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Based on the analytic model of Feshbach resonances in harmonic traps described in Schneider et al. [Phys.
Rev. A 83, 030701(R) (2011)] a Bose-Hubbard model is introduced that provides an accurate description of two
atoms in an optical lattice at a Feshbach resonance with only a small number of Bloch bands. The approach
circumvents the problem that the eigenenergies in the presence of a delta-like coupling do not converge to the
correct energies, if an uncorrelated basis is used. The predictions of the Bose-Hubbard model are compared
to nonperturbative calculations for both the stationary states and the time-dependent wave function during an
acceleration of the lattice potential. For this purpose, a square-well interaction potential is introduced, which
allows for a realistic description of Feshbach resonances within nonperturbative single-channel calculations.
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I. INTRODUCTION

Since the creation of the first Bose-Einstein condensates
[1,2], ultracold atoms have proven to be a versatile tool
for many applications like precision measurement, quantum
simulation, and quantum information processing. Two of the
main techniques that made these achievements possible are
the creation of various trapping potentials, like optical lattices
(OLs) or wave guides, and the precise control of the interatomic
interaction by means of Feshbach resonances (FRs) [3,4].

An important tool for describing ultracold atoms in OLs
is the Bose-Hubbard (BH) model. The model uses in its
basic form a basis of single-particle Wannier states from the
first Bloch band to formulate the many-body Hamiltonian.
While for weak interactions the model is very accurate, it
usually breaks down for larger scattering lengths. A way to
extend its applicability at a broad FR is to introduce effective
BH parameters especially for the on-site interaction strength
U . These parameters can be obtained by using a corrected
harmonic approximation of the lattice sites [5] or by full
numerical calculations [6,7].

The usual BH model allows via the on-site-interaction
strength U either for repulsively interacting atoms (U > 0)
or attractively interacting atoms (U < 0). At a narrow FR,
however, a relatively narrow avoided crossing with the reso-
nant bound state leads to the appearance of both repulsively
and attractively interacting states [8,9]. In this situation the
resonant bound state must be explicitly included into the BH
model. Several different kinds of these extended models have
been introduced and debated [9–12] and applied to map out the
phase diagram [10,13,14] or to investigate lattice solitons [15].

The above investigations consider the extended Hubbard
model within a single-band approximation that is applicable
only in the rare situation that the coupling energy to the
resonant bound state is small compared to the band gap.
In order to generalize the applicability one can introduce
the notion of dressed molecules with effective bound-state
energies and coupling strengths obtained from more elaborate
calculations [16].

A convenient approach to generalize Hubbard models to
describe broader FRs or systems with a large scattering length
is to simply include more Bloch bands. For example, Duan
has derived an effective single-band Hubbard model for the

case of interacting fermions at a broad FR starting from a
multiband Hubbard model in the Wannier basis and a zero-
range coupling between atoms and molecules [17]. However,
as will be discussed in this work, severe numerical problems
arise for the description of a system with a zero-range coupling,
e.g., by expanding the solution in products of single-particle
basis functions. Especially for large scattering lengths all of
these basis functions behave completely differently for r → 0
compared with the correct solution. This poses a problem
especially for positive scattering lengths where the open
channel supports a bound state. In fact, the obtained energies
are lower than the correct ones so that an increase of the basis
leads to an even larger disagreement. A similar problem also
appears when replacing the interaction potential by the delta-
like Fermi-Huang pseudopotential [18]. Also within analytical
treatments of FRs in harmonic traps that use noninteracting
basis states the eigenenergies do not converge [10,19]. In this
case, after an infinite summation, the diverging terms can be
absorbed by introducing a renormalized bound-state energy. In
many numerical approaches the problem is circumvented by
replacing the delta-like potential by a regularized short-range
potential [6,7,20]. In order to resolve the potential usually a
large basis is necessary. For example, for an interaction with
the range d/N where d is the lattice spacing more than N

Bloch bands have to be included to converge the energies
[6,7]. For two atoms in a one-dimensional lattice the number
of basis functions scales quadratically with the number of
Bloch bands, and the number of sites the solution can quickly
become numerically very demanding. Based on this corrected
numerical approach, Wall and Carr were able to calculate the
effective parameters of a Fermi Hubbard model that takes the
coupling to a bosonic molecule explicitly into account [16].

In this work we introduce an extended BH model that avoids
the numerical problems in the presence of a delta-like coupling
without the need of regularization and inclusion of many Bloch
bands. The model is derived from first principles on the basis
of the analytic microscopic theory of FRs in a harmonic trap
[8]. This allows for defining dressed bound-state energies and
couplings that correct for the problems due to the deficiency
of the basis states.

Given the number of different proposals to describe FRs
within a BH model one has to compare the predictions of
the introduced BH model with nonperturbative calculations.
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In the standard description of FRs this requires one to solve
a two-channel problem of two interacting atoms in an optical
lattice coupled at short distance to a molecular bound state.
This problem is numerically very demanding. However, we
show that one can largely simplify the problem by introducing
a square-well interaction potential that realistically mimics the
behavior at a FR. Using this single-channel interaction poten-
tial we apply an approach introduced in Refs. [21,22] in order
to obtain the correct energies and wave functions of two atoms
in a small OL at a FR. The correct stationary and dynamic
behavior of two atoms in a double-well potential is compared
with the results of the introduced BH model. It is shown that
with only a small number of Bloch bands included the BH
model is able to accurately describe FRs of small and medium
width with coupling energies up to the depth of the OL.

