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Universal nature and finite-range corrections in elastic atom-dimer scattering
below the dimer breakup threshold
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We investigate universal behavior in elastic atom-dimer scattering below the dimer breakup threshold
calculating the atom-dimer effective-range function ak cot δ. Using the He-He system as a reference, we
solve the Schrödinger equation for a family of potentials having different values of the two-body scattering
length a and we compare our results to the universal zero-range form deduced by Efimov, ak cot δ = c1(ka) +
c2(ka) cot[s0 ln(κ∗a) + φ(ka)], for selected values of the three-body parameter κ∗. Using the parametrization of
the universal functions c1,c2,φ given in the literature, a good agreement with the universal formula is obtained
after introducing a particular type of finite-range corrections. Furthermore, we show that the same parametrization
describes a very different system: nucleon-deuteron scattering below the deuteron breakup threshold. Our analysis
confirms the universal character of the process, and relates the pole energy in the effective-range function of
nucleon-deuteron scattering to the three-body parameter κ∗.
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I. INTRODUCTION

Scattering of two particles at very low energy shows
universal behavior encoded in the scattering length a and in the
effective range rs . In fact, systems with different interactions
sharing the same scattering length and the same effective range
have the same effective-range function k cot δ = −1/a +
rsk

2/2, and, accordingly, the same low-energy behavior. In the
limit a � r0, where the scattering length is much greater than
the typical range of the potential r0, not only the scattering
process is universal, but also some bound-state properties.
When a → +∞ (known as unitary limit), the two-particle
system has a shallow-bound state with the bound-state energy
E2 ≈ h̄2/ma2 fixed by the scattering length. In this limit, the
physics is scale invariant.

In the 1970s, Efimov [1,2] showed that the scale invariance
is broken in the s-wave three-body sector of a bosonic
system. The residual symmetry is the discrete scale invariance
(DSI), namely, the physics is invariant under the rescaling
r → �nr , where the constant is usually written � = eπ/s0 ,
with s0 ≈ 1.006 24 a universal number that characterizes a
system of three identical bosons. One consequence is that at
the unitary limit, the three-body spectrum consists of an infinite
number of states that accumulate to zero with the ratio between
two consecutive states being En+1

3 /En
3 = e−2π/s0 . For finite

scattering length, the binding energies satisfy the Efimov’s
equation

En
3 + h̄2

ma2
= e−2(n−n∗)π/s0 exp [�(ξ )/s0]

h̄2κ2
∗

m
, (1)

with tan ξ = −(mEn
3 /h̄2)1/2a. The function �(ξ ) is universal

and a parametrization in the interval [−π, − π/4] is given in
Ref. [3]. The three-body parameter κ∗ is the wave number of
the n = n∗ state at the unitary limit.

The DSI constrains the form of the observables to be log-
periodic functions of the control parameters. One example is
the atom-dimer scattering length which has the general form

aAD/a = d1 + d2 tan[s0 ln(κ∗a) + d3] , (2)

where d1,d2,d3 are universal constants whose value has been
determined in the zero-range limit [3]. For collisions below the
dimer breakup threshold, DSI imposes the following universal
form for the effective-range function:

ka cot δ = c1(ka) + c2(ka) cot[s0 ln(κ∗a) + φ(ka)], (3)

with δ the atom-dimer phase shift and c1,c2,φ universal
functions of the dimensionless variable ka, where k2 =
(4/3)E/(h̄2/m), being E the center-of-mass energy of the
process. As k → 0, ka cot δ → −a/aAD and at k = 0 the
constants d1,d2,d3 and c1(0),c2(0),φ(0) are related by simple
trigonometric relations. A parametrization of the universal
constants and functions can be found in Ref. [3].

In this paper, we study in detail the universal behavior of
aAD and of the effective-range function ka cot δ. To this aim,
we use the family of atomic 4He-4He potentials derived in Ref.
[4] for several values of a, running from a ≈ 440 a0 to 50 a0.
The corresponding dimer energies range from E2 ≈ 0.22 to
21 mK covering two orders of magnitude. For selected values
of a in the mentioned interval, we calculate aAD and the
s-wave phase shift in order to construct the effective-range
function below the dimer breakup threshold. As predicted
by Eq. (3), when the value of a increases, we observe that
aAD changes sign tending to −∞. This behavior produces
a pole in the effective-range function. More specifically, our
numerical results are used to analyze the universal form of
Eqs. (2) and (3), and, as the calculations are done using
finite-range interactions, to extract finite-range corrections by
comparing our results to the zero-range theory. Interestingly,
for the explored zone of positive scattering length, the range
corrections can be taken into account by a shift in the
variable κ∗a.

