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The elastic scattering wave function for electrons scattered from the N th excited state of hydrogen is the final
state of the matrix element for excitation of that state. This paper deals with the solution of that problem primarily
in the context of the Temkin-Poet (TP) model [A. Temkin, Phys. Rev. 126, 130 (1962); R. Poet, J. Phys. B 11,
3081 (1978)], wherein only the radial parts of the interaction are included. The relevant potential for the outer
electron is dominated by the Hartree potential, V H

N (r). In the first part of the paper, V H
N (r) is approximated by a

potential WN (r), for which the scattering equation can be analytically solved. The results allow formal analytical
continuation of N into the continuum, so that the ionization threshold law can be deduced. Because the analytic
continuation involves going from N to an imaginary function of the momentum of the inner electron, the threshold
law turns out to be an exponentially damped function of the available energy E, in qualitative accord with the
result of Macek and Ihra [J. H. Macek and W. Ihra, Phys. Rev. A 55, 2024 (1997)] for the TP model. Thereafter,
the scattering equation for the Hartree potential V H

N (r) is solved numerically. The numerical aspects of these
calculations have proven to be challenging and required several developments for the difficulties to be overcome.
The results for V H

N (r) show only a simple energy-dependent shift from the approximate potential WN (r), which
therefore does not change the analytic continuation and the form of the threshold law. It is concluded that the
relevant optical potential must be included in order to compare directly with the analytic result of Macek and
Ihra. The paper concludes with discussions of (a) a quantum mechanical interpretation of the result, and (b) the
outlook of this approach for the complete problem.

DOI: 10.1103/PhysRevA.87.052718 PACS number(s): 34.80.Dp

I. INTRODUCTION

The elastic scattering wave function of electrons from the
N th excited s state of hydrogen is governed by the equation
(in Rydberg units, used throughout unless explicitly stated)

[−∇2
1 + PHP + V

(opt)
N − k2

N

]
UN (r1) = 0. (1.1)

In principle P is the Feshbach projection operator which
includes all open channels.

In practice, however, PHP is replaced by the term coming
from the N th state alone, in which case, not including
exchange,

P = φN0(r2)〉〈φN0(r2), (1.2)

where φN0(r) is the N th s state of the hydrogen atom, so that
PHP goes into V H

N , the Hartree potential of the N th state [cf.
Eq. (1.5)]. V

(opt)
N is the relevant optical potential [1], and k2

N is
the energy of the emerging electron after the target (hydrogen)
has been excited to the N th excited state. The total energy of
the system, E, is thus

E = k2
N − 1

N2
. (1.3)

In this paper we use the Temkin-Poet (TP) model [2,3],
which is defined by including only purely radial correlations
in the interaction. Thus the vector r becomes the radial scalar
r , and the electron-electron repulsion becomes

2

r12
→ 2

r>(1,2)
, (1.4)

where r>(1,2) is the larger of r1 or r2. The potential for the
scattered electron is dominated by the Hartree potential.

V H
N (r1) = 〈ϕN0(r2)|− 2

r1
+ 2

r>(1,2)
|ϕN0(r2)〉, (1.5)

so that the equation we shall actually be dealing with here can
be reduced to the form[

− d2

dr2
1

+ V H
N (r1) − k2

N

]
uH

N (r1) = 0, (1.6)

where ϕN0(r2) = r2φN0(r2) and uH
N (r1) = r1U

H
N (r1).

In the next section we shall first approximate V H
N (r) such

that the resultant scattering equation can be analytically solved.
We shall derive analytical expressions for the amplitude and
the phase shifts, specifically their dependence on N and E.
From the analytical expressions, as a function of N , we can
analytically continue the final state wave function and deduce
the energy dependence of the matrix element. Finally, from
the matrix element we can derive the ionization threshold
law. For the approximate potential the result is characterized
by an exponentially damped energy dependence, which has
a qualitative similarity to the result of Macek and Ihra [4].
We also consider the Hartree potential itself. This can only be
done numerically, and has required considerable developments
in order to deal with states of high N. Comparison shows
that the numerical solution for the amplitude is essentially
identical to the analytical result of our approximation of the
Hartree potential. The Hartree phase shifts are only slightly
increased. But this increase, which only depends on the total
energy, does not affect the analytic continuation, and therefore
the threshold law. It is therefore concluded that the optical
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potential appropriate to the TP model must also be included
in order to make a direct comparison with the Macek and
Ihra result. The section concludes with a quantum mechanical
interpretation of the result, and the outlook of this approach
for the complete (2/r12) problem.