The work is organized as follows. First, the analytic model
of a FR in a harmonic introduced in Ref. [8] is briefly
recapitulated. This sets the basis for the derivation of a general
BH model of interacting atoms at a FR in Sec. III. The model is
compared to the exact analytical solution in a harmonic trap in
Sec. IV, revealing that the BH model does not converge toward
the correct eigenenergies. To circumvent this problem dressed
molecular states and a dressed coupling strength of the BH
model are introduced in Sec. V on the basis of the analytically
known eigenenergies in the harmonic trap. In Sec. VI the
square-well interaction potential is discussed, which allows for
finding within a nonperturbative approach both the stationary
and the time-dependent wave functions of two atoms in a
small OL at a FR perturbed by a time-dependent acceleration
of the lattice. Finally, in Sec. VII the dressed and undressed
BH model is compared to the nonperturbative calculations. We
conclude in Sec. VIII.

II. FESHBACH RESONANCE IN A HARMONIC TRAP

Neutral atoms usually interact only at small distances r

on the order of rint ∼ 100 a.u., which is much smaller than
typical length scales of the trapping potentials on the order of
some rtrap ∼ 10 000 a.u. The collision energy in the ultracold
regime is so small that partial waves with angular momentum
l > 0 are reflected by the centrifugal barrier. Therefore s-wave
(l = 0) scattering is largely dominant. For rint � r � rtrap

the interaction leads to a phase shift ϕ of the scattering
wave function ∝ sin(kr + ϕ) which is associated with the
s-wave scattering length a(k) = − tan(ϕ)/k.

If two atoms collide, the spin states of the scattering atoms
are coupled at small distances r � rint to other spin states
in closed channels whose relative energy can be influenced
by applying an external magnetic field B. The subspace of
closed-channel spin states can support many bound states. For
certain magnetic field strengths B the energy of such a bound
state Eb(B) can be brought into resonance with the collision
energy E of the atoms, leading to a FR (see Fig. 1).

In Ref. [8] an analytic model for a FR in isotropic and
anisotropic harmonic traps was developed. Its starting point is
the relative-distance (rel.) Hamiltonian for radial momentum
l = 0 of two atoms in a spherical harmonic confinement with
frequency ω. The Hamiltonian for the radial wave function
|�(r)〉 = √

4πr|�(r)〉, where |�(r )〉 is the rel. wave function,

FIG. 1. (Color online) Mechanism of broad and narrow FRs in
the exemplary case of two atoms in isotropic harmonic confinement
with frequency ω. Top: Sketch of the relative-distance unbound
trap states and the resonant molecular bound state (RBS) whose
energy can be manipulated by an external magnetic field. Bottom:
Relative-distance energy spectrum [solutions of Eq. (12)] using the
energy-dependent scattering length a(E,Eres) (thick red lines) and the
energy-independent scattering length a(0,Eres) (black dashed line) as
a function of the resonance energy Eres = Eb + δE (black solid line).
At a narrow FR (left: abg = 0.04aho,�E = 1h̄ω) the RBS couples
only to the trap state that is in resonance, which leads to narrow
avoided crossings. At a broad FR (right: abg = 0.04aho,�E = 40h̄ω)
the RBS couples to many trap states, and the energy spectrum changes
globally with Eres. In contrast to the narrow FR the eigenenergies for
an energy-dependent and energy-independent scattering length agree
reasonably for broad resonances.

is given as

Ĥ = − h̄2

2μ

d2

dr2
+ 1

2
μω2r2 + V̂ZH + V̂int(r). (1)

Here μ is the reduced mass, V̂ZH is the Zeeman and hyperfine
energy of the atoms, and V̂int(r) the electron-spin-dependent
interaction potential.

One assumes that the rel. energy of the atoms is small
enough so that only one spin configuration (the open channel)
supports unbound states. All other spin configurations are
closed; i.e., their wave function vanishes for large interatomic
distances.
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The analytic model is based on the two-channel description
of an FR where one channel represents the unbound atoms
and the other channel the subspace of closed channels. By
introducing projectors P̂ and Q̂ onto the subspace of open
and closed channels, respectively, one arrives at the coupled
equations

(ĤP − E)|�P 〉 + Ŵ|�Q〉 = 0, (2)

(ĤQ − E)|�Q〉 + Ŵ†|�P 〉 = 0, (3)

with ĤP = P̂ĤP̂, ĤQ = Q̂ĤQ̂, Ŵ = P̂ĤQ̂, |�P 〉 = P̂|�〉,
|�Q〉 = Q̂|�〉, and E the energy above the threshold of the
open-channel interaction potential.

Since the eigenenergies in the closed channel subspace are
usually largely separated on the energy scale h̄ω of the trap,
one assumes that close to the FR |�Q〉 is simply a multiple
A of a single bound eigenstate |φb〉 with eigenenergy Eb. We
call this closed-channel state “resonant bound state” (RBS).
To first order, the energy Eb may be expanded linearly in the
magnetic field B, i.e., Eb(B) = σ (B − B0), where σ is the
relative magnetic moment that is known for many FRs [4].

Introducing the normalized solution |φE〉 of the open
channel with |�P 〉 = C|φE〉 and a background eigenstate
|φbg〉 of ĤP with eigenenergy Ebg, which is occupied for
infinite detuning |E − Eb| → ∞ one obtains the eigenenergy
equation [23]

(E − Eb)(E − Ebg) = 〈φbg|Ŵ|φb〉〈φb|Ŵ†|φE〉
〈φbg|φE〉 . (4)

In order to find simplified expressions for 〈φbg|Ŵ|φb〉,
〈φb|Ŵ†|φE〉, and 〈φbg|φE〉 one assumes that the interaction is
only relevant in some small range r < rint much smaller than
the extension of the trap rtrap. The extension of the harmonic
trap is specified by the harmonic trap length aho = √

h̄/(μω).
Denoting the long-range behavior of φE(r) by φ̃E(r) one

finds

φ̃E(r) ≡ lim
r→∞ φE(r) = AνDν(ρ), (5)

where Dν(ρ) is the parabolic cylinder function, ρ = √
2r/aho,

ν = E/(h̄ω) − 1/2, and Aν is a normalization constant.
For r � aho the linear approximation of Dν(ρ) yields [24]

φ̃E(r) = φ̃E(0) + rφ̃′
E(0) + O(r2)

= φ̃E(0)

[
1 − r

ahof (E)

]
+ O(r2) (6)

with

f (E) = 

(

1
4 − E

2h̄ω

)
2


(
3
4 − E

2h̄ω

) , (7)

where 
(x) is the Gamma function. In the range rint � r �
aho the radial wave function with scattering length a has the
form φE(r) ∝ 1 − r/a. Hence, one can directly determine the
scattering length of the radial wave function with energy E

from Eq. (6). This yields

a = − φ̃E(0)

φ̃′
E(0)

= ahof (E), (8)

which is equivalent to the result in Ref. [25].

