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Charge-transfer cold Yb+ + Rb collision dynamics is investigated theoretically using high-level ab initio
potential energy curves, dipole moment functions, and nonadiabatic coupling matrix elements. Within the scalar-
relativistic approximation, the radiative transitions from the entrance A 1�+ to the ground X 1�+ state are found
to be the only efficient charge-transfer pathway. The spin-orbit coupling does not open other efficient pathways,
but alters the potential energy curves and the transition dipole moment for the A-X pair of states. The radiative,
as well as the nonradiative, charge-transfer cross sections calculated within the 10−3–10 cm−1 collision energy
range exhibit all features of the Langevin ion-atom collision regime, including a rich structure associated with
centrifugal barrier tunneling (orbiting) resonances. Theoretical rate coefficients for two Yb isotopes agree well
with those measured by immersing Yb+ ions in an ultracold Rb ensemble in a hybrid trap. Possible origins of
discrepancy in the product distributions and relations to previously studied similar processes are discussed.
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I. INTRODUCTION

Ongoing efforts in the creation of cold atomic and ionic
ensembles, as well as in their subtle manipulation, have
been recently merged in preparation and study of the hybrid
ion-atom systems [1–10]. This signifies the important step
towards probing, understanding, and exploring ion-neutral
interactions and collisions at sub-Kelvin temperatures. Elastic
and momentum transfer collisions may serve as the means
of cooling of both neutral [11–14] and charged [3,4,9]
components. Ion-atom collisions resulting in charge transfer
are of interest for a prototype of reactive processes and
suggested to lead to gas-phase “metal-to-insulator” transitions
at microkelvin temperatures [15].

Elastic, as well as resonant charge transfer, ion-atom
collision dynamics is well understood theoretically [13,16].
A high-energy limit mediated by a short-range exchange
interaction transforms to the so-called Langevin regime when
a collision energy becomes comparable to a long-range induc-
tion interaction. When a collision energy decreases further, the
quantum regime with its threshold laws for each partial wave
is attained. This limit has been thoroughly considered within
the multichannel quantum defect theory [17–20], but not yet
reached experimentally.

Preparation of cold ion-atom systems is achieved in a
hybrid trap by bringing in contact atomic and ionic ensem-
bles or by creating ions via photoionization of cold atoms
[2,4,5,7,13,14,21]. Collision- or photoinduced processes in
Coulomb crystals can also be studied below 10 K [1,22,23]
providing that the neutrals are cooled or decelerated [24].
However, in all cases the motion of ion(s) in the trapping field
creates an unavoidable inherent source of a kinetic energy that
imposes the limits on cooling [25]. Effective temperatures of
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a few tens of millikelvins attained experimentally [2,5] still
correspond to the Langevin regime with its complex dynamics
sensitive to the global ion-atom potentials, transition moments,
and coupling matrix elements. In addition, laser cooling creates
an appreciable amount of electronically excited species, which
further complicate the dynamics [7,26].

This explains the need for thorough theoretical studies
that account for specific features of the particular perspective
system. Resonant charge transfer has received more atten-
tion, with the focus on the model alkali or alkaline-earth
(e.g., Refs. [16,27,28]) and Yb+ + Yb [29] systems. For
the nonresonant case, a few combinations of alkaline-earth-
metal ions and alkali-metal atoms [13,14,30–33], as well as
Yb+, Ba+ + Ca collisions [6,26], were considered. Accurate
ab initio calculations that back most of these studies revealed
the complexity of charge-transfer pathways in the above
systems. Strongly bound excited electronic states may well be
involved in the dynamics by the nonadiabatic and/or spin-orbit
couplings, or even directly upon laser cooling, preventing
the use of simple two-state models [6,26,30,31,33]. Collision
dynamics is complex itself being dominated by the resonances
typical to the multiple partial-wave Langevin regime.

In the present paper we expand the theoretical experience
considering the charge transfer in cold collisions between the
ground-state Yb+ ion and Rb atom. Experimental studies by
Köhl and co-workers [3,4], further extended to excited Yb+
ions [8], demonstrated the possibility of cooling an Yb+ ion in
the ultracold Rb environment, gave the charge-transfer rate
coefficient of the order of 10−14 cm3/s (the smallest one
measured so far below 1 K) and characterized the product
distributions. This system is attractive for further experimental
studies since both Yb(1S) and Rb(2S) neutrals can be brought
to degenerate gases [34–36] and combined with Rb+(1S) and
Yb+(2S) ions for studying charge transfer from both “sides.”
Rich isotope variety enables one to address the isotope and
hyperfine structure effects. We performed accurate ab initio
calculations of the potential energy curves, dipole moments,
and nonadiabatic coupling matrix elements for the lowest
electronic states of the (YbRb)+ ion. We showed that within
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the framework of the scalar-relativistic approximation the
charge transfer can be considered by means of the two-channel
model and that its radiative pathway is barely dominant. The
vectorial spin-orbit interaction affects the electronic structure
of the (YbRb)+ ion, but does not produce a remarkable
effect on the low-energy radiative charge transfer. Quantum
scattering calculations within the range of collision energies
relevant to the experiment show a rich resonance structure
associated with orbiting resonances typical for the Langevin
regime. Calculated rates agree well with the measured ones [4],
although they reveal a less pronounced isotope effect. On the
other hand, our study of single-collision dynamics results in
some deviation in interpretation of the product distributions
deduced experimentally.

II. ELECTRONIC STRUCTURE

The electronic structure of the (YbRb)+ ion was investi-
gated ab initio using the MOLPRO program package [37]. All
calculations were performed within the C2v symmetry group
with the origin of the electronic coordinates placed at the center
of nuclear mass of the system composed of 174Yb and 85Rb
isotopes and z-axis oriented along the internuclear vector R.

