltage Vdc = 270 V, and (d) � = −70 MHz and P = 5 μW.

Fig. 4(a), however, we may know more about this process,
such as no fast oscillation of fluorescence during the collapse
of the oscillation amplitude in the y axis. Moreover, besides the
influence from the Doppler shift, the fluorescence rate is also
modulated by the oscillation amplitude. Since the oscillation
amplitude is comparable to the laser spot and larger than the
effective size of the pinhole in front of the PMT, which yields
less photon scattering and collection, the larger fluorescence
signal corresponds to the smaller oscillation amplitude of
the ions. To justify the source of the amplification, we have
blocked the 866 nm repumping laser for about 0.8 s during the
process of the oscillation amplification. The fluorescence rate
drops suddenly and then revives quickly after the blockage is
removed, which implies that the excitation of the oscillation is
caused by the laser irradiation instead of other factors such as
the Coulomb interaction. Moreover, we have also made a series
of measurements for the recurrence period under different
conditions, which are shown in Figs. 4(b)–4(d).

Due to the fact that the x axis is nearly perpendicular to the
imaging plane of the EMCCD in our setup, we have no way to
observe the vibration in the x axis directly. But since the width
of the ion crystal in the z axis has no obvious expansion during
the process of phonon transfer, it is reasonable to conjecture
that the excitation of the phonons was transferred to the x

axis, which can be clarified further in the following analysis
by equations of motion of the ions.

IV. NONLINEAR COUPLING MODEL AND
THE SOLUTIONS

To describe the phonon transfer that occurred in the
preceding section, we consider hexapole and octopole

anharmonic potentials caused by manufacturing imperfec-
tions, which contribute to the nonlinear coupling between the x

and y directions [21]. To simplify our treatment, we consider
the pseudopotential Ueff(x,y) = e

2m
〈|∫ ∇�(x,y,t)dt |2〉 [22],

and we resort to the effect regarding the micromotion to the
damping term in our following treatment. The equations of
COM motion for radial directions can be written as

d2r
dt2

+ e

m
∇Ueff(x,y) + Ȧr − eÊdc

m
= 0, (2)

where r = (x,y) is for the position of the ion in different
axes, the gradient operator ∇ works in the x and y axes,
Ȧr = (μ̂x ẋ,μ̂y ẏ) is for the laser irradiation effect with μ̂x >

0 and μ̂y < 0 representing the damping and amplification,
respectively, Êdc is the x-axial static electric field used for
pushing the ions, and e and m are the charge and mass of the
ion. As deduced in Appendix B, the equations can be reduced to

ẍ + ω2
xx + α̂3x

3 + α̂4y
2x + μ̂x ẋ − eÊdc

m
= 0, (3)

ÿ + ω2
yy + α̂5y

3 + α̂7x
2y + μ̂y ẏ = 0, (4)

where ωx and ωy are the secular frequencies of the radial
directions and are slightly different from each other due to the
end-cap asymmetry [23]. Parameters α3, α4, α5, and α7 are
related to the anharmonic potential, as defined in Appendix B.

Equations (3) and (4) include nonlinearity and in-
tradimensional coupling, which can be solved by the
multiple-scale method. Approximate solutions have the form
x = x0(T1) cos[ωxT0 + θx(T1)] and y = y0(T1) cos[ωyT0 +
θy(T1)], where x0 (y0) and θx (θy) are amplitudes and phases
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of the oscillations in the x (y) dimensions, respectively, T0 is
a fast time scale associated with the changes occurring at the
frequency ωr , and T1 is a slow time scale. For convenience of
treatment, we define σ = 2(ωy − ωx) and γ = σT1 + 2(θy −
θx), and we obtain the equations (see details in Appendix B)

γ̇ = σ − 3

8

(
α3

ωx

x2
0 − α5

ωy

y2
0

)

−1

8

(
α4

ωx

y2
0 − α7

ωy

x2
0

)
(2 + cos γ ),

ẋ0 = − α4

8ωx

y2
0x0 sin γ − μxx0

2
,

ẏ0 = α7

8ωy

x2
0y0 sin γ − μyy0

2
, (5)

where γ is related to the phase difference of the motion
between the x and y directions. μx > 0 (μy > 0) means
cooling in the x (y) axis, and μx < 0 (μy < 0) means heating
in the x (y) axis.