In the spirit of a Taylor expansion we parametrize
〈φE|Ŵ|φb〉 by a linear combination

〈φb|Ŵ†|φE〉 = γ φ̃E(0) + β φ̃′
E(0)

= γ φ̃E(0)

[
1 + β

φ̃′
E(0)

γ φ̃E(0)

]

= γ φ̃E(0)

(
1 − a∗

a

)
(9)

with a∗ = β/γ . With ψb(r) = φb(r)/(
√

4πr) as the wave
function describing the RBS, then the expansion (9) can
be interpreted as approximating the coupling to the bound
state by W (r)ψb(r) ≈ √

4πγ (r − a∗)δ(�r ). For the long-range
behavior of the wave function ψE(r), i.e., limr→∞ ψE(r) =
ψ̃E(r) = φ̃E(r)/(

√
4πr), one finds

γ φ̃E(0) + β φ̃′
E(0) =

∫
drφ̃E(r)[γ δ(r) + βδ′(r)]

=
∫

dr
√

4πψ̃E(r)[γ r − β]δ(r)

=
∫

r2dr d� ψ̃E(r)
√

4πγ [r − a∗]δ(�r).

(10)

Here one uses rδ′(r) = −δ(r) and δ(r) = 4πr2δ(�r). Although
only two parameters are used, the parametrization of the
coupling is already quite general since higher order couplings
like those proportional to r2δ(�r) automatically vanish. Within
the approximation of a constant RBS γ and a∗ must be
constant. In reality, however, 〈φb|Ŵ†|φE〉 depends on the
nodal structure of the RBS and the open channel that are
both not constant for a varying magnetic field. A comparison
with complete coupled-channel calculations shows that it
suffices to introduce a background coupling strength γbg for the
parametrization of 〈φbg|Ŵ|φb〉 to account for slight variations
of the nodal structure [8]. Since the difference between γ and
γbg is relevant only for the RBS admixture but not for the
eigenenergies of the system, we can ignore it for our purposes.
Following the reasoning given in Ref. [8], the short-range
approximation (9) then gives

E − Eb = 2γ 2

ahoh̄ω

[
f (E) − a∗

aho

][
f (Ebg) − a∗

aho

]
f (E) − f (Ebg)

. (11)

The solutions of this equation determine the eigenenergies.
One can rewrite this equation in the form of a matching
condition: The scattering length a(E,Eb) due to the short-
range coupling to the RBS must be equal to the product
ahof (E) that is equal to the scattering length of the long-range
wave function φ̃E(r). This yields

ahof (E) = a(E,Eres) = abg(E)

(
1 − �E

Eres − E

)
. (12)

The right-hand side of the Eq. (12) describes the energy de-
pendence of the scattering length with background scattering
length abg and resonance width

�E = 2γ 2μabg

h̄2

(
1 − a∗

abg

)2

. (13)
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The resonance energy Eres = Eb + δE is shifted from the
bound state energy Eb by the resonance detuning

δE = abg�E

abg − a∗ . (14)

In the limit E → 0 the ratio of the resonance detuning
and the resonance width is given as δE/�E = a0/(a0 −
a∗), where a0 = limE→0 abg is the zero-energy background
scattering length. Comparing this with the same ratio derived
on the basis of a multichannel quantum defect theory for
E → 0 [26] allows for removing one free parameter a∗. One
finds

a∗ = a

(
1 + a

a − a0

)
, (15)

where the mean scattering length a is determined by the
C6 coefficient of the van der Waals interaction [27]. Using
Eqs. (13) and (15), the remaining parameter γ can be directly
related to the resonance width �E.

The function ahof (E) which describes the scattering length
of the wave function φ̃E(r) is also known for anisotropic traps
with ωy = ωz = ηωx . In this case the scattering length is given
as a = −√

πd/F(u,η) [with d,u = u(E), and F defined in
Ref. [28]] such that the eigenenergy relation

−
√

πd

F(u,η)
= abg(E)

(
1 − �E

Eres − E

)
(16)

holds.
One generally distinguishes between narrow and broad FRs

[4]. In the case of a broad FR the coupling strength to the bound
state is relatively large such that it is admixed to unbound
states in a large energy domain. If, as usual, the background
scattering length abg is small compared to the trap length
aho, the ratio of the RBS admixture |A|2 to the open-channel
admixture |C|2 for states above the first trap state is on
the order of ahoh̄ω/(abg�E) such that the RBS admixture
can be neglected if abg�E � ahoh̄ω [8]. Furthermore, also
the energy dependence of the scattering length becomes
negligible if abg�E � ahoh̄ω (see Fig. 1). Therefore, all
details of the atomic interaction apart from the value of
scattering length for E → 0 are irrelevant. This situation is
called universal. On the other hand, for narrow FRs the bound
state couples only to a narrow energy range of scattering
states or respectively to that unbound trap state which is in
resonance. As shown in Fig. 1 in a harmonic trap this leads
to narrow avoided crossings in the energy spectrum with an
energy splitting on the order of

√
abg�E/(ahoh̄ω)h̄ω [8]. At the

resonance the bound state is strongly admixed, and the energy
dependence of the scattering length cannot be neglected.