A. Techniques

Scalar-relativistic (SR) calculations were performed us-
ing the small-core 28-electron relativistic core potentials
ECP28MDF with the supplementary contracted basis sets for
both Yb [38] and Rb [39]. The sets of diffuse primitives
of each of the spdf types with the exponents continuing
two lowest exponents of the standard bases as an even-
tempered sequence were added at each center to improve
the description of induction and dispersion interactions. To
evaluate the potential-energy curves (PECs) of the states
that are the lowest ones in their symmetry (spatial and
spin) representation, the restricted version of the coupled
cluster method with singles, doubles, and noniterative triples,
CCSD(T), was employed with the restricted Hartree-Fock
reference. This type of calculation always included the set
of 3s3p2d2f 1g bond functions (bf) [40] placed at the middle
of the internuclear distance R and counterpoise correction for
the basis set superposition error [41]. The Yb(4s24p64d10)
shells were included in the core, whereas the rest of the
electrons were correlated explicitly. The lowest excited singlet
states were calculated by means of the equation-of-motion
approach in coupled clusters with singles and doubles (EOM-
CCSD) implemented in the same way. For excited triplets the
multireference configuration interaction (MRCI) calculations
with the Davidson correction [42] were performed with
the reference wave functions built by the state-averaged
complete active space multiconfigurational self-consistent
field (CASSCF) method with active space spanned by the
Yb(6s6p) and Rb(5s) atomic orbitals. The core set in the
MRCI calculations consisted of Yb(4s24p64d105s25p6) and
Rb(4s2) atomic orbitals, whereas the 4f 14 shell of an Yb atom
was correlated as fully occupied.

The similar MRCI method was used for spin-orbit (SO)
calculations, but with the ECP28MWB effective core potential
for Yb containing the SO part [43] and supplementary

segmented basis set [44] augmented by the s2pdfg diffuse
functions [45]. The calculations were performed on the fine
grid of the internuclear separation R from 1.9 to 40 Å.

B. Scalar-relativistic results

The results of SR CCSD(T), EOM-CCSD, and MRCI
calculations are shown in Fig. 1(a). At low collision energies
it is sufficient to consider the states corresponding to the three
lowest dissociation limits: (i) Yb(1S) + Rb+(1S) that represents
the final charge-transfer (CT) channel; (ii) Yb+(2S) + Rb(2S),
the initial channel; and (iii) closed Yb∗(3P o) + Rb+(1S) CT
channel that lies slightly above the entrance. Our best estima-
tions for energies of excited limits 16 279 cm−1 (EOM-CCSD)
and 18 646 cm−1 (MRCI) correspond well to the centers of the
measured fine-structure multiplets, 16 750 and 18 869 cm−1,
respectively [46]. It is evident that direct CT can only occur
through A 1�+- X 1�+ interactions, either nonadiabatic or
dipole.

To obtain the most accurate SR PECs for the relevant
X 1�+, a 3�+, A 1�+, b 3�, and 2 3�+ states, we took
CCSD(T)-bf results for X, a, and b as the reference. The
A-state PEC was obtained by adding EOM-CCSD excitation
energies to the ground PEC, whereas the MRCI results for
�-� splitting were used to obtain 2 3�+ PEC from the
CCSD(T)-bf b 3� one. These ad hoc procedures aim to
compensate the lower accuracy of EOM-CCSD and MRCI
methods and incorporate the basis set superposition error
correction. The resulting points were interpolated by cubic
splines and joined smoothly to an analytical long-range (LR)
function represented by the lowest-order −Cn/R

n asymptotic
term. Finally, the PECs were shifted in energy to reproduce
the true asymptotic limits. The parameters of so-obtained PECs
are presented in Table I.

Accuracy of the ab initio PECs can be indirectly verified at
long distances. LR behavior of the X and a, A potentials
is dominated by Yb and Rb induction, respectively. The
finite-field CCSD(T) calculations estimated the static dipole
polarizabilities of neutral atoms as αYb = 142.2 and αRb =
318.2 a.u., in perfect agreement with the recommended values
αYb = 139 ± 7 [47,48] and αRb = 318.8 ± 1.4 a.u. [49,50].
The leading induction coefficients C4 = αX/2 are equal to
71 and 159 a.u., respectively, in reasonable correspondence
with the fits to ab initio PECs (see Table I). Asymptotic
dependence of the b 3� and 2 3�+ PECs originates from the
charge-quadrupole Rb+ + Yb∗(3P o) interaction. The results of
Ref. [48] obtained within the more accurate ab initio approach
allowed us to estimate the corresponding C3 coefficients as
−7.2 a.u. and 14.4 a.u., respectively. They agree with the fitted
coefficients only qualitatively, but the LR behavior of the states
correlating to the third dissociation limit is not crucial in the
present context.

The permanent and transition dipole moments for the pair
of 1�+ states were calculated by EOM-CCSD and MRCI
methods, while the finite-field CCSD(T)-bf calculation was
possible also for the ground X state. All the methods give
similar results, although the MRCI A-state moment reveals
the signatures of the mixing with higher lying states at the dis-
tances shorter than 4 Å. The A-X electronic transition dipole
moment dAX responsible for radiative CT is shown in Fig. 1(c).
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TABLE I. Parameters of the lowest PECs of the (YbRb)+ ion: Equilibrium distance, Re; state binding energy, De; leading LR coefficient,
Cn; energy of the minimum with respect to the ground-state asymptotic limit, Ue; and state dissociation asymptote, U∞, with respect to the
ground asymptotic limit.