II. APPROXIMATION TO THE HARTREE POTENTIAL

The Hartree potential V H
N (r) of Eq. (1.5) can be approxi-

mated for large N by expanding the integral in powers of 1/N ,
retaining the lowest-order terms. We obtain

WN (r) =
{

−2/r + 2/N2, r � rc = N2

0, r � rc = N2
. (2.1)

In Fig. 1, we show WN (r) and V H
N (r) for several values

of N. The difference between the Hartree potential and the
approximate potential, WN (r) − V H

N (r), is greatest at r = rc.

A. Analytical solution

The main advantage of using WN (r) is that it allows an
analytic solution of the scattering equation,[

− d2

dr2
1

+ WN (r1) − k2
N

]
uW

N (r1) = 0. (2.2)

Specifically in the region r � rc, the equation for uW
N (r) can

be written as [
− d2

dr2
− 2

r
− q2

N

]
uW

N (r) = 0, (2.3)

where

q2
N = E − 1

N2
. (2.4)
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FIG. 1. (Color online) The Hartree potential V H
N (r) and the

approximate potential WN (R) are compared for several values of
N (in Rydberg units).

The solution of (2.3) is the well-known Coulomb wave
function

uW
N (r < rc) = r exp(−iqNr)Fch(1 + i/qN ; 2; 2iqNr). (2.5)

Fch(a; b; c) is a confluent hypergeometric function [5]; (in
Ref. [5] this function is called M(a,b,c).) The function uW

N (r)
is such that its asymptotic form, assuming qNr � 1 (even
though r � rc) approaches [5]:

uW
N (r < rc) ∼= 1

C0(qN )
sin[θ0(qN,r)], (2.6)

where

θ0(qN,r) = qNr + ln(2qNr)

qN

+ arg �

(
1 − i

qN

)
, (2.7)

and

C0(qN ) =
√

2π qN

[1 − exp(−2π/qN )]
. (2.8)

(Our C0(q) is qC0(−1/q) of Ref. [5].) When qN is small,
C0 ≈ √

2πqN and the last term of (2.7) can be evaluated to
high accuracy from [5]

arg �

(
1 − i

qN

)
≈ ln(qN )

qN

+ 1

qN

− π

4
. (2.9)

The phase shifts and the amplitudes are determined, in the
usual way, by equating the solution and its derivative to the
plane s wave [which is the solution of (2.2) for r � rc] at
r = rc. For r � rc the solution is normalized as [6]

uW
N (r > rc) = AW

N

kN

exp
(
iηW

N

)
sin

(
kNr + ηW

N

)
. (2.10)

Ordinarily the presence of the phase factor is not important in
determining the scattering parameters, but in our application,
as a result of the analytic continuation, its presence is crucial.
Equating the logarithmic derivative, the absolute phase shift [7]
(in the limit of large N ) is given by

ηW
N = − 1√

E
+ ln

(
2q2

NN2
)

qN

+ 1

qN

− π

4
, (2.11)

and the amplitude is

AW
N = E1/4

√
2π

≡ AE. (2.12)

Note AW
N is independent of N and depends only on E (and, as

we shall see, this also holds in the Hartree case). [In calculating
the matrix element, one must divide by AE ; see Sec. V below.]

B. Numerical solution

We obtained the absolute phase shift ηW
N and the amplitude

AW
N for the approximate potential WN (r) by two independent

numerical methods. First, we applied the Calogero method [8].
In this approach, one solves the differential equation

dηW
N (r)

dr
= −WN (r)

kN

sin2
[
kNr + ηW

N (r)
]
, (2.13)

with the initial condition ηW
N (0) = 0. The absolute phase is

given by ηW
N ≡ ηW

N (rc), since WN (r) = 0 for r > rc. We used
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FIG. 2. (Color online) The evolution of ηW
N (r) for N = 20 and

E = 0.01 from the Calogero method (in Rydberg units).

a finite difference approximation, with 50 000 000 iterations
in order to obtain the desired convergence for 10 � N � 200.