III. FESHBACH RESONANCE IN AN OPTICAL LATTICE

In order to avoid unnecessary complexity, in the following
an OL is considered, in which two directions of movement are
effectively frozen out by using strong harmonic confinement.
Nevertheless, the following discussions can be easily extended
to two- and three-dimensional lattices.

An atom of mass m in such an OL of depth VL and
periodicity d = π/k0 in the spacial direction x and transversal
harmonic confinement with frequency ω⊥ in y and z direction

is described by the Hamiltonian

HA(x,y,z) = −h̄2∇2

2m
+ VL sin2(k0x) + 1

2
mω2

⊥(y2 + z2)

(17)

Eigensolutions ofHA with quasimomentum k can be expressed
in the form

�k,n,my,mz
(x,y,z) = eikxφn,k(x) hmy

(y) hmz
(z), (18)

where φn,k are analytically known Bloch solutions with band
index n = 1,2,3, . . . and quasimomentum k of the periodic
lattice. hm is the mth solution of the one-dimensional harmonic
oscillator in the y and z direction, respectively.

In order to describe more than one particle in an OL,
interactions have to be taken into account. Since neutral atoms
interact only on short distances it is convenient to transform
the basis (18) into localized functions. This is done by the
usual transformation to Wannier functions [29]

Wi,n,my,mz
(x,y,z) = Wi,n(x) hmy

(y) hmz
(z). (19)

Here Wi,n denotes the Wannier function localized at lattice
site i and band n.

Due to the anharmonicity of the OL the relative-distance
(rel.) coordinates �r = (x,y,z)T = �r1 − �r2 and center-of-mass
(c.m.) coordinates �R = (X,Y,Z)T = (�r1 + �r2)/2 are coupled.
Therefore, Eqs. (2) and (3) for rel. motion have to be extended
to include also the COM energies of the two atoms and
the resonant molecular state. To this end �P (�r1,�r2 ) shall
describe the wave function of the two atoms in the open
channel with kinetic and potential energies HA(�r1) + HA(�r2)
interacting via a short-range potential V (r). The open channel
is coupled by some real-valued short-range coupling W (r)
to the closed-channel wave function �Q( �R,�r). One assumes
that the RBS in rel. motion has an extension small enough
not to probe the external trapping potential. Therefore, the
closed-channel wave function can be written as a product state
�Q( �R,�r) = ψb(�r )�COM( �R) of the RBS ψb(�r ) with binding
energy Eb, which is equal to the one introduced in Sec. II, and
the c.m. wave function �COM( �R). The kinetic and potential
energy HM( �R ) of the c.m. motion of a molecule with double
mass and polarizability of an atom is obtained by replacing m

by 2m, VL by 2VL, and ω2
⊥ by 2ω2

⊥ in the atomic Hamiltonian
(17). A molecular Wannier function of HM shall be denoted
as W̃i,n,my,mz

.
Consequently, two atoms in an OL at a Feshbach resonance

are described by the coupled equations(HA(�r1) + HA(�r2) + V (r) W (r)

W (r) HM( �R ) + Eb

)

×
(

ψP(�r1,�r2 )

ψb(�r)�c.m.( �R)

)
= E

(
ψP(�r1,�r2 )

ψb(�r)�c.m.( �R)

)
. (20)

As is usually done for Hubbard models the Hamiltonian
is reformulated in the basis of Wannier functions of the OL.
However, in order to include effects of higher Bloch bands
and their couplings due to the presence of the RBS the basis
is not restricted to the first Bloch band. In the following the
simplification of strong transversal confinement is considered,
i.e., the ultracold atoms occupy only the ground state of
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transversal motion. Let a
†
i,n (ai,n) be the creation (annihilation)

operator of an atom with Wannier function wi,n ≡ Wi,n,0,0 and
b
†
i,n (bi,n) the creation (annihilation) operator of the RBS with

c.m. Wannier function w̃i,n ≡ W̃i,n,0,0. The Hamiltonian in
second quantization that is equivalent to the coupled equations
(20) expanded in the Wannier basis is given as

Ĥ =
∑
i,j

∑
n,m

〈wi,n|ĤA|wj,m〉a†
i,naj,m

+ 1

2

∑
i,j,k,l

∑
n,m,p,q

〈wi,nwj,m|V̂|wk,pwl,q〉a†
i,na

†
j,mak,pal,q

+
∑
i,j

∑
n,m

(〈w̃i,n|ĤM|w̃j,m〉 + Eb)b†i,nbj,m

+ 1√
2

∑
i,j,k

∑
n,m,p

〈wi,nwj,m|Ŵ|w̃k,p ψb〉

× (a†
i,na

†
j,mbk,p + H.c.). (21)

Note the factor 1/
√

2 before the atom-molecule coupling,
which has to be included to ensure that the matrix elements of
the Hamiltonian are equal in first and second quantization [30].

We want to emphasize that Eq. (20) and thus the second
quantized Hamiltonian (21) are valid only if not more than
two atoms interact. If the probability of finding three or more
atoms within the interaction range cannot be neglected, effects
such as three-body losses or the appearance of Efimov states
are not correctly reproduced. The same is, however, also true
for ordinary Hubbard models for ultracold atoms and does
not hinder the general applicability of the approach to model
systems with a sufficiently small filling rate.

The following simplifications and approximations are
introduced:

(1) The Hamiltonians HA and HM do not couple different
Bloch bands, since the Wannier functions wi,n and w̃i,n are
superpositions of eigenstates of HA and HM that belong to
the same band. For example, for HA holds 〈wi,n|ĤA|wj,k〉 =
〈wi,n|ĤA|wj,n〉δnk .