This study is of interest for several fields of research,
ranging from cold atoms to nuclear physics and, in particular,
in halo nuclei where a cluster description is justified. In atomic
physics, where the Efimov effect has been observed for the first
time [5], discrepancies arise between the theoretical prediction
and the experimental determination of the ratio between a∗
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and a− [6,7], which means between the scattering lengths
at which an Efimov state disappears in the atom-dimer and
in the three-atom continua, respectively. The solution to this
puzzle is probably hidden in finite-range corrections to the
universal formulas (see Ref. [8] and references therein for
a recent account of the problem). In halo nuclei there has
been a lot of interest in the observation of universal aspects
in the scattering of a neutron on a neutron-halo nucleus
having a large scattering length, as for example the n −19 C
system (see Refs. [9,10] and [11] for a recent review). In
this context, we make use of the universal character of the
effective-range function to evaluate a very different system:
low-energy nucleon-deuteron scattering. It is well known
that the nucleon-deuteron effective-range function presents
a pole structure that has been related to the presence of a
virtual state. First observations of this particular behavior have
been done in Refs. [12–14], whereas in Ref. [15] an explicit
calculation of the effective-range function has been done
using a semirealistic nucleon-nucleon potential. In this last
reference, the calculations allowed us to extract the energy of
the pole after fitting the effective-range formula with the form
suggested by Delves [16]. In this work, we show that the pole
structure of the effective-range function can be quantitatively
related to the universal form given by Eq. (3) and, using the
parametrization determined in the atomic three-helium system,
we apply that equation to describe nucleon-deuteron scattering
as well. In particular, using the universal function φ, the energy
of the pole can be used to extract the three-body parameter κ∗.
In this way, the universal behavior imposed by the DSI is
analyzed in systems with natural lengths that differ of several
orders of magnitude.

II. THREE-BOSON MODEL

We construct the model using the LM2M2 [17], one of
the most used 4He-4He potentials, as the reference interaction,
with the mass parameter h̄2/m = 43.281 307(a0)2 K. In order
to change the value of the scattering length, we have modified
the LM2M2 interaction as follows:

Vλ(r) = λVLM2M2(r). (4)

Examples of this strategy exist in the literature [18,19]. The
unitary limit is produced for λ ≈ 0.9743, whereas for λ = 1
the values of the LM2M2 are recovered: a = 189.41 a0, E2 =
−1.303 mK, and the effective range rs = 13.845 a0.

Following Ref. [4], we define an attractive two-body
Gaussian (TBG) potential

V (r) = V0e
−r2/r2

0 , (5)

with range r0 = 10 a0 and strength V0 fixed to reproduce
the values of a given by Vλ(r) = λVLM2M2(r). For example,
the strength V0 = −1.234 356 6 K corresponds to λ = 1
reproducing the LM2M2 low-energy data E2 = −1.303 mK,
a = 189.42 a0, and rs = 13.80 a0.

The use of the TBG potential in the three-atom system
produces a ground-state binding energy appreciably deeper
than the one calculated with Vλ(r). For example, at λ = 1, the
LM2M2 helium-trimer ground-state binding energy is E0

3 =
126.4 mK, whereas the one obtained using the two-body soft-
core potential in Eq. (5) is 151.32 mK. Hence, we introduce a
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FIG. 1. (Color online) Energy of the first excited state of the trimer
as a function of κ∗a. The dashed line is the universal prediction of
the Efimov law, while the solid line is the translated universal curve.
The full circles and full squares are the calculations using the TBG
and TBG + H3B potentials, respectively.

repulsive hypercentral three-body (H3B) interaction

W (ρ123) = W0e
−ρ2

123/ρ
2
0 , (6)

with the strength W0 tuned to reproduce the trimer energy
E0

3 obtained with Vλ(r) for all the explored values of λ.
Here, ρ2

123 = 2
3 (r2

12 + r2
23 + r2

31) is the hyperradius of three
particles and ρ0 gives the range of the three-body force.
Following Ref. [4], we use ρ0 = r0. It should be noticed
that the description of the three-boson systems using a two-
plus three-body interaction constructed to reproduce the low-
energy data is equivalent, up to finite-range corrections, to a
description based on effective field theory (EFT) at leading
order (LO) [20].