In the case of small amplitudes, e.g., | α4
8ωx

y2
0x0| � |μxx0

2 |
and | α7

8ωy
x2

0y0| � |μyy0

2 | are satisfied, we have ẋ0 = −μxx0/2
and ẏ0 = −μyy0/2. For μx > 0 and μy < 0, oscillation in the
x (y) direction becomes smaller (larger), which implies that
no phonon transfers from the y axis to the x axis. Therefore,
the amplification threshold is the point at which μy turns from
positive to negative and the amplitude saturates at μy = 0,
which is the phonon lasing described before.

For larger amplitudes, the phonon transfer happens only in
the case of γ̇ = 0, which means a constant γ . We may call
this the condition of phase-difference locking. Substituting
this condition into Eq. (5) and considering the condition that
both ωx

∼= ωy = ωr and x2
0 � y2

0 are satisfied at the beginning
of this process, we obtain the expressions for the amplitude
threshold:

y2
0 > max

{
8σωr

α4 − 3α5
,

8σωr

3(α4 − α5)

}
, α5 < α4 < 3α5,

8σωr

3(α4 − α5)
< y2

0 <
8σωr

α4 − 3α5
, α4 > {α5,3α5},σ > 0,

8σωr

α4 − 3α5
< y2

0 <
8σωr

3(α4 − α5)
, α4 < {α5,3α5},σ < 0.

(6)

The equations present clearly that the amplitude threshold
for the phonon transfer is relevant to the anharmonic potentials
(i.e., the parameters α4 and α5) and the frequency difference
σ . Besides, once the phonon transfer happens, sin γ should
be a negative constant, which is the prerequisite of x0 (y0)
increasing (decreasing).

Since cooling works in the x axis during the phonon transfer
(i.e., μx >0), the successful output of the pulsed phonon
lasing from the y axis to the x axis depends on ẋ0 > 0,
implying that sin γ < 0 and | α4

8ωx
y2

0x0 sin γ | > |μxx0

2 | during
the phase-difference locking. So we have another condition
for the coherent output threshold,

y2
0 > B2, α5 < α4 < 3α5,

B2 < y2
0 < B1 otherwise,

(7)

where B1 = 8σωr (2α4−3α5)
(α4−3α5)(α4−α5) + 4ωr

√
4σ 2α2

4+μ2
x

(α4−3α5)(α4−α5) , B2 =
8σωr (2α4−3α5)

(α4−3α5)(α4−α5)−
4ωr

√
4σ 2α2

4+μ2
x

(α4−3α5)(α4−α5) . This equation presents a more
general condition since it can be reduced to Eq. (6) when
μx = 0. For μx > 0, however, there is possibility of no overlap
between the two conditions in Eqs. (6) and (7), which means
that no phonon amplification in the x axis will happen. In other
words, the phonon lasing is available only when both Eqs. (6)
and (7) are satisfied.

Once the output threshold is reached, the self-sustained
phonon pulse is outputted. The phonons in the x (y) dimension
increase (decrease) with the rate proportional to y2

0 until
Eq. (7) is not satisfied any more. Then the condition for phase-
difference locking breaks down, and the phonon excitation
in the x direction starts to decay by the laser cooling and
meanwhile the phonons in the y direction are excited again by
the laser. This begins a new cycle and such a process proceeds
periodically. Moreover, once the phonon lasing is generated in
the y direction, since the transient relative phase of oscillations
between the x and y directions is locked during the phonon
amplification in the x axis, the phonon output should also be
coherent, which is analogous to the output of the optical laser.

V. DISCUSSION

The numerical simulation of Eq. (5) is given in Fig. 5, where
the phase-locking behavior and the pulsed phonon transfer are
shown. Parameters for the simulation are chosen according
to our experimental conditions. The phonon increase in the x

axis shows a sharp pulse style when the oscillation amplitude
exceeds the output threshold, and the process repeats regularly.

We discuss below how the recurrence period of the pulsed
output depends on the damping rate. To this end, we define
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FIG. 5. (Color online) Simulations based on Eq. (5) with the
recurrence period 1.2 s. The parameters are set as μx = 100 s−1,
μy = −2 s−1, f1 = 0.05, and f2 = 0.005 (f1 and f2 are ratios of
multipole coefficients in different axes, defined in Appendix B). The
fluorescence rate is simulated simply by integrating the laser intensity
over the ion trajectory. The bottom plot shows the nearly constant γ ,
i.e., the locking of the phase difference.
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the kinetic energies of the motion in the x and y directions
as Ex = 1

2mω2
1xx

2
0 and Ey = 1

2mω2
1yy

2
0 , where ω1x = ωx + θ̇x

and ω1y = ωy + θ̇y . Our calculation shows that | ∂(Ėx+Ėy )
∂μy

| >

| ∂(Ėx+Ėy )
∂μx

| always holds. This indicates that the energy change
and the recurrence frequency are more sensitive to the heating
rate μy . This is also reflected in the comparison between
Figs. 4(c) and 4(d), where there are almost the same curves in
both plots with changes of both μx and μy in the former but
only the change of μy in the latter.