The corresponding amplitude is given by

AW
N (r) =

∫ r

0

WN (r ′)
2kN

sin
[
2kNr ′ + 2ηW

N (r ′)
]
dr ′. (2.14)

Similarly, AW
N ≡ AW

N (rc). In Fig. 2, we show ηW
N (r) for N = 20

and E = 0.01. Note that the function approaches its final value
in a steplike fashion.

We also obtained values for the phase shift and amplitude
using a completely independent method. We directly solved
Eq. (2.2) using the finite element method (FEM) [9]. We
imposed the asymptotic boundary condition at r = rc,

ũW
N (rc) = 1

kN

[
sin(kNrc) + tan δW

N cos(kNrc)
]
, (2.15)

and

dũW
N

dr
= cos(kNrc) − tan δW

N sin(kNrc), (2.16)

where δW
N is the phase shift (modulo 2π ) and ũW

N (r) is related
to uW

N (r) by

uW
N (r) = AW

N cos δW
N ũW

N (r). (2.17)

The solution of the FEM equations yields a piecewise
continuous function ũW

N (r) and the phase shift δW
N . We confirm

the accuracy of δW
N and obtain the normalization factor AW

N by
using the integral formulas

tan δW
N = −

∫
sin(kNr)WN (r)ũW

N (r)dr, (2.18)

[
AW

N

]−1 = cos(δW
N )

[
1 −

∫
cos(kNr)WN (r)ũW

N (r)dr

]
. (2.19)

(These equations are derived in Appendix A.)

TABLE I. Absolute phase shifts ηW
N and amplitudes AW

N for the
WN potential obtained using the Calogero method and by a direct
solution of the differential equation. Also included (for N = 200) are
the large N analytical results from Eqs. (2.11) and (2.12).

E = 0.01 E = 0.02 E = 0.05

N ηW
N AW

N ηW
N AW

N ηW
N AW

N

20 23.047 0.1333 20.154 0.1545 16.156 0.1910
40 35.006 0.1281 29.103 0.1512 22.073 0.1892
60 42.594 0.1270 34.164 0.1505 25.630 0.1889
80 48.126 0.1266 38.591 0.1503 28.175 0.1888
100 52.473 0.1265 41.699 0.1502 30.157 0.1887
120 56.050 0.1264 44.249 0.1502 31.779 0.1887
140 59.088 0.1263 46.411 0.1501 33.153 0.1887
160 61.728 0.1263 48.287 0.1501 34.343 0.1887
180 64.062 0.1263 49.944 0.1501 35.394 0.1887
200 66.153 0.1262 51.428 0.1501 36.335 0.1887
200a 66.132 0.1262 51.411 0.1500 36.315 0.1886

aAnalytical results from Eqs. (2.11) and (2.12).

In order to obtain the absolute phase, we use

ηW
N = δW

N + n
π

2
, (2.20)

where n is the number of extra nodes in ũW
N (r) relative to

sin(kNr).
Results are given in Table I; the phase shifts and the

amplitude obtained by two independent numerical methods
agreed to at least the number of digits reported. We also include
the results obtained with the analytic (large N ) formulas
(2.11) and (2.12) at N = 200. In Fig. 3 we plot the phase

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0  50  100  150  200

η NW

N

E=0.05

E=0.02

E=0.01

E=0.005

FIG. 3. (Color online) The absolute phase shift ηW
N for the

approximate potential WN at four energies (in Rydberg units). The
crosses are the numerical results and the lines are the large N

analytical results from Eq. (2.11).
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TABLE II. Numerical results for the absolute phase shifts ηH
N and

amplitudes AH
N for the Hartree potential.