Varying λ from the unitary limit to λ = 1.1, we obtain a
set of values for the ground-state binding energy E0

3 and first
excited state E1

3 using the TBG and TBG + H3B potentials
in a broad interval of a. We use the results for E1

3 at the
unitary limit [by means of Eq. (1) with n∗ = 1] to determine
κ∗ = 0.002 119 a−1

0 and κ∗ = 0.001 899 a−1
0 for the TBG and

TBG + H3B, respectively. In Fig. 1, we collect our results for
the ratio E1

3/E2 as a function of κ∗a for the TBG potential
(full circles) and of the TBG + H3B potential (full squares).
We compare the numerical calculations to the predictions of
Efimov’s binding energy [Eq. (1)] given in the figure by the
dashed line. We observe that the numerical results lie on a curve
shifted with respect to the dashed line. We can interpret the shift
as a consequence of the finite-range character of the numerical
results. Accordingly, we can adapt Efimov’s equation to treat
finite-range interactions. Once we fix n∗ = 1, Eq. (1) can be
rewritten as

E1
3/E2 = tan2 ξ , κ ′

∗a = exp [−�(ξ )/2s0]/ cos ξ , (7)

where we have introduced finite-range correction by
h̄2/ma2 → E2, in the two-body sector, and by a shift κ ′

∗a =
κ∗a + �. Our calculations have been made for two different
values of κ∗, allowing us to infer that in first approximation
� ≈ κ∗r∗, with r∗ = 21 a0 ≈ 2r0. At the unitary limit, the
relative weight of this shift becomes negligible, and Eq. (7)
tends to Eq. (1).
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TABLE I. The atom-dimer scattering length aAD (in units of a0) in
terms of the number of Laguerre polynomial m and the grand angular
quantum number K .

m/K 120 240 360 480

24 169.64 165.40 165.23 165.22
28 169.59 165.32 165.10 165.09
32 169.55 165.28 165.05 165.04
36 169.54 165.27 165.04 165.02
40 169.53 165.26 165.03 165.02

Equation (7) can be generalized to states different from the
first excited; however, the shift in this case will also depend
on the size of the state and will not be negligible at the unitary
limit. The corresponding results, obtained by solving Eq. (7)
with κ ′

∗a = κ∗a + κ∗r∗, are shown in Fig. 1 as a solid line.

III. ATOM-DIMER SCATTERING

To describe atom-dimer scattering below the dimer thresh-
old we calculate aAD and the s-wave atom-dimer phases
δ using the TBG and TBG + H3B potentials at different
energies. We use the hyperspherical harmonic (HH) method
in conjunction with the Kohn variational principle [21].
Applications of the method to describe a three-helium system
with soft-core interactions as used here can be found in Ref.
[22]. As an example, in Table I the aAD convergence pattern is
given for λ = 1 using the TBG potential. The results for aAD

are studied in terms of the size of the HH basis given by the
grand orbital quantum number K and the quantum number m

of the hyperradial basis (here taken as Laguerre functions [21]).
When the TBG + H3B potential is considered, the rate of
convergence remains the same and the final value is 208 a0.
It should be noticed that as a increases, and correspondingly
|E2| diminishes, is necessary to increase the size of the basis.
At the largest value of a considered, a ≈ 441 a0, we have used
a basis with m = 60 and K = 800.