(2) Only next-neighbor coupling is considered, i.e.,∑
i,j

∑
n

〈wi,n|ĤA|wj,n〉a†
i,naj,n

+
∑
i,j

∑
n,m

(〈w̃i,n|ĤM|w̃j,m〉 + Eb)b†i,nbj,m

≈
∑

i

∑
n

εna
†
i,nai,n −

∑
〈i,j〉

∑
n

Jna
†
i,naj,n

+
∑

i

∑
n

(En + Eb)b†i,nbi,n −
∑
〈i,j〉

∑
n

Jnb
†
i,nbj,n

where 〈· · ·〉 below the sums denotes summation over
nearest-neighbor lattice sites, εn = 〈w1,n|ĤA|w1,n〉, En =
〈w̃1,n|ĤM|w̃1,n〉, Jn = −〈w1,n|ĤA|w̃2,n〉, and Jn =
−〈w̃1,n|ĤM|w2,n〉.

(3) The interaction potential is replaced by the Fermi-

Huang pseudopotential V (r) → 4πh̄2abg

m
δ(�r) ∂

∂r
r that repro-

duces the same background scattering length abg as the
full open-channel interaction potential. For small background

scattering length only on-site interaction is taken into account,
i.e., ∑

i,j,k,l

∑
n,m,p,q

〈wi,nwj,m|V̂|wk,pwl,q〉a†
i,na

†
j,mak,pal,q

≈
∑

i

∑
n,m,p,q

Un,m,p,qa
†
i,na

†
i,mai,pai,q

with Un,m,p,q = 〈w1,nw1,m|V̂|w1,pw1,q〉 = 4πh̄2abg

m

∫
dx dy

dz w0,n w0,m w0,p w0,q .
(4) The coupling to the molecule happens only at short

distances, i.e., on the length scale of the lattice and the
transverse harmonic confinement; thus one can replace

W (�r )ψb(�r ) → gδ(�r ), (22)

where the coupling strength g has to be adapted to match the
behavior of the system under consideration. Including only
next-neighbor coupling leads to the simplification∑

i,j,k

∑
n,l,p

〈wi,nwj,l|Ŵ|w̃k,p ψb〉(a†
i,na

†
j,lbk,p + H.c.)

≈
∑

〈i,j,k〉

∑
n,l,p

g(i−k,j−k)
n,m,p (a†

i,na
†
j,lbk,p + H.c.),

with

g
(i,j )
n,l,p = g

∫
dx dy dz wi,n wj,l w̃0,p. (23)

Due to the symmetry of the Wannier functions the on-site
coupling obeys the selection rule

g
(0,0)
n,l,p = 0 for n + l + p even.

Employing the above simplifications and approximations
the BH Hamiltonian reduced to the first N Bloch bands is
given as

ĤBH =
∑

i

N∑
n=1

εn a
†
i,nai,n −

∑
〈i,j〉

N∑
n=1

Jn a
†
i,naj,n

+ 1

2

∑
i

N∑
n,l,p,q=1

Un,l,p,q a
†
i,na

†
i,lai,pai,q

+
∑

i

N∑
n=1

(En + Eb) b
†
i,nbi,n −

∑
〈i,j〉

N∑
n=1

Jn b
†
i,nbj,n

+ 1√
2

∑
〈i,j,k〉

N∑
n,l,p=1

g(i−k,j−k)
n,m,p (a†

i,na
†
j,lbk,p + H.c.).

(24)

IV. PROBLEM OF REPRESENTING A DELTA-LIKE
COUPLING WITHIN THE BOSE-HUBBARD MODEL

The coupling of the open channel to the bound state as
described by Eq. (22) seems to be a crude approximation.
Indeed, as discussed in Sec. II, a more general form of
a short-range coupling to the bound state is of the form
W (�r )ψb(�r ) = √

4πγ (r − a∗)δ(�r ). While one can associate
g with

√
4πγ a∗ the coupling

√
4πγ rδ(�r ) automatically

vanishes for the chosen single-atom basis states. In fact, it
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vanishes for any basis that conforms to a scattering length
a = 0. Hence, the presented BH model can conform only to a
FR with γ = 0, a∗ → ∞, and γ a∗ = const. This is the case
only for a0 = a [see Eq. (15)] and results according to Eqs. (13)
and (14) in a resonance width �E = 2μ

h̄2
(γ a∗)2

abg
= 2μg2

4πh̄2abg
and

a resonance detuning δE = 0. For FRs with γ �= 0 one
can easily account for the altered resonance parameters by
introducing an effective coupling strength and an effective
bound-state energy,

g → geff =
√

4πh̄2abg�E

2μ
(25)

Eb → Eb,eff = Eres = Eb + δE (26)

that lead to the correct resonance width �E and resonance
energy Eres. In the following the index “eff” will be suppressed
keeping however in mind that g and Eb are not equivalent to
the physical coupling strength and the physical energy of the
RBS.

In Fig. 2 the energy spectra in an anisotropic harmonic
trap of several FRs of different widths are compared to the
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FIG. 2. (Color online) Energy spectrum as a function of the
resonance energy Eres for η = 4, abg = 0.04aho, and from top to
bottom �E = (1,4,16)h̄ω. This results in the coupling energies
χ [see Eqs. (22) and (27)] given in the graphs. The analytic
eigenenergies (dots) obtained by Eq. (16) are compared to the
eigenenergies of the BH model (lines) for two Bloch bands (left
column) and four Bloch bands (right column) included. Including
only two Bloch bands (left column) the analytic eigenstate with
energy ≈ 12h̄ω is not reproduced by the BH model.

corresponding result of the effective BH model. The trapping
frequencies are ωy = ωz = ηω, with η = 4 and ω the trapping
frequency in x direction. In the harmonic trap the Wannier
functions of the BH model are replaced by harmonic-oscillator
eigenfunctions. On the left side two Bloch bands are included,
and the RBS appears in two different c.m. states while the
unbound atoms can occupy three different trap states [(i) both
atoms in the first band at 9h̄ω, (ii) one atom in the first and one
in the second band at 10h̄ω, and (iii) two atoms in the second
band 11h̄ω]. On the right side four Bloch bands are included
with correspondingly more molecular states and trap states.