E = 0.01 E = 0.02 E = 0.05

N ηW
N AW

N ηW
N AW

N ηW
N AW

N

13.880 0.1660 11.815 0.1974
20 25.472 0.1334 22.039 0.1545 17.439 0.1910
30 32.546 0.1295 27.311 0.1521 20.911 0.1897
40 37.837 0.1281 31.177 0.1512 23.418 0.1892
50 42.049 0.1274 34.225 0.1508 25.379 0.1890
60 45.541 0.1270 36.737 0.1505 26.990 0.1889
70 48.522 0.1268 38.874 0.1504 28.355 0.1888
80 51.121 0.1266 40.733 0.1503 29.540 0.1888
90 53.424 0.1265 42.376 0.1503 30.587 0.1888
100 55.492 0.1265 43.850 0.1502 31.524 0.1888

shift at four energies, and compare with the large N analytic
results.

III. HARTREE POTENTIAL

For the approximate potential WN, one can obtain an
analytical solution of the scattering equation in the large
N limit. For the Hartree potential, given by Eq. (1.5), one
must employ the numerical techniques that were described in
Sec. II B. Indeed it has proven to be a difficult numerical task to
evaluate V H

N (r) for large N ; we discuss the techniques that were
developed to obtain accurate values of the Hartree potential
in Appendix B. For N < 100, the results from the Calogero
method and the FEM agreed to within the accuracy reported
in Table II. The Calogero method became computationally
prohibitive for large N , as the Hartree potential had to be
evaluated at each iteration. For N > 100, we used the FEM to
obtain the phase shifts and amplitudes.

The amplitude for the Hartree potential V H
N (r) is the same

as for the approximate potential WN (r) at all values of N and
E. This means the amplitude is essentially determined by the
small r behavior of the potential, where V H

N (r) ≈ WN (r). The
absolute phase shifts, however, are different. In Fig. 4 we plot
the absolute phase shift as a function of N. Comparing Fig. 4
with Fig. 3, it is obvious that the shape of the four curves
is essentially unchanged, although the magnitude is shifted
upward. For large N , the absolute phase shift for the Hartree
potential was fit (with a high degree of accuracy) to

ηH
N = ηW

N + 0.30√
E

. (3.1)

IV. ANALYTIC CONTINUATION

We now consider the analytic continuation of the scattering
parameters corresponding to the inner electron going from an
excited s state, ϕN (r), into the continuum, ϕε(r). The analytic
continuation is deduced by comparing the respective wave
functions, which are normalized as ϕ(r → 0) → r. The bound
state is

ϕN (r) ≡ rφN (r) ∝ r exp(−r/N )Fch(1 − N ; 2; 2r/N ),

(4.1)
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FIG. 4. (Color online) The absolute phase shift ηH
N for the Hartree

potential at three energies (in Rydberg units). The crosses are the
numerical results and the lines are the analytical fit given by Eq. (3.1).

and the continuum state is

ϕε(r) ∝ r exp(−i
√

εr)Fch(1 + i/
√

ε; 2; 2ir
√

ε), (4.2)

where, to repeat, Fch(a; b; c) is the confluent hypergeometric
function. The quantity ε is the final (positive) energy of
the inner electron after it has escaped from the nucleus.
Comparing, we see that Eq. (4.1) goes into Eq. (4.2)
when

N → − i√
ε
. (4.3)

Equation (4.3) defines the analytic continuation. (This analytic
continuation applies only to the function ϕN (r); the outer
electron is a continuum wave in all cases.) The analytical
continuation ϕN → ϕε is well known, but it is not trivial; it
involves continuing a real integer N into the inverse of an imag-
inary momentum i

√
ε. Physically this represents the transition

of bound (i.e., cyclic) motion into (in this case) an outgoing
radial (i.e., noncyclic) motion As we shall see, this has
profound mathematical consequences for the threshold law.

Note first that N2 becomes negative:

N2 → −1/ε, (4.4)

so that the formulas for k2
N and q2

N become

k2
N → k2

ε = E − ε, (4.5)

q2
N → q2

ε = E + ε. (4.6)

Thus from (2.11), the phase shift for V W
N (r) goes into

ηW
ε → − 1√

E
+ ln

(−2q2
ε /ε

)
qε

+ 1

qε

− π

4
. (4.7)
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The branch cut in the scattering plane is along the positive
momentum axis, implying that −1 in the logarithm must be
interpreted as −1 = eiπ .