Defining E2 = h̄2/ma2
B , in Fig. 2 we show the results for

the ratio aAD/aB in terms of the product κ∗a. It can be observed
that the calculated points, given as full circles (TBG potential)
and full squares (TBG + H3B potential), lie on a curve shifted
with respect to the dashed line representing Eq. (2) with the
parametrization of Ref. [3]. We can interpret again the shift
as produced by the finite-range character of the calculations.
Accordingly, we can adapt Eq. (2) to describe finite-range
interaction as

aAD/aB = d1 + d2 tan[s0 ln(κ ′
∗a) + d3]. (8)

In fact, replacing in the above equation κ ′
∗a = κ∗a + κ∗r∗ with

the same numerical value of r∗ as before, the solid line is
obtained in Fig. 2. The values d1 = 1.531, d2 = −2.141, d3 =
1.100 slightly modify the parametrization of Ref. [3] to better
describe the numerical results. This new parametrization is
shown as a dotted line in the figure where we can observe
an improvement in the description of the results close to the
unitary limit.

The shifted formula can be used to determine the ratio
a∗/a−, where a− is the scattering length at which the three-
body states disappear into the three-atom continuum, and a∗ is
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FIG. 2. (Color online) Universal plot for aAD/aB in terms of κ∗a.
Open circles and open squares correspond to TBG and TBG + H3B
potentials, respectively. The dashed line corresponds to Eq. (2),
whereas the solid line corresponds to Eq. (8). The dotted line shows
the present parametrization of Eq. (8).

the scattering length at which the three-body states disappear
into the atom-dimer continuum. For the potential models used
in this work, the values of a− are given in Ref. [4] whereas
the values of a∗ can be extracted by equating the argument
of the tangent in Eq. (8) to −π/2. Using these inputs, we
obtain a∗/a− ≈ −0.32 for both κ∗ = 0.002 119 a−1

0 and κ∗ =
0.001 899 a−1

0 . The zero-range universal formulas (1) and (2)
predict a∗/a− = −1.07, but recent experimental results give
lower values for this ratio [6,7]. The difference is given by
finite-range effects [23–27], which in our case are encoded in
the shift.

It is interesting to see that the finite-range corrections cancel
in the description of the scattering length as a function of the
trimer energy. This is shown in Fig. 3 in which the present
calculations and the zero-range universal theory, Eqs. (1) and
(2), are in close agreement.
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FIG. 3. (Color online) The ratio aAD/aB as a function of E1
3/E2.

Open circles and open squares correspond to TBG and TBG + H3B
potentials, respectively. The dashed line corresponds to Eq. (2) with
the parametrization of Ref. [3], whereas the dotted line shows the
present parametrization of Eq. (8).
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FIG. 4. (Color online) The effective-range function at different values of κ∗a as a function of (ka)2. The square points are our calculations;
the triangle points are the calculations for real 4He-4He2 scattering. The full circles, for κ∗a = 0.543 055, correspond to neutron-deuteron
scattering in the doublet channel. The solid curves have been calculated using the translated universal formula for the different values of κ∗a.

We now present results for atom-dimer scattering at ener-
gies below the dimer breakup threshold for different values of
a. We adapt Eq. (3) to finite-range interactions by considering
kaB cot δ as a function of the dimensionless center-of-mass
energy (ka)2 and using κ ′

∗a = κ∗a + κ∗r∗ in the argument of
the logarithm function:

kaB cot δ = c1(ka) + c2(ka) cot[s0 ln(κ ′
∗a) + φ(ka)] . (9)

In Fig. 4 we show our results (given as full squares) at different
values of κ ′

∗a. In the figure, we can observe very different
patterns. For the smallest values of κ ′

∗a, the behavior is almost
linear in all the energy ranges. Starting at values of κ ′

∗a ≈ 0.4,
a curvature appears close to zero energy, pointing out to an
emergent pole structure that becomes evident at larger values
of κ ′

∗a. Specifically, the pole appears when aAD changes sign
(see Fig. 2) or, as given in Eq. (9), when the argument of
the cotangent function becomes zero (or nπ ). The shadow
plot in the first row of Fig. 4 corresponds to the case λ = 1 and

describes 4He-4He2 scattering (full triangles). The shadow plot
in the second row corresponds to nucleon-deuteron scattering
as discussed below. The solid curves are obtained using the
finite-range-adapted equation (9) with the parametrization of
Ref. [3]. We can observe a noticeable agreement along the
whole range of values.