The better pulsed laser has a narrower pulse width and a
higher peak energy. For the pulsed optical laser, this is achieved
by Q-switching technology, which increases the loss in the
amplification stage and decreases the loss in the output stage.
For our phonon counterpart, since the loss is attributed to
the cooling rate μx , an analogous Q-switching can also be
carried out by controlling μx . According to the phonon output
condition Eq. (7), if the cooling and amplifying laser beams
can be adjusted separately, we may increase μx to enhance
the output threshold, yielding more energy accumulation in
the amplification stage, and then in the output stage we
may decrease μx to enlarge the output rate. Moreover, the
recurrence of the phonon lasing pulse can be accelerated by
increasing μy . So a Q-switched pulsed phonon lasing can be
built by varying the power of the optical lasers.

VI. CONCLUSION

In conclusion, pulse-type phonon lasing has been demon-
strated for phonon amplification in transverse COM modes of
trapped ions. The intradimensional coupling due to hexapole
and octupole potentials has been numerically studied using
the multiscale method. The phonon laser pulses are generated
in the y axis and outputted to the x axis. The micromotion
modes are involved but never excited in our experiment, so
the single-mode phonon laser output is only related to the
secular COM mode. We have also discussed the feasibility of
the Q-switching technology in our pulsed phonon lasing by
separately controlling the cooling and heating of the ions.
With highly controllable mechanical motion, engineerable
multipole potential [25], and achievable ground-state cooling,
the trapped ions can be taken as an ideal platform for studying
phonon lasers and nonlinear mechanical oscillators [26].
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APPENDIX A: DETAILS OF THE HEATING IN THE y AXIS

Using the pseudopotential model, the secular COM motion
of the ions satisfies the oscillator equation,

ÿ + ω2
yy = Fl/m + ζ (t), (A1)

where Fl is the scattering force of the optical laser and ζ (t) is
the white noise including spontaneous emission. For the ions
undergoing a large micromotion, the scattering force in the

Doppler cooling is frequency modulated by micromotion [17],
and we have the equation Fl/m = −f ẏ, where f = 2h̄k2�

m

∂ρ22

∂�

and ρ22 = κ2

4

∑
n

J 2
n (β)

(�−kẏ−n�)2+�2 , with the natural linewidth �

of the P3/2 state, the laser frequency detuning � with respect to
the transition frequency of the ion, the micromotion frequency
�, and κ = Ẽd/h̄ with the laser electric field amplitude Ẽ,
the transition electric dipole momentum d, the micromotion
modulation index β, and the Bessel function Jn(β). So the
equation of motion is rewritten as

ÿ + ω2
yy = −f (�,β,ẏ)ẏ + ζ (t), (A2)

where the function f is strongly relevant to the variables �,
β, and y. To analyze the motional properties, we suppose the
solution as y = y0 cos(ωyt + φ) with y0 and φ the amplitude
and phase of the slowly varying secular motion (i.e., ẏ0 �
y0ωy and φ̇ � ωy). Substituting the solution into Eq. (A2)
and keeping only leading terms, we obtain

ẏ0 sin(ωyt + φ) + y0φ̇ cos(ωyt + φ)

= −1

2
f (�,β,ẏ)

{
y0 sin(ωyt + φ) − ẏ0

ωy

cos(ωyt + φ)

}

− 1

2ωy

ζ (t). (A3)

Using the slowly varying nature of y0 and φ and multiplying
the equation by sin(ωyt + φ), we integrate over one oscillation
cycle yielding [8]

ẏ0 = − 1
2μ′(�,β,y0)y0 + ζ ′(t), (A4)

where μ′(�,β,y0) = 1
π

∫ 2π

0 dξ f (�,β,y0ωy cos(ξ )) sin2(ξ )

and ζ ′(t) = − 1
2π

∫ t+τ

t
dt ′ζ (t ′) sin(ωyt

′). With the expression
of energy E = mω2

yy
2
0/2, we have

Ė = −μ′(�,β,E)E + ζ ′(t). (A5)

This gives the phonon lasing behavior if μ′ < 0 [8], which
presents an exponential increase of the energy. It has been
proven [17] that the red-detuned laser can provide negative
damping (i.e., μ′ < 0) and excite the secular motion if the
micromotion index is large enough. μ′ is of a very complicated
form changing around the value of zero, which makes the
dynamics very complicated. The amplitude threshold is set at
the point that μ′ turns from positive to negative. The oscillation
is saturated when μ′ turns from negative to positive again. This
yields the hysteresis.