Hence we see that the phase shift has become complex with
real and imaginary parts given by

Re
[
ηW

ε

] = − 1√
E

+ ln
(
2q2

ε /ε
)

qε

+ 1

qε

− π

4
(4.8)

and

Im
[
ηW

ε

] = π

qε

. (4.9)

For the Hartree potential, from Eq. (2.20), we see that only
the real part has been augmented:

Re
[
ηH

ε

] = Re
[
ηW

ε

] + 0.30√
E

, (4.10)

while the imaginary part is not affected:

Im
[
ηH

ε

] = Im
[
ηW

ε

] = π

qε

. (4.11)

V. THE THRESHOLD LAW

The threshold law for ionization is by definition the yield
of positive ions resulting from the collision, as an analytical
function of the available energy E, in the limit E → 0. The
general formula for the yield, which is derived from Fermi’s
“golden rule” [10], integrated over all ionization states of total
energy E, which in our case contains no angles, can be reduced
to

Q(E) ∝
∫ ∫

|ME|2δ(E − k2
ε − ε

)
kεd k2

ε

√
ε dε. (5.1)

ME is the transition matrix element. The integration over k2
ε

can be carried out directly giving

Q(E) ∝
∫

|ME|2√E − ε
√

εdε. (5.2)

At this point it is convenient to consider the reaction as photo–
double detachment (PDD) of H− rather than electron-impact
ionization of H, so that the matrix element in the TP model is
proportional to

ME ∝ 〈
f (r1,r2)|(r1 + r2)|�i(r1,r2)〉. (5.3)

[Since �i and (r1 + r2) are symmetric in (r1 ↔ r2), it is
not necessary for 
f (r1,r2) to be symmetric; however, it is
understood that we are dealing with the singlet case, although
the exchange terms in PHP in Eq. (1.1) have here been omitted,
because they are negligible for large N .] The advantage of the
PDD matrix element is that there is no question that the exact
initial bound state of H− ion, �i(r1,r2), is independent of the
final state energy E, and that the integral is convergent. (In the
TP model H− continues to be bound with about half its full
electron affinity [11].)

On the other hand, the final state does depend on E;
it can be written (after the analytic continuation has been
made) as


f (r1,r2) = eiηε

AE

uk(r1)

r1

ϕε(r2)

r2
, (5.4)

where 
f (r1,r2) has the correct asymptotic form required in
the ME. For the scattered (outer) electron, i.e., the solution of
Eq. (2.2),

eiηε

AE

uk(r1) → eiηε
sin(kr1 + ηε)

k
. (5.5)

The function ϕε(r2), which represents the inner electron, has
the asymptotic form

ϕε(r2 → ∞) = sin[θ0(
√

ε,r2)]√
ε

. (5.6)

The exact form of ϕε(r2) with the above normalization is [5]

ϕε(r2) =
√

2π

ε1/4
r2 exp(−ir2

√
ε)Fch(1 + i/

√
ε; 2; 2ir2

√
ε).

(5.7)

The initial state, �i(r1,r2), vanishes exponentially when
either r1 or r2 is large. Near the origin, which is the essential
part of the function that contributes to the matrix element
(ME), the function ϕε(r2) reduces to

ϕε(r2 → 0) =
√

π

ε1/4

√
r2 J1(

√
8r2), (5.8)

where J1(x) is the Bessel function of order 1. But uk(r1) in
Eq. (5.4) is also dominated by its Coulomb (–2/r1) potential
near the origin, so that

uk(r1 → 0) = 1√
2

√
r1J1(

√
8r1). (5.9)

In toto, the part of 
f that contributes to the matrix element
is


f ∝ eiηε

AEε1/4

1√
r1r2

J1(
√

8r1) J1(
√

8r2), (5.10)

and the matrix element, in explicit form, reduces to

ME ∝ eiηε

ε1/4AE

∫ ∫
J1(

√
8r1)J1(

√
8r2)(r1 + r2)

×�i(r1,r2)r3/2
1 r

3/2
2 dr1dr2. (5.11)

The integral in (5.11) is manifestly independent of E, thus
the ME is proportional to