IV. NUCLEON-DEUTERON SCATTERING

The universal effective-range function has been determined
using the TBG and the TBG + H3B potentials describing an
atomic three-helium system. The universal character of the
function allows us to apply it to describe a very different
system: nucleon-deuteron (n-d) scattering. Many efforts have
been given in the past to understand the peculiar form of the n-d
effective-range function at low energies (see Refs. [12–14]).
However, Efimov showed that this process can be described
with the universal formula of Eq. (3) [28]. Accordingly, we
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would like to apply Eq. (9) to perform a quantitative description
of n-d scattering at low energies. To this aim, we use the
results of Ref. [15] in which n-d scattering has been described
using a spin-dependent central potential. In that reference, they
obtained and = 0.71 fm for the n-d scattering length, and the
effective-range function has been parametrized as

k cot δ = −1/and + rsk
2/2

1 + Ec.m./Ep

(10)

with Ep = −160 keV and rs ≈ −127 fm. It should be noticed
that this particular parametrization of the effective-range
function can be simply related to Eq. (9) in the low-energy
limit. Accordingly, from the values of Ep and and it is possible
to determine the corresponding values of a and κ ′

∗ by using the
universal function φ and Eq. (8). We obtain a = 4.075 fm and
κ ′

∗a = 0.5779. The pole appears in the negative region similar
to what happens in Fig. 4 at intermediate κ ′

∗a values. The
shadow panel of the second row in Fig. 4 shows a comparison
of the universal function (solid line) to the n-d scattering results
of Ref. [15] (full circles). We observe a noticeable agreement.
It should be noticed that the spin-dependent potential used
in Ref. [15] reproduces the singlet (1anp ≈ −20 fm) and
triplet (3anp ≈ 5 fm) n-p scattering lengths. Accordingly,
the three-nucleon systems have a symmetric plus a mixed
symmetry component. The value of a extracted from the
universal function, which is close to 3anp, can be considered
an effective value in an equivalent three-boson system with
the given and and the corresponding effective-range function.
A deeper analysis extending the model to spin-dependent
interactions is at present underway.

This study could be of interest in light neutron halo systems
in which a low-energy neutron can impact on a loosely bound
n-core system. For example, specific applications of Eq. (3)
recently appear in low energy n −19C scattering [10]. We
expect that the use of Eq. (3) will be useful in further studies
of such systems.

V. CONCLUSIONS

In this work, we have analyzed the low-energy behavior
of a three-boson system in which the interaction between two

bosons produces a large scattering length. Following Ref. [4],
we have used the three-helium system as a reference system
and, in the spirit of EFT at LO, we have constructed an
attractive two-body interaction plus a repulsive three-body
interaction devised to reproduce the two-body scattering length
and three-body binding energy of the LM2M2 interaction.
From our numerical results we have shown that, when finite-
range interactions are used, the zero-range universal formula
has to be adapted, introducing a shifted three-body parameter
κ ′

∗a = κ∗a + κ∗r∗. This is a particular type of range correction
and the numerical value of r∗ ≈ 2r0, in the case of the helium
system, has been extracted from our calculations. We have
proposed and solved Eq. (7) to describe the spectrum of
a three-boson system. This equation can be considered an
extension of Eq. (1) for finite-range interactions; they are
characterized by two parameters, the effective range rs (in the
relation between E2 and a) and the shift r∗, that are somehow
connected. Their relation is at present subject of investigation.

In the case of atom-dimer scattering, we have proposed
Eqs. (8) and (9) introducing the shifted parameter κ ′

∗. In
order to describe our numerical results, we have used the
parametrization of Ref. [3], which, without the inclusion of
the shift, can not quantitatively describe the very complicated
structure of the effective-range function. Interestingly, the
value of r∗ necessary to describe the results is the same for
E1

3 , for aAD , and for the effective-range function. This type of
correction can be compared to the range corrections obtained
in very recent works [29,30].

As a second application, we have used Eq. (9) to describe
low-energy n-d scattering. The values of κ ′

∗ and a entering
in the equation have been determined from the pole energy
Ep and the doublet scattering length and given in Ref. [15].
A quantitative agreement between a direct application of
Eq. (9) and the calculations on the n-d system has been
found. This analysis connects the universal behavior of atomic
systems having large two-body scattering length to nuclear
systems. Work in progress includes the extension of the present
analysis to energies above the dimer breakup, in particular, the
description of the recombination rate at threshold, and the
extension to include spin and isospin degrees of freedom in
order to consider nuclear systems.
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