As a measure for the coupling strength the energy

χ = g
(0,0)
1,1,1 (27)

is introduced [see Eq. (23)]. The avoided crossing between the
lowest bound state and the first trap state has a splitting energy
of ≈ 2χ .

For a relatively narrow FR with an effective coupling
strength χ = 0.4h̄ω the agreement between the BH model and
the analytic result is very good independently of the number
of Bloch bands included. For the broader FRs with χ = 0.8h̄ω

and χ = 1.6h̄ω one can make two observations: (i) Trap states
(i.e., states above the bound state threshold of 9h̄ω) quickly
approach the analytic results for an increasing number of Bloch
bands. (ii) The disagreement between analytic and BH results
of the bound states does not decrease with the number of Bloch
bands.

Obviously, the variational principle does not hold for the
bound state as an insufficient basis leads to an energy lower
than the correct bound state energy. Moreover, by increasing
the basis the already incorrect bound-state energy becomes
even lower and the disagreement to the correct result increases.
Though less severe, the same problem also appears for trap
states. For example, the first trap state in the last row in Fig. 2
lies below the correct energy if four Bloch bands are included.

The reason for this insufficiency of the basis to conform
to the behavior of a delta-like coupling is related to the
problem of a missing coupling of the form

√
4πγ rδ(�r ): the

two-particle basis states are a = 0 wave functions. However,
a = 0 basis functions can represent the full wave function only
for r > 0 but not for r → 0 (see Fig. 3). While for ordinary
interaction potentials the value of the wave function at r = 0 is
irrelevant, for zero-range potentials it is decisive. The problem
is especially severe for the open-channel bound state, which
appears for positive scattering lengths. For E → −∞ one has
|φ̃E(0)| ∝ (−E)1/4 making its representation by a = 0 basis
functions for decreasing energy more and more problematic.

For weak coupling the problem is less severe as eigenstates
that differ significantly from the background trap states are
predominantly bound states with different c.m. excitations,
which are well reproduced by the BH model. For strong
coupling, however, the bound state is admixed to many states
in the spectrum (see Sec. II). Since the bound-state admixture
for a certain eigenstate is thus lower, a good representation
of the open-channel wave function is important also for large
scattering lengths.

The described problem does not only arise when using non-
interacting a = 0 basis states. For any finite expansion of the
radial wave function φexp(r) = ∑

cnφn(r) in a superposition
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FIG. 3. (Color online) The radial wave function φ̃E(r) in a
spherical harmonic trap introduced in Eq. (5) is compared for the
rel. energy E = 2.5h̄ω to its expansion φexp = ∑N−1

n=0 〈φn|φE〉φn(r)
to different orders N , where φn is the radial wave function of
the noninteracting system with radial momentum l = 0 and energy
(2n + 3

2 )h̄ω. Since all noninteracting radial basis functions are zero
for r = 0 the expansion cannot reproduce the behavior of φ̃E(r) for
r → 0. This is important, since the coupling to the bound state is
proportional to φ̃′

E(0) or φ′
exp(0), respectively.

of basis functions with a specific scattering length ab [i.e.,
ab = −φn(0)/φ′

n(0)] the scattering length of the expansion
yields

aexp = −φexp(0)

φ′
exp(0)

=
∑

cnabφ
′
n(0)∑

cnφ′
n(0)

= ab. (28)

Hence, the wave function φexp(r) cannot adapt to a change
of the scattering length induced by a short-range coupling.
Especially, since the scattering length at a FR is energy
dependent these expansions cannot reproduce the correct
eigenenergies and eigenstates.

V. DRESSING OF COUPLING STRENGTH
AND BOUND-STATE ENERGY

To circumvent the problem of the wrong representation of
a zero-range coupling one can replace it by a finite-range cou-
pling. To this end one usually considers the Fourier transform
of the problem and regularizes the delta-like interaction by
introducing a high-momentum cutoff �. Thereupon the cou-
pling parameter is renormalized [31]. Taking the limit �→ ∞
the finite-range coupling converges towards a zero-range
coupling. However, for an interaction with a range of d/N

where d is the lattice spacing more than N Bloch bands have
to be included to converge the energies [7].

Here we want to take a different approach with no need to
include more Bloch bands to reproduce the correct bound-state
energies. Provided with the analytic solution in the harmonic
trap a dressed bound state is introduced, which reproduces the
correct energy spectrum in the harmonic trap at least in the
important energy range of the first Bloch band. We use the fact
that the full bound state (the combination of the closed-channel
and open-channel bound state) falls off rapidly for increasing
internuclear separation. Hence, the bound state does hardly
probe the anharmonic parts of the potential, and the dressed
bound state can be equally used for (anharmonic) OLs.

More concretely, the dressed bound state is introduced in
the following way: The RBS in the first band (for which the
c.m. wave function is a Wannier function of the first band)
couples predominantly to two atoms in the first band leading
to the lowest avoided crossing in the spectrum. The two
corresponding eigenenergies are given by a sum of the lowest
c.m. energy Ec.m.

1 [Ec.m.
n = h̄ω(n − 1

2 + η)] and the two lowest
solutions E1,E2 of the rel. motion eigenenergy relation (16)
which depend on the bound-state energy Eb = Eres. In order
to match the energies of this avoided crossing the bound-state
energy Eb and the coupling strength g are replaced by dressed
parameters Eb → E

(1)
d (Eres) and g → gd . The two parameters

are determined by a least square fit to the energies E1 + Ec.m.
0

and E2 + Ec.m.
0 .