APPENDIX B: DETAILS OF THE NONLINEAR
COUPLING MODEL

In Cartesian coordinates, a two-dimensional elec-
tric potential �(x,y,t) can be expanded as �(x,y,t) =
V (t)

∑∞
N=0 ANφN (x,y) [12], where V (t) is the applied rf

voltage, AN is the dimensionless coefficient of the multipole
φN (x,y), and the multipole φN (x,y) is of the form φN (x,y) =
Re[ x+iy

r0
]N with r0 a normalization radius. For the multipoles,

φ0(x,y) represents a constant term with independent x and y,
φ1(x,y) represents the potential from two planes of opposite
charges (i.e., a linear dipole), and φj (x,y) with j = 2,3,4 are
for potentials of quadrupole, hexapole, and octopole, respec-
tively. In our setup, the most relevant potentials are φj (x,y)
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with j = 2,3,4. So the total potential can be expressed as

�(x,y,t)

= A2

(
x2 − y2

r2
0

+ f1
x3 − 3xy2

r3
0

+ f2
x4 − 6x2y2 + y4

r4
0

)
,

(B1)

with f1 = A3
A2

, f2 = A4
A2

, and r0 = 0.9 mm for our
trap. An effective potential can be derived by
averaging the rapid oscillation field �(x,y,t) to be
Ueff(x,y) = e

2m
〈|∫ ∇�(x,y,t)dt |2〉 for a particle with charge

e and mass m [22]. Taking into account the laser damping effect
as well as the static electric field cause by the compensation
electrode, we reach the classical equation of radial motion of
the ions in the effective potential Ueff(x,y), i.e., Eq. (2).

The equations of motion in the radial directions are written
as

ẍ + ω2
xx + α̂2x

2 + α̂3x
3 + α̂4y

2x + μ̂x ẋ − eÊdc

m
= 0,

(B2)
ÿ + ω2

yy + α̂5y
3 + α̂6xy + α̂7x

2y + μ̂y ẏ = 0,

where α̂2 = 9f1ω
2
x/r0, α̂3 = (18f 2

1 + 16f2)ω2
x/r2

0 , α̂4 =
18f 2

1 ω2
x/r2

0 , α̂5 = (18f 2
1 − 16f2)ω2

y/r2
0 , α̂6 = 6f1ω

2
y/r0, and

α̂7 = 18f 2
1 ω2

y/r2
0 . Since we only consider the near-resonance

case ωx 	 ωy , we may delete the terms of x2 and xy because
of their negligible contribution to the dynamics. So Eq. (B2)
is reduced to Eqs. (3) and (4) in the main text.

Using the multiple-scale method on Eq. (B2), we have the
first-order uniform expansion of the solution [24]

x = xε0(T0,T1) + εxε1(T0,T1) + · · · ,
(B3)

y = yε0(T0,T1) + εyε1(T0,T1) + · · · ,

where ε is a small dimensionless parameter, T0 = t is a fast
time scale, and T1 = εt is a slow time scale. To make use
of the perturbative expansion, we scale the nonlinearities
and damping coefficients as μ̂i = εμi , i = x,y, α̂n = εαm,
m = 2, . . . ,7, and Êdc = εEdc. By substituting Eq. (B3) into
Eq. (B2), we have the equations from the coefficients with the
same powers of ε,

D2
0xε0 + ω2

xxε0 = 0, D2
0yε0 + ω2

yyε0 = 0 (B4)

for the order ε0 with Dn = ∂/∂Tn (n = 0,1, . . . ), and

D2
0xε1 + ω2

xxε1 + 2D0D1xε0 + α2x
2
ε0 + α3x

3
ε0

+α4y
2
ε0xε0 + μxD0xε0 − eEdc/m = 0, (B5)

D2
0yε1 + ω2

yyε1 + 2D0D1yε0 + α5y
3
ε0

+α6xε0yε0 + α7x
2
ε0yε0 + μyD0yε0 = 0 (B6)

for the order of ε1. The general solutions to Eqs. (B5) and (B6)
can be supposed as xε0 = x0(T1) cos[ωxT0 + θx(T1)] and yε0 =
y0(T1) cos[ωyT0 + θy(T1)], from which we may eliminate
the secular terms regarding ωx and ωy . Then we arrive at
Eq. (5).
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