State Re (Å) De (cm−1) n; Cn (a.u.) Ue (cm−1) U∞ (cm−1)

Scalar-relativistic PECs
X 1�+ 4.28 3496 4; 72.9 −3496 0
a 3�+ 4.89 6176 4; 163.7 10574 16750
A 1�+ 7.31 836 4; 155.5 15914 16750
b 3� 3.97 3218 3; −4.6 15650 18869
2 3�+a 3; 18.8 18869

SO-coupled PECs
X0+ 4.28 3498 4; 72.9 −3498 0
a0− 4.87 6312 4; 163.7 10438 16750
a1 4.88 6236 4; 163.7 10513 16750
A0+b 7.30 837 4; 155.5 15912 16750
A0+c 4.04 1849 14901 16750
A0+d 5.78 16790 16750

aRepulsive PEC.
bRight minimum, corresponds to the A 1�+ SR state.
cLeft minimum, corresponds to the b 3� SR state.
dAvoided crossing maximum.

In addition to the transition dipole moment, two 1�+ states
are coupled by the nonadiabatic coupling matrix elements
(NACMEs) as defined in Sec. III. The first-order radial
NACME was computed using the two-point finite-difference
procedure [37] using the MRCI vectors built on the CASSCF
wave functions obtained with averaging over the two lowest
1�+ states. It was checked that neither inclusion of the
third state of the same symmetry into CASSCF averaging
nor the use of the more accurate three-point differentiation
procedure alter the results remarkably. The second-order radial
NACME was approximated as the derivative of the first-order
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FIG. 1. (Color online) Potential energy curves and dipole moment
functions for the lowest electronic states of the (YbRb)+ ion.
(a) Scalar-relativistic PECs. In addition to the states correlating to
the three lowest asymptotic limits discussed in the text, 3 1�+ and
1� states correlating to the fourth Yb(1P o) + Rb+(1S) asymptote
(26 172 cm−1, cf. 25 068 cm−1 [46]) are shown. (b) PECs for
the lowest SO-coupled 0± and 1 states. (c) The scalar-relativistic
A-X transition dipole moment. (d) The SO-coupled A-X, a1-X, and
3 0+-X transition dipole moments.

one [51]. For two states of the same symmetry the first-
order angular NACME, proportional to the orbital electronic
angular momentum operators Lx and Ly , vanishes by parity.
Nonvanishing is the second-order NACME represented by the
L2

x + L2
y operator. The one-electron part of the L2

y operator
(L2

x is the same by symmetry) was calculated as the matrix
element on the CASSCF wave functions. As shown in Fig. 2,
the first-order radial coupling is expectedly much stronger
than the second-order and angular ones. The mixing with the
higher lying electronic states at short distances already noted
for dipole moments affects NACMEs as well.

C. Spin-orbit coupling

The state-interacting MRCI SO calculations [52] were
performed in the space spanned by the scalar-relativistic states
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FIG. 2. (Color online) Nonadiabatic couplings between the
X 1�+ and A 1�+ states: the first-order radial NACME (dashed line),
the second-order radial one (dotted line), and the second-order angular
NACME multiplied by 50 (solid line).
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correlating to the three lowest dissociation limits. The SO
matrix elements were evaluated for the Breit-Pauli operator
using the inner part of the MRCI wave functions. The PECs
described above were used as the diagonal SR part of the full
Hamiltonian matrix. Relevant SO-coupled PECs are shown in
Fig. 1(b) and characterized in Table I.

The states correlating to the lowest dissociation limits are
weakly affected by the SO coupling. The only qualitative
effect, the splitting of the a 3�+ state into the a0− and a1
components, is not significant. Much more pronounced is the
interaction with the higher states correlating to an excited Yb∗
atom. The asymptotic limit splits into three components that
correspond to the 3P o

j , j = 0, 1, and 2, Yb∗ fine-structure
levels. The lowest 3P o

0 one gives the single 0− component that
may interact with the a0− state at short distances, whereas the
second 3P o

1 gives 0+ and 1 components. The former transforms
the b 3�-A 1�+ crossing into the avoided one giving the
double-well A0+ PEC. The latter perturbs the repulsive wall
of the a1 potential. These changes also affect the transition
dipole moments. The A-X transition moment is similar to
its scalar-relativistic precursor at distances larger than the
avoided crossing point R ≈ 6 Å and rapidly falls down at
shorter distances [see Fig. 1(d)]. Instead, a significant dipole
coupling occurs with the upper 3 0+ state, which acquires
charge-transfer character as the result of the crossing. The sum
of the A-X and 3 0+-X transition moments is therefore similar
to the scalar-relativistic A 1�+-X 1�+ one. The SO interaction
also allows the transition from the a1 to the X state, but the
corresponding dipole moment is negligible.

III. NONRADIATIVE CHARGE TRANSFER

The nonradiative charge-transfer process in low-energy
Yb+ + Rb collisions can occur due to nonadiabatic transitions
between the initial and the final molecular states induced
by nuclear motion. We estimated its probability using the
SR ab initio picture presented above [see Fig. 1(a)]. In this
approximation, it is sufficient to consider only two states:
the initial A and the final X ones, both of the 1�+(� = 0)
symmetry, whereas the spin restriction forbids the low-energy
CT in the triplet manifold.