ME ∝ eiηε

ε1/4AE

. (5.12)

Now, using (2.12) for AE , and inserting ME into the yield
formula (5.2) (recall ε � k2

ε ⇒ εmax = E/2), we are left with

Q(E) ∝ 1

E1/2

∫ E/2

0
eiηε−iη∗

ε

√
E − ε dε

= 1

E1/2

∫ E/2

0
e−2Im[ηε]

√
E − ε dε. (5.13)

Here we see the significance of the imaginary part of the
phase shift. It is crucial to know the dependence of ηε on ε

and E. For the potentials WN (r) and V H
N (r), ηε is given by
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Eq. (4.11) and qε is given by (4.6). As a result,

Q(E) ∝ 1

E1/2

∫ E/2

0
e−2π/

√
E+ε

√
E − ε dε. (5.14)

One must integrate the above by parts to get the result in
lowest order, which is the threshold law. The partial integration
must be done carefully; without going into detail, we obtain

Q(E) ∝ E3/2e
− π

√
8/3√
E ∼= E3/2e

− 5.130√
E . (5.15)

VI. DISCUSSION

Macek and Ihra [4] have obtained the threshold law (for the
TP model):

QMI (E) ∝ e
− 6.870

(E/2)1/6 . (6.1)

[The original formula was given in atomic units, where
E(a.u.) = E(Ry)/2.] Their result has been supported by an
analysis and calculation of Miyashita et al. [12] and a
particularly cogent calculation of Bartlett and Stelbovics [13],
using their version of the exterior complex scaling method
of McCurdy and Rescigno [14]. In particular, when their
numerical results near threshold were fitted to the form
exp[−a(E/2)−b] they determined as optimum parameters
a = 6.868 ± 0.07, b = 0.169. This is remarkable agreement
with (6.1). Therefore, pending the inclusion of the optical
potential (see below), we believe the Macek-Ihra result is
essentially correct.

We shall try to understand these results quantum mechan-
ically, and again we find it preferable to think of the process
as two-electron photodetachment (i.e., photo–double detach-
ment) of H−. To photo–double detach both electrons from H−
requires a photon energy of ∼14.0 eV (in the TP model, the
second electron is bound by ∼0.37 eV = 0.027 Ry [11].) This
corresponds to a photon of wavelength λ ∼ 1500a0. Spatially,
that is more than sufficient for the two outgoing electrons to
absorb a single photon simultaneously. In the case of single
photodetachment plus excitation of the inner electron, the inner
electron is still in a bound orbit which means that it recycles
and therefore has much more time (i.e., a greater probability)
of simultaneously absorbing the photon with the scattered
electron. In photo–double detachment, the inner electron is in
an escaping orbit, so it does not recycle and therefore, the inner
electron has only one chance of being absorbed simultaneously
with the outer (scattered) electron. Thus the probability of
double escape (near threshold) is drastically reduced relative
to single detachment plus excitation. This implies that the
cross section for single photodetachment plus excitation (to
the N th) level is not a smooth function of N as N goes into the
continuum. Furthermore the faster the outer electron goes out,
the less time there is for simultaneous absorption. In the W

approximation there is no potential beyond r > 1/ε, so that
the outer electron goes out too rapidly for the simultaneous
absorption to take place. And, we see, the additional attraction
present in the Hartree approximation is too small to affect that
probability (to within a proportionality constant).

This leads to a discussion of the effect of the optical
potential terms in the TP model. (Here, we go back to thinking
in terms of the electron-hydrogen problem.)

Those terms correspond to the nonlocal potential [1] (above
a given target state N ),

PHTPQ
1

E − QHTPQ
QHTPP


〉

=
(∑

ν

+
∫

dν

)
PHTPQ�N

ν

〉 〈
�N

ν QHTPP

〉

E − εN
ν

, (6.2)

where the second term in the denominator,

εN
ν = 〈

�N
ν QHTPQ�N

ν

〉
, (6.3)

is an autoionization energy associated with the N th state of
the hydrogen target.