To match the energies E1 + Ec.m.
n with n = 2,3, . . . of

bound states in higher Bloch bands, dressed bound-state
energies E

(2)
d (Eres),E

(3)
d (Eres), . . . are introduced, which are

also determined by a least square fit. The upper branches
of the avoided crossings with bound states in higher Bloch
bands lay above the first Bloch band. Therefore, their correct
representation is less relevant and we do not need to introduce
also band-dependent dressed coupling strengths.

In Fig. 4 the dressed energies E
(1)
d ,E

(2)
d ,E

(3)
d ,E

(4)
d and gd and

the corresponding corrected spectrum are shown for the four-
band BH model with abg = 0.04aho and �E = 16h̄ω (same
parameters as for right bottom graph in Fig. 2). Evidently, the
dressing of the bound states becomes relevant for a resonance
energy Eres < 5 h̄ω but is already visible for Eres < 10 h̄ω.
Since only a band-independent dressed coupling strength was

FIG. 4. (Color online) Results of the dressed BH model for four
Bloch bands with abg = 0.04aho and �E = 16h̄ω. Top: Dressed
bound-state energies and dressed coupling strength as a function of
Eres. Bottom: Comparison of the analytic energy spectrum (dots) with
the energies of the dressed BH model (solid lines) and the undressed
BH model (dotted lines).
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FIG. 5. (Color online) Energy spectrum of two atoms in an
OL with lattice depth VL = 5Er = 1.1h̄ω consisting of three lattice
sites with periodic boundary conditions. Excitations in transversal
direction are frozen out by choosing transversal trapping frequencies
ωy = ωz = 3.8ω, where ω is the frequency of the harmonic approxi-
mation of a lattice site in the x direction. The resonance parameters are
abg = 85 a.u. = 9.0 × 10−3d , and �E = 24.2h̄ω which corresponds
to a coupling strength of χ = 1.66 h̄ω = 1.48 VL (see also the right
graph in Fig. 9 with the same lattice parameters and resonance
parameters). The comparison of the eigenenergies of the dressed
BH model (solid lines) and the undressed BH model (dashed lines)
each with four Bloch bands included shows that again both models
disagree especially for the bound states, while the differences for the
trap states are small. The inset shows a magnification of the spectrum
close to the crossing of excited bound states with the lowest Bloch
band.

introduced, the repulsive branches above the first Bloch band
with an energy above 10h̄ω are not fitted to the exact results.
Correspondingly, slight deviations between the exact energies
and the dressed BH energies appear for these states, while the
first repulsive branch is correctly reproduced.

The introduced dressed parameters can now be used to
determine the energy spectrum of two atoms in an OL. In
Fig. 5 the spectrum of the dressed and undressed BH model
of two atoms in a small OL consisting of three lattice sites are
compared for a coupling energy of χ = 1.66 h̄ω = 1.48 VL. In
contrast to the purely harmonic trap, the energies of the bound
states and the trap states split due to tunneling. If the molecular
bound states are not in resonance, i.e., for Eres < 0, the trap-
state energies form bands of increasing widths around 8.4h̄ω,
9.1h̄ω, 9.8h̄ω, and 10.4h̄ω. For resonance energies Eres > 0
the bound states cross with the trap states leading to a plethora
of avoided crossings. In the ultracold regime especially the
avoided crossings with the first band are of relevance. These
appear due to the next-neighbor coupling of the molecular
state with the atomic states [32]. As shown in the inset of
Fig. 5 the width of these avoided crossings decreases with the
c.m. excitation energy of the RBS. The comparison between
the dressed and the undressed BH model shows that also in
the OL the energies disagree especially for the bound states,
while the energy differences for the trap states are small.

VI. NONPERTURBATIVE DETERMINATION
OF STATIONARY AND DYNAMICAL STATES

In the following the results of the BH model shall be
compared to nonperturbative calculations for two atoms at
a FR in an OL consisting of two lattice sites. In order to do so
an approach described in [21] is used, which allows for finding
the stationary solutions of the two-body problem with arbitrary
isotropic single-channel interaction potentials. On the basis of
the stationary solutions the method described in Ref. [22] is
used to determine the time-dependent wave function during a
perturbation of the lattice potential.

Since the lattice potential couples rel. and c.m. motion and
the interaction couples the motion in the x, y, and z direction
all six coordinates of the problem are coupled. An extension
to the coupling to an additional channel describing the c.m.
and rel. motion of the molecular bound state would make the
solution very cumbersome. Instead, the freedom of the choice
of the interaction potential is used to realistically mimic a
two-channel problem by a square-well interaction potential.
The potential supports bound states that are coupled by a
barrier to the scattering states. In the following it is shown that
this potential leads to an energy dependence of the scattering
length, which is in very good agreement with the one of a
two-channel description in Eq. (12). This is already sufficient
to realistically mimic a FR since, as shown in Sec. II, the
energy dependence of the scattering length fully determines
the energy spectrum.