A. Theory

The nonadiabatic nuclear dynamics was studied within
the formalism of the standard adiabatic (Born-Oppenheimer)
approach described, for example, in Refs. [53–56]. The
approach is based on a fundamental simplification, the Born-
Oppenheimer separation of electronic and nuclear motions,
leading to a fixed-nuclei electronic structure calculation and
an appropriate treatment of nuclear motion based on the data
calculated in the first step. This separation results in the total
wave function expanded in terms of products of the electronic
fixed-nuclei wave functions �j (r,R), the angular nuclear wave
functions, and the radial nuclear wave functions, r being a set
of electronic coordinates. The electronic wave functions are
calculated as described in the previous section. The angular
nuclear wave functions are expressed via the generalized
spherical harmonics [55,56]. The radial nuclear wave functions
obey the system of coupled channel equations [55,56]. In

the present case of low-energy Yb+ + Rb collisions, when
nonadiabatic transitions occur only between two 1�+ states,
the coupled channel equations for the radial nuclear wave func-
tions F̄

J,E
j (R) are reduced to the following equations (in a.u.):[

− 1

2μ

d2

dR2
+ Uj (R) + J (J + 1)

2μR2
− E

]
F̄

J,E
j

= 1

μ

∑
k �=j

〈�j | ∂

∂R
|�k〉dF̄

J,E
k

dR
+ 1

2μ

∑
k

〈�j | ∂2

∂R2
|�k〉F̄ J,E

k

− 1

2μR2

∑
k

〈�j |L2
x + L2

y |�k〉F̄ J,E
k . (1)

Here E is the collision energy measured from the asymptotic
limit of the initial state A 1�+, J is the total angular
momentum quantum number, which in case of the 1�+ states
represents simultaneously orbital and rotational momenta of
the nuclei, μ is the reduced mass of the nuclei, j and k indices
runs over A and X, Uj is the adiabatic PEC, and the three
terms in the right-hand side contain first- and second-order
radial and angular NACMEs, respectively, defined as the
integrals over the electronic coordinates r and calculated as
described in the previous section.

The coupled-channel equations (1) have their simplest and
standard form due to the choice of coordinates: the Jacobi
coordinates in which the vector R connects the nuclei (for
a fixed-nuclei treatment) and the set of electron coordinates
r is defined from the center of nuclear mass, the coordinates
employed in the ab initio calculations described above. In these
coordinates special care, e.g., by means of the reprojection
method [56–58], should be taken in the asymptotic (R → ∞)
region for calculating of nonadiabatic transition probabilities
due to the fact that some radial NACMEs may have nonvan-
ishing values, but in the present case all the treated NACMEs
have zero asymptotes (see Fig. 2).

Due to the large energy splitting and small values of
NACMEs, the nonadiabatic transition probabilities are ex-
pected to be small at low collision energies, and further
simplification can be achieved by using the perturbation theory.
The probabilities for a nonadiabatic transition A → X due to
the radial NACMEs (of both orders) can be approximated
as [59]

P RAD
AX (J,E) = 1

4

∣∣∣∣
∫ ∞

0
〈�A| ∂

∂R
|�X〉

×
[
F

J,E
A

dF
J,E
X

dR
− F

J,E
X

dF
J,E
A

dR

]
dR

∣∣∣∣
2

, (2)

F
J,E
X(A)(R) being an unperturbed scattering radial wave function

(distorted wave) in the channel X(A) normalized by the
probability current. For transitions induced by the angular
NACME of the second order, the equations are similar to the
coupled-channel equations in a diabatic representation, and
the perturbation theory provides the following nonadiabatic
transition probability:

P ANG
AX (J,E) =

∣∣∣∣
∫ ∞

0

1

R2

[
F

J,E
A 〈�A|L2

x+L2
y |�X〉FJ,E

X

]
dR

∣∣∣∣
2

.

(3)
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The nonradiative CT cross sections σ RAD
AX and σ ANG

AX due to the
radial and the angular NACME are computed as a sum over
the total angular momentum quantum number J :

σ
RAD(ANG)
AX (E) = πgi

2 μE

∑
J

(2J + 1) P
RAD(ANG)
AX (J,E),

(4)

gi being a statistical probability for population of the initial
channel i. For the entrance A 1�+ channel, gi = 1/4. Because
of low collision energies treated the radial wave functions have
to be calculated up to large internuclear distances, up to several
thousands angstroms in the present case.

B. Cross sections

The calculated A → X nonradiative cross sections are
presented in Fig. 3. All calculations were performed for the
85Rb isotope. The 174Yb isotope is assumed unless indicated
explicitly. It is seen that the CT process induced by the angular
NACME is roughly 14 orders of magnitude less efficient than
that induced by the radial couplings. The reason is that the total
electronic orbital momenta L, though not the good quantum
numbers, are zero in the asymptotic R → ∞ limit. (In the
united ion limit Bh+, at least the X state should also have
L = 0 [60].) Nonvanishing angular NACMEs can only arise
from the minor admixtures of excited states with different
angular structure to the adiabatic electronic wave functions. In
turn, the cross section due to the radial NACMEs is small on its
own: The corresponding rate coefficient is roughly of the order
of 10−26 cm3/s at 1 K temperature. This is the consequence
of both the large adiabatic splitting and weak interaction of
the A 1�+ and X 1�+ states, resulting in small values of the
radial NACMEs.

The nonradiative cross sections exhibit numerous reso-
nances whose positions in the radial and angular counterparts

10-3 10-2 10-1 100 101
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10-29
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10-25

174Yb+ RAD x10-3

172Yb+ RAD

174Yb+ ANG x10
8

σ
(c

m
2 )

E (cm-1)

FIG. 3. (Color online) Nonradiative CT cross sections for
Yb+ + Rb collisions induced by NACMEs of different origins. The
uppermost (blue) trace shows the cross section for 172Yb+ + Rb
collisions due to the radial NACMEs. The second from the top (black)
trace represents the same cross section for 174Yb+ + Rb collisions
(multiplied by 10−3). The bottom (red) trace depicts the cross section
for 174Yb+ + Rb collisions due to the angular NACME (multiplied
by 108).

are identical for the same Yb isotope. This structure, typical
to the Langevin regime [13,16,28–30,33], arises from the
tunneling through centrifugal barriers of the effective potential
energy in combination with the polarization potential for
the initial channel, as is shown in the next section. Isotope
substitution alters the cross section insignificantly.