The right-hand side of (6.2) is an expansion of the optical
potential in terms of the eigenfunctions and eigenvalues of
QHTPQ, i.e., �N

ν and εN
ν , all relative to the N th threshold

of the target hydrogen atom [1]. [As an aside, because of the
orthogonality of P and Q, HTP in (6.2) reduces to HTP →
2/r>(1,2), which is a positive definite potential.] In a related
but different model, called the s-wave model, Meerwald et al.
[15] have calculated eigenvalues up to N = 7, and found only
one eigenvalue below each (N + 1) threshold of the target H
atom. [The s-wave model replaces the spherical kinetic energy
operator of the TP model,

∑
i

1
ri

∂2

∂r2
i

ri , by a purely linear kinetic

energy operator,
∑

i
∂2

∂x2
i

, where −∞ < xi < +∞, and the

interaction is −2/|x1| − 2/|x2| + 2/|x>(1,2)|.] Nevertheless
it is not unreasonable to assume that a similar result holds for
the TP model. (We know, in fact, that in the TP model [11]
there is only one eigenvalue, εN

ν below the N = 1 state of
hydrogen.) The significance of this is that the term in the
optical potential associated with that eigenvalue is repulsive
(i.e., since E is positive, the denominator of that term is
positive, and the numerator is positive definite), whereas
all the remaining terms are essentially attractive (of which
there are in principle a continuous infinity of terms, but each
of, presumably, increasingly smaller width as ν increases),
because their denominators are negative (when E is close
to threshold). The difference between our result and that of
Macek and Ihra suggests the attractive effect will outweigh
the repulsive term, but this is speculative, and the optical
potential must obviously be calculated. (The calculation of
the spectrum 〈�N

ν QHTPQ�N
ν 〉 above arbitrary N states is in

itself an interesting problem, which we have already started to
explore.)

At this point one is tempted to contemplate the prospect of
using this approach for the more realistic model wherein the e-e
interaction 2/r12 is replaced by 2/(r1 + r2). This model, whose
history is itself very interesting (cf. footnote 3 of [16]), has
been subject to a multiplicity of names. In Ref. [13] it is called
the “collinear model” and in Ref. [4] it is called the “linear
model.” Both these names are, in our opinion, inadequate,
because the kinetic energy operator in this model Hamiltonian
is the spherically symmetric part of the full kinetic energy,
and the potential energy replaces cos θ12 → −1 (meaning that
the outgoing electrons are represented as shells, each attracted
to the nucleus but repelling each other). We believe the name
“spherically symmetric contralinear” (SSCL) more correctly
describes the physics of the model. Explicitly, that Hamiltonian
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is thus

HSSCL = −
(

1

r1

∂2

∂r2
1

r1 + 1

r2

∂2

∂r2
2

r2

)
− 2

r1
− 2

r2
+ 2

(r1 + r2)
.

(6.4)

We know that the autoionization spectrum of this model, as
well as the full interaction 2/r12, gives an infinite number
of eigenvalues below each N � 2 threshold of the target
(hydrogen) [16,17]. Thus the phase shifts would approach
infinity, so that the approach we have used here (for the W

and Hartree approximations) would not be applicable.
But, continuing the discussion of the SSCL, note that it

contains one of the main elements of the Wannier theory
[18]: that the threshold is dominated by events in which
the two emerging electrons are emitted on opposite sides of
the nucleus (�r1 = −�r2), in which case 2/r12 → 2/(r1 + r2).
However, the SSCL does not necessarily contain the second
basic assumption of the Wannier theory: that the magnitudes
of the vectors are necessarily approximately equal (r1

∼= r2).
In fact it has long been our contention that the true threshold is
dominated by events for which r1 � 2r2 (and the reverse), from
which one of us (A.T.) has derived a Coulomb-dipole threshold
law [19]. This dichotomy, in our opinion, has still not been
definitively resolved, although the best of recent numerical
calculations [20] supports the Wannier assumption.
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APPENDIX A

Following the methods of Demkov [21], one can derive an
integral expression for the s-wave phase shift δ (mod 2π );
one can also obtain an integral expression for the amplitude A

of the normalized reduced wave function. In both cases, the
function in the integrand need not be normalized. The formulas
presented below are completely general, for any finite range
potential V (r).