To conclude, the large mass of the system, vanishing
electronic angular momenta of the X and A states, and their
large energy separation in the interaction region suppress the
nonadiabatic couplings and make the direct nonradiative CT
process very inefficient. Inclusion of the SO couplings does
not change the conclusion. For this reason, we did not exploit
more thorough treatments of the nonadiabatic dynamics.

IV. RADIATIVE CHARGE TRANSFER

The dipole coupling between the A and X states should
provide a more plausible radiative CT mechanism. As far as the
nonadiabatic effects are negligible, we estimated its efficiency
using the standard adiabatic picture and commonly accepted
quantum scattering approaches. Following the previous works
on cold ion-atom collisions, we did not consider the effects of
external fields and hyperfine structure.

A. Theory

Detailed description of the collision-induced spontaneous
radiative transition from electronic state i to electronic state f

is given by the frequency-resolved cross section dσ R(E)/dω,
where the collision energy E and the final energy E′ define the
emission frequency h̄ω = E − E′. Depending on the final PEC
and the final energy, transitions may occur into the continuum
[charge transfer in the strict sense; hereafter “charge exchange”
(CE)] or bound [radiative association (RA)] levels. Within the
Fermi golden rule (FGR) approximation the corresponding
cross sections are expressed as [61–65]

dσ CE(E)

dω
= 8π2

3

μ2

k3k′ giα
3ω3

∑
J

(2J + 1)
∑
J ′

HJJ ′D2
EJ,E′J ′

(5)

and

dσ RA(E)

dω
= 8π2

3

μ

k3
giα

3
∑

J

(2J + 1)

×
∑
v′

∑
J ′

ω3
E,v′J ′HJJ ′D2

EJ,v′J ′δ(ω − ωE,v′J ′ ).

(6)

Here J and J ′ are the nuclear angular momenta in the initial
and final states, v′ is the vibrational quantum number of the
final state with the energy Ev′J ′ , h̄ωE,v′J ′ = E − Ev′J ′ , α is
the fine-structure constant, k2 = 2μE, k′2 = 2μE′, δ(x) is the
Dirac function, and HJJ ′ is the standard Hönl-London factor.

The transition dipole moment matrix elements on the radial
nuclear wave functions are defined as

DEJ,E′J ′ =
∫ ∞

0
F

J,E
i (R) dif (R) F

J ′,E′
f (R) dR,

DEJ,v′J ′ =
∫ ∞

0
F

J,E
i (R) dif (R) F

J ′,v′
f (R) dR.
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The choice of the coefficients in Eqs. (5) and (6) implies the
normalization of distorted waves F

J,E
i ,FJ ′,E′

f used in Ref. [64].
The total radiative cross section is given by

σ R
if (E) = σ CE

if (E) + σ RA
if (E)

=
∫ ωmax

0
dω

[
dσ CE

if (E)

dω
+ dσ RA

if (E)

dω

]

=
∫ ω0

0
dω

dσ CE
if (E)

dω
+

∫ ωmax

ω0

dω
dσ RA

if (E)

dω
, (7)

where ωmax is the maximum frequency that corresponds to
a transition to the ground level v′ = 0, J ′ = 0, whereas ω0

frequency does to the ground-state dissociation limit. After
substitution of Eq. (6) into Eq. (7), integration over ω with δ

function transforms the last term of the latter into a sum over
the discrete v′,J ′ quantum numbers.

The closed expression for the total elastic cross section
follows from the optical potential (OP) approach (see, e.g.,
Refs. [64,66–68], and references therein). Combined with the
distorted wave approximation, it reads [64]

σ R
if (E) = π

k2
gi

∑
J

(2J + 1){1 − exp[−4ηJ (E)]} (8)

with

ηJ (E) = 2π

3

μ

k
α3

∫ ∞

0
F

J,E
i d2

if (R)[Ui − Uf ]3F
J,E
i dR. (9)

For the A 1�+-X 1�+ or A0+-X0+ transitions under con-
sideration, HJJ ′ = J (2J + 1)−1 if J ′ = J − 1, HJJ ′ = (J +
1)(2J + 1)−1 if J ′ = J + 1, and HJJ ′ = 0 otherwise.

B. Cross sections

The radiative cross sections defined above were computed
numerically using fine radial and energy grids and strict
convergence criteria for partial wave summations. Accuracy
of the OP cross sections was estimated as 3%, whereas the
accuracy of the FGR calculations was within 5%–8% due to
additional errors in integration over ω and convergence of
the wave functions very close to the dissociation limit of the
ground state.

The total OP radiative cross section for the SR model
(all the parameters, A 1�+, X 1�+ PECs and dAX transition
moment function, are taken from the SR calculations) for the
collision energy range 0.001–10 cm−1 are shown in Fig. 4(a)
as the upper trace (multiplied by two). It gradually declines
with collision energy increase in agreement with the Langevin
capture cross section σL = 2π

√
C4/E being five orders of

magnitude smaller. The radiative CT cross section exceeds
the nonradiative ones by 14 orders of magnitude and bears
similar resonance structure. Analysis of the individual partial
wave contributions allowed us to correlate the resonance
energies with the positions of centrifugal barriers at certain
J , as is shown in Fig. 5 for the low-energy cross section
for collisions involving 172Yb and 174Yb isotopes. The cross-
section structure consists of strong narrow resonances, which
correspond to the tunneling deep under the centrifugal barriers,
and weak broad resonances slightly below or above the
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FIG. 4. (Color online) Total radiative A-X cross sections for
the Yb+ + Rb collisions calculated within the OP approximation.
(a) Low-energy results for SR (upper trace, multiplied by two) and
SO (lower trace) models. Asterisks represent the RA (free-bound)
cross section from the FGR calculations for the SO model. Dashed
line corresponds to the Langevin inelastc cross section multiplied
by 10−5. (b) Cross sections near the potential barrier top of the
A0+ state (40 cm−1). Dotted and solid lines—SR and SO models,
respectively. The shaded area presents the results of the “mixed”
model calculations with the SO-coupled PECs and SR transition
dipole moment. Asterisks indicate the resonance features of the SO
cross section associated with the potential barrier.

barriers. All these findings signify the Langevin character of
the Yb+ + Rb cold inelastic collisions.

The total OP cross section computed within the SO model
the SO-coupled X0+, A0+ PECs and the dAX transition
moment) are also presented in Fig. 4(a) (lower trace). Test
calculations showed that the a1-X0+ radiative transition has a
negligible probability. The SO model gives the cross section by
10% larger than the SR one with the same energy dependence,
except the “bumps” at ∼0.001 and 0.2 cm−1. Resonance
structures of two traces are not identical, but the correlations
are clearly visible at least below 0.01 cm−1 and were confirmed
selectively by the partial wave analysis. However, the latter was
of little help for seeking the effect of the potential barrier sepa-
rating two wells of the SO-coupled A-state PEC [see Fig. 1(b)].

To elucidate it, we performed OP calculations with the
“mixed” model that uses SO-coupled PECs but SR transition
dipole moment. The results of three models are compared in
Fig. 4(b) for collision energies close to the potential barrier top
(40 cm−1; see Table I). Preserving the Langevin-type structure
similar to that of the SR cross section, the mixed cross section
is dominated by additional very intense features significantly
broadened at the background. They were attributed to the
potential barrier tunneling or overbarrier resonances, since the
penetration into the short-range well enhances the radiative
transition probability (both Franck-Condon overlaps and
transition moment value are more favorable here than in the
long-range well; see Fig. 1). It is not the case for the consistent
SO model, in which the transition moment decline suppresses
the radiative transitions from the short-range well. Some
features associated to the potential barrier, however, survive in
the SO cross sections (the most visible are marked by asterisks
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FIG. 5. (Color online) Low-energy resonance structure of the
total radiative A-X cross sections (the SR model, OP calculations).
Vertical lines indicate the positions of centrifugal barrier top at
J values given at the top of each plot. The resonances are assigned
to J by arrows or J values given at the bottom of each plot.
(a) 172Yb+ + Rb collisions; (b) 174Yb+ + Rb collisions.

in the figure). The same “mixed” model was used to confirm
that the “bumps” mentioned above are also due to the potential
barrier. As additional comments to Fig. 4(a), increase of the
collision energy above the potential barrier does not lead to
any drastic change of the cross section because the centrifugal
term smoothes it for many partial waves, and increase of the SO
cross section with respect to the SR one reflects the variation
of the PECs rather than of the transition moment.

The results of the FGR calculations performed for the
SO model at selected collision energies are presented in
Table II. The total FGR cross section agrees with the OP one
within the numerical accuracy justifying the optical potential
approximation. Radiative association prevails over charge
exchange: Within the energy range under study, transitions
to the bound rovibrational levels of the (YbRb)+ ion amount

TABLE II. Radiative cross sections (in 10−17 cm2) for charge
transfer in the Yb+ + Rb collisions calculated within the SO model
at several collision energies E. Percentage contributions of RA and
CE processes are given in parentheses.

FGR

E (cm−1) RA CE Total OP total

0.01 10.2 (71) 4.2 (29) 14.3 15.2
0.1 3.0 (69) 1.4 (31) 4.3 4.5
1 0.9 (69) 0.4 (31) 1.3 1.3
3 0.05 (67) 0.03 (33) 0.08 0.08
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FIG. 6. (Color online) Frequency-resolved radiative cross sec-
tions normalized to the total cross sections, FGR calculations for the
SO model. Lines correspond to the collision energy of 0.01 cm−1;
shaded areas—1 cm−1. Vertical dotted lines mark the borders of
the free-bound spectrum set by the ground rovibrational level and
dissociation limit of the X state. For RA, only the transitions with
intensities exceeding 1% of the maximum one are shown.

to ∼70% of the total radiative charge transfer [see Fig. 4(a)].
Figure 6 compares A-X spontaneous emission spectra at the
collision energies 0.01 and 1 cm−1. Increase of the collision
energy leads mostly to “rotational” congestion of the spectrum
due to involvement of higher partial waves. It is worth noting
that all transitions are concentrated in the relatively narrow
frequency range, from 500 cm−1 above the ground dissociation
limit to 2000 cm−1 below (∼12% of the available frequency
range from 0 to 20 250 cm−1).

V. DISCUSSION

In this section, we first compare our theoretical results with
experimental data available for Yb+ + Rb collisions. Then we
discuss them in a broader context of a few previous studies,
mainly theoretical, on the cold CT processes in analogous
nonresonant ion-atom systems.