A function u(r) which satisifies[
− d2

dr2
+ V (r) − k2

]
u(r) = 0 (A1)

is subject to the boundary conditions u(r → 0) = r and

u(r → ∞) = A

k
sin(kr + δ)

= A cos δ

k
[sin(kr) + tan δ cos(kr)]. (A2)

The phase is defined in the appropriate quadrant so that A is
positive. The function ũ(r), which is also a solution of Eq. (A1),
satisfies the asymptotic boundary condition

ũ(r → ∞) = 1

k
[sin(kr) + tan δ cos(kr)]. (A3)

The two functions are simply related by

u(r) = A cos δũ(r). (A4)

For the free particle where V (r) = 0,[
− d2

dr2
− k2

]
sin(kr) = 0, (A5)

and equivalently,[
− d2

dr2
− k2

]
cos(kr) = 0. (A6)

To obtain an integral expression for the phase shift, Eq. (A1)
is premultiplied by sin(kr) and Eq. (A5) is premultiplied by
u(r); integrating over r and subtracting the difference, one
obtains ∫

sin(kr)

[
− d2

dr2
+ V (r) − k2

]
u(r)dr

−
∫

u(r)

[
− d2

dr2
− k2

]
sin(kr)dr = 0. (A7)

The limits of integration are understood to be from 0 to
∞. Integrating by parts, and using the appropriate boundary
conditions,

A sin δ = −
∫

sin(kr)V (r)u(r)dr, (A8)

or, equivalently, using Eq. (A4),

tan δ = −
∫

sin(kr)V (r)ũ(r)dr. (A9)

In order to obtain the integral formula for the amplitude
A, Eq. (A1) is premultiplied by cos(kr) and Eq. (A6) is
premultiplied by u(r). Again, the equations are integrated over
r and subtracted, yielding∫

cos(kr)

[
− d2

dr2
+ V (r) − k2

]
u(r)dr

−
∫

u(r)

[
− d2

dr2
− k2

]
cos(kr)dr = 0. (A10)

In this case, the integration by parts yields an additional
contribution at r = 0,

[1 − A cos δ] = −
∫

cos(kr)V (r)u(r). (A11)

Again, using Eq. (A4), one can express the amplitude as an
integral over the un-normalized function ũ(r),

[A]−1 = cos δ

[
1 −

∫
cos(kr)V (r)ũ(r)dr

]
. (A12)

APPENDIX B

Here we show how to calculate the hydrogenic radial
eigenfunctions numerically for arbitrary N , without loss of
accuracy, in such a way as to allow the practical calculation of
the Hartree potential.
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The radial functions for the s states are

ϕN (r) = 2

N3/2
r exp(−r/N )Fch(1 − N ; 2; 2r/N ), (B1)

where

Fch(1 − N ; 2; x) =
N−1∑
j=0

(N − 1)!(−1)j

(N − 1 − j )!(j + 1)!j !
xj (B2)

is the confluent hypergeometric function in terms of x =
2r/N . The evaluation of the function for large N using Eq. (B2)
is problematic, because the coefficients of the polynomial
alternate sign and vary in magnitude from 1 to 1/N !. There is
significant cancellation that leads to loss of accuracy when N

is large. To circumvent this problem, we calculated the N − 1
zeros, xN

j , of Fch(1 − N ; 2; x) using MAPLE with 50-digit
precision. The root solver employed the Descartes rule of
signs. In Eq. (1.5), we replaced the confluent hypergeometric

function with a product of its zeros,

Fch(1 − N ; 2; x) =
N−1∏
j=1

(
1 − x

xN
j

)
. (B3)

The advantage to using the product representation is that there
is no loss of accuracy in evaluating the function, although the
zeros must be calculated to quadruple precision for large N .
That is, there is no cancellation of significant digits as there
would be from the summation representation, Eq. (B2). The
Hartree potential becomes

V H
N (r) =

∫ ∞

2r/N

N∏
j=1

exp(−x ′)
(

1 − x ′

xN
j

)2

×
(

−1

r
+ 2

Nx ′

)
x ′2dx ′. (B4)

The integral was evaluated numerically (using quadruple
precision).
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