A. Implications to experimental data

In the experiments by Köhl and co-workers [3,4] the kinetic
energy of a single Yb+ ion immersed in an ultracold Rb
ensemble was varied by adding excess micromotion energy
after displacement of an ion from the center of a trap. The
binary-collision ion-loss rate coefficient determined in this
way does not correspond to a conventional thermal rate
constant for the Maxwell collision energy distribution at a
certain temperature. For this reason, we also used the effective
energy-dependent rate coefficient

R(E) =
√

2E/μ σ R
AX(E)

omitting negligible nonradiative CT contribution. This quan-
tity derived from the OP calculations with the SO model
is displayed in Fig. 7 within the energy range probed
experimentally [4]. In agreement with the measurements and
the trait of Langevin regime, the background rate coefficient
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FIG. 7. (Color online) The energy-dependent CT rate coefficient
R174(E) (the SO model, OP calculations). Solid and dashed (red)
lines represent the mean values for collisions with the 174Yb+ and
172Yb+ ions, respectively. Shaded areas represent the experimental
error bars [4]. Rate coefficients are shown in the collision energy
range studied experimentally.

does not depend on a collision energy. To define the average
value, we took an arithmetic mean over a uniform grid of
10 000 points covering the relevant energy range from 0.15 to
3.25 cm−1. For the 174Yb ion, it amounts to 2.9 × 10−14 cm3/s
in good agreement with the measured mean of (4.0 ± 0.3) ×
10−14 cm3/s [4]. The background is ∼2.6 × 10−14 cm3/s, so
the resonances contribute around 10% to the total rate. The SR
model gives the mean rate of R = 2.4 × 10−14 cm3/s.

Experiments with the 172Yb+ ions revealed a quite signifi-
cant isotope effect, R174/R172 ≈ 1.4 (see Fig. 7). Using the OP
approximation (8) and assuming that the terms in the sum do
not depend on the reduced mass, one arrives to small reverse
scaling, R174/R172 ∝ (μ172/μ174)3/2 ≈ 0.994. It is supported
by the fact that calculated background rate coefficients for
two isotopes are hardly distinguishable. Nevertheless, the
mean rate coefficients shown in Fig. 7 reproduce the reverse
isotope effect. It originates from the resonant contribution and
reflects slightly lower resonance density for the lighter isotope
(careful inspection of Fig. 5 indeed reveals the less congested
structure). Still, the theoretical rate coefficient ratio 1.03 is
much smaller than the measured. More recent experiments for
the same system have indicated dramatic effect of the hyperfine
structure [8,69], which likely contributes to isotope effect as
well.

Despite very reasonable agreement for the rate coefficient,
our results do not reconcile to the measured product distribu-
tions. Experimentally, the probability of Rb+ ion production
was found to be 35%, while the remaining 65% correspond
to the loss of charged particle from the trap [4,8]. Our FGR
calculations also give 30% for CE probability equivalent to
Rb+ ion formation, but assign the remaining 70% to RA,
formation of the stable (YbRb)+ molecular ion not observed
experimentally. Our calculations do not identify the trap loss
channel, because, according to Fig. 6, all the CE products
have the kinetic energy less than 500 cm−1 at the trap
depth of 1200 cm−1 [4]. Several works [5–7,70] emphasized
efficient secondary collision processes for Ca+, Ba+, and

Rb+ ions in contact with an ultracold Rb ensemble. This
reason, however, was ruled out by Ratschbacher et al. [8],
who failed to observe the (YbRb)+ ion even at very short
contact times. We assume that a more plausible explanation can
be efficient photodissociation of the molecular ion to highly
energetic products by cooling or trapping optical fields. More
quantitative estimation may be useful for bridging the gap
between theory and experiment.

B. Other nonresonant cold ion-atom collisions

In many respects, neutral and singly ionized Yb is the 4f

analog of an alkaline-earth metal (M). Indeed, a lot of similar-
ity can be traced out in the interactions of the Rb atom with Yb+
and M+ ions. Due to mismatch in ionization potentials (IPs),
the entrance M+(2S) + Rb(2S) channel always lies above the
ground M(1S) + Rb+(1S) one, so the location and symmetry
of excited M∗ + Rb+(1S) CT channels determine the main
qualitative difference. Binding of ns2 electrons decreases with
n from Be to Ba as manifested in IP, ns2 → nsnp and ns2 →
(n − 1)dns promotion energies [46]. By these parameters, Yb
most closely resembles Ca. However, in contrast to Yb, the ex-
cited Ca∗(3P o) + Rb CT channel is open and lying slightly be-
low the entrance [7,30]. Moszynski and co-workers [31] stud-
ied theoretically the Ba+ + Rb system, in which excited CT
channels are energetically closed (see also Ref. [71]). However,
these states correlate to Ba∗(3D) + Rb+(1S) asymptote and ex-
hibit a more complicated interaction with the entrance A 1�+
and a 3�+ states. In particular, the PEC of the A state has a
double-well shape even in the nonrelativistic case. It should
be expected that the Sr+ + Rb system reveals more similarity
to the Yb+ + Rb one, but we are not aware of any work on it.

It appears that Yb+ + Rb represents one of the simplest
systems from the viewpoint of excited state effects. The use of
lighter alkali-metal partners may further simplify the dynamics
because increasing IP of the neutral will push the entrance
channel down in energy. In the extreme case of Li, it lies only
7000 cm−1 above the ground and almost 10 000 cm−1 below
the excited CT asymptote. Collisions with Li should be of
special interest for cooling a trapped ion below the Langevin
regime, as discussed by Cetina et al. [25].

Rellergert et al. [6] investigated cold Yb+ + Ca collisions,
in which only two states of the 2�+ symmetry separated
asymptotically by 1140 cm−1 are involved. Avoided crossing
at long range presents an interesting feature of this system
that facilitates the nonadiabatic CT pathway (see below). A
similar picture should be expected for Yb+ + Sr, whereas for
Yb+ + Ba the CT toexcited Ba+ ion becomes possible. Among
the nonresonant alkaline-earth-metal systems, Ba+ + Ca has
been studied by Sullivan et al. [26]. Here the CT process is
endothermic and occurs from excited states of the ion.

It is also instructive to bring together scarce, mostly
theoretical, data on the efficiency of distinct CT pathways. To
do so on the same footing, we presented εL coefficients—the
ratios of the rate coefficient (cross section) to its Langevin
inelastic value.

Our estimation for the nonradiative CT rate is vanishingly
small, εL ≈ 10−17. Much larger efficiencies, εL ≈ 5 × 10−6

and 10−3, were reported for Yb+ + Ca [6] and Ca+ + Rb
[30,33], respectively. In the former case, nonadiabatic
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transitions should be dramatically enhanced by the above-
mentioned avoided crossing. The latter coefficient in fact refers
to the transition to the open excited CT channel, while the
efficiency of the direct A-X CT is of the order of 10−6 [30].
The measured εL ≈ 10−3 for Ca+ + Rb [10] confirms the
nonradiative CT to excited channels. Indeed, the efficiency
of the direct radiative CT was found to be by an order of
magnitude lower, εL ≈ 7 × 10−5 [10].

For radiative CT we got εL ≈ 1.5 × 10−5, in good cor-
respondence with Ca+ + Rb and Ba+ + Rb collisions (theory
εL ≈ 4 × 10−5 [31] and 5 × 10−6 [71]; experiment 10−4–10−3

[5] and <2 × 10−4 [71]). Calculations for Yb+ + Ca provided
εL ≈ 0.03, also in agreement with the measured rate [6]. The
lowest radiative CT efficiency εL ≈ 10−7 was calculated for
the Ca+ + Na collisions [13,17].

Even less is known on the product distributions. The molec-
ular ion was observed in the Ca+ + Rb system together with
Rb2

+ ion formed in the secondary collisions [7]. Studies of the
Ba+ + Rb [71] and Yb+ + Ca [6] collisions revealed the same
discrepancy between experiment and theory as we met here. In
the former case, the (BaRb)+ ion constitutes 30% of the ionic
product, while the theory designates it as the barely dominant
product of the radiative CT. An upper bound for (YbCa)+
formation probability was estimated experimentally as 0.02%,
whereas according to FGR calculations radiative association to
molecular ion contributes 50%. It was speculated that the sec-
ondary RA processes may deplete the diatomic ion to heavier
species such as (Ca2Yb)+ [6]. In our case the measurements
failed to detect charged particles different from atomic ions and
we proposed an alternative explanation—photodissociation of
a molecular ion by a cooling and trapping optical field. Finally,
calculations on Ca+ + Na collisions showed even stronger
predominance of the radiative molecular ion formation: RA
to CE branching ratio was found to be around 20:1 [13,17].

The above overview clearly reveals a variety of the
CT mechanisms in cold ion-atom collisions and orders-of-
magnitude variations of their rates. The obvious reason is
the strong dependence on tiny electronic properties of a
system: a relative potential energy gap between initial and final
CT channels, transition dipole moments, and nonadiabatic
couplings. It can be inferred that the radiative pathway
generally dominates the direct CT process and leads mainly
to the formation of a molecular ion. The nonradiative pathway
can be competitive if CT occurs to excited states of the products
lying close from below to the entrance. The CT processes
involving excited ions or atoms [6–8,26,30] may well exhibit
a complex interplay of the distinct pathways.

VI. CONCLUSIONS

High-level scalar-relativistic ab initio calculations on the
lowest excited electronic states of the (YbRb)+ ion identified

the direct coupling between the entrance A 1�+ and exit
X 1�+ states as the only pathway for charge transfer in the cold
Yb+(2S) + Rb(2S) collisions. Spin-orbit coupling leaves the
charge transfer through the entrance a1(3�+) state inefficient,
but modifies the potential energy curve of the A state to the
double-well shape due to avoided crossing with the excited
state correlating to the closed Yb∗(3P o) + Rb+ charge-transfer
asymptote.

Quantum scattering calculations showed that the nonradia-
tive charge transfer induced by radial and angular nonadiabatic
coupling matrix elements has a negligible transition probabil-
ity. Charge transfer proceeds radiatively with the effective rate
coefficient ∼3 × 10−14 cm3/s, that is, five orders of magnitude
lower than the Langevin capture rate. The calculated radiative
cross sections bear all traits of the Langevin regime including
the rich structure associated with centrifugal barrier tunneling
(orbiting) resonances. The short-range well of the entrance
A0+ state has a weak effect on the charge-transfer efficiency
due to decline of the transition moment, but further complicates
the resonance structure.

Calculated radiative charge-transfer rate coefficients agree
well with the values of (4.0 ± 0.3) × 10−14 and (2.8 ±
0.3) × 10−14 cm3/s measured for 174Yb+ and 172Yb+ ions,
respectively [4]. The observed isotope effect is opposite to that
expected from the mass factor for a radiative charge-transfer
rate. In our calculations, it is reproduced correctly and orig-
inates from the resonance contribution, which increases with
the mass of the system. The magnitude of the effect, however,
was found to be too small to fully explain the observations.

The calculations estimated the probability to find the
product ion Rb+ in a trap as ∼30% in agreement with 35%
obtained experimentally [4]. The rest of the events correspond
to the formation of the bound (YbRb)+ molecular ion, in sharp
contrast to observed loss of the charged particle. Efficient
molecular ion photodissociation to highly energetic products
by cooling and trapping fields may explain this disagreement.

Present results are in line with the previous studies of similar
processes involving alkaline-earth-metal ions and alkali-metal
atoms. They suggest that the radiative pathway dominates the
ground-state charge transfer having a mean efficiency around
10−5 of the Langevin rate and the strong propensity to the
molecular ion formation.
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