The square-well potential is defined as

V (r) =

⎧⎪⎨
⎪⎩

−V0 for r � r0

+V1 for r0 < r � r1

0 elsewhere

(29)

with V0,V1 > 0 (see Fig. 6). This potential has also been used
to study effects of the energy dependence of the scattering
length on the BEC-BCS crossover [33]. For sufficiently large
V0 the potential supports a bound state behind a potential
barrier of height V1 and width r1 − r0. An atom pair that
collides with an energy E = h̄2k2/(2μ) scatters resonantly,
if E is close to the bound-state energy.

r0 r1
r

�V0

V1

V�r�

Eb Ecoupling

FIG. 6. (Color online) Sketch of the square well potential (thick
blue). The resonant character of the potential is due to the coupling of
a bound state with energy Eb (gray dashed) to an unbound state
with energy E (gray dashed). The according wave functions are
sketched by black thin lines. For Eb ≈ E the scattering length changes
resonantly.
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Introducing dimensionless variables ρ = r/r1, d = r0/r1,
κ = kr1, v0 = V0/E0, and v1 = V1/E0 with E0 = h̄2

2μr2
1

the
solution of the Schrödinger equation for E > 0 is given as

φ(ρ) =

⎧⎪⎨
⎪⎩

C sin(k0ρ) for ρ < d

Aek1ρ + Be−k1ρ for d � ρ < 1

sin (κρ + ϕ(k)) elsewhere,

(30)

with k0 =
√

v0 + κ2 and k1 =
√

v1 − κ2.
In the case of pure s-wave scattering one has κ � 1 so

that one can make, e.g., the replacements sin(κ) → κ and
cos(κ) → 1. Eliminating A,B, and C by demanding that the
wave function is continuous and differentiable the scattering
length can be obtained as

a(κ2)

r1
≡ − tan ϕ

κ
= 1 + εres

εres − κ2
(31)

with

εres = k1
α + β

α − β
, (32)

α = e2dk1 [k0 cos(dk0) − k1 sin(dk0)], (33)

β = e2k1 [k0 cos(dk0) + k1 sin(dk0)]. (34)

From the functional behavior of Eq. (31) one can determine
the corresponding parameters of the FR, i.e., Eres, �E, and
abg. The resonance positions of a(κ2) are given by the roots of
κ2 = εres(κ2). The smallest root shall be called κ2

res = ε(κ2
res).

Hence, the resonance position evaluates to

Eres = E0κ
2
res. (35)

According to Eq. (12) the scattering length is zero if E =
Eres − �E. Let κ0 the solution of 1 + εres(κ0) = 0 that is
closest to κres then

�E = E0
(
κ2

res − κ2
0

)
. (36)

In order to determine the value of the background scattering
length abg, εres is expanded linearly in κ2 around the resonance
position, yielding

εres(κ
2) ≈ κ2

res + δ
(
κ2 − κ2

res

)
(37)

with δ = ∂εres

∂(κ2)

∣∣∣∣
κ=κres

. (38)

For κ → κres the scattering length evaluates according to
Eqs. (31) and (37) to

a(κ2)

r1
=

1
δ−1

(
κ2

res + 1
)

κ2
res − κ2

. (39)

By comparing with the behavior of Eq. (12) for E → Eres,
a = abg�E/(Eres − E), one finds

abg = r1
Eres + E0

�E(δ − 1)
. (40)

For nonresonant background scattering the wave function
simply falls off exponentially for r < r1. Therefore abg � r1.
Since the potential mimics an s-wave resonance, the choice
for r1 is limited to kr1 � 1 and for energies E ≈ h̄ω to
r1 � aho, allowing only for rather small positive background
scattering lengths. On the other hand, one can freely choose

0 5 10 15 2010�3Κ2
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FIG. 7. (Color online) Energy-dependent scattering length of the
square-well potential (dots) and approximation according to Feshbach
theory (thin red) for v1 = 70 and r0/r1 = 0.6.

Eres and �E by an appropriate choice of the parameters v0

and v1, respectively. In order to also control the background
scattering length one could add another square well with
V < 0 in front of the potential in Eq. (29). However, here
the focus lies on the coupling to the RBS and not on the value
of abg.

In Fig. 7 a(κ2) is shown for an exemplary square-well
potential with d = 0.6 and v1 = 70. The values of a(κ2)
according to Eq. (31) and its approximation

a = abg

(
1 − �E

Eres − E

)
(41)

with the parameters according to the equations (35), (36),
and (40) agree almost perfectly, showing that the square-well
potential reproduces very well the behavior of a FR.

VII. COMPARISON OF BOSE-HUBBARD MODEL
TO NONPERTURBATIVE CALCULATIONS

A. Energy spectrum

Equipped with the possibility to model FRs with a
single-channel potential we can apply the ab initio approach
introduced in Ref. [21] to determine the energy spectrum of
two atoms at an FR in a small OL with a lattice spacing of
d = 500 nm. Within the numerical approach one can expand
the OL potential in all directions to some arbitrary order.
Again, to avoid unnecessary complexity the OL is expanded to
harmonic order around y = z = 0 in y and z direction and to
12th order around x = π/2 in x direction. The lattice depth in
y and z direction is chosen sufficiently large (ωy = ωz = 3.8ω

where ω is the trap frequency of the harmonic approximation
of the lattice wells in x direction) such that excitations in these
directions can be ignored. The resulting double-well potential
in x direction is shown in Fig. 8.
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FIG. 8. (Color online) Double-well potential (thick, solid) used
in the ab initio calculations and corresponding full lattice potential
VL sin2(k0x) (thick, dashed). The Wannier functions of the atoms in
the BH model are depicted for bands one to four (red solid, green
dashed, blue dotted, and orange dot-dashed) alternately for the right
and the left well. Already above the first band they clearly probe
regions where the double-well potential significantly differs from the
full lattice potential. Horizontal lines mark the on-site energies of
bands one to four.

While this system is relatively simple, it features all
important properties of the OL: the atoms and molecules
can tunnel from one well to the other and also on-site and
nearest-neighbor interaction is present. Therefore, any flaw of
the BH models regarding the interaction of atoms in an OL
should become apparent in the double well.

For large lattice depths the spectrum of the double well
converges to the one of two uncoupled harmonic traps. In
order to probe the accuracy of the BH model a relatively small
lattice depth of VL = 5Er = 1.1h̄ω is chosen in the x direction.

For this low lattice depth excited states in higher Bloch
bands probe parts of the potential that significantly deviate
from an ordinary lattice potential VL sin2(k0x). Therefore, the
correct single-atom states deviate significantly from ordinary
Wannier functions. This insufficiency can be corrected for by
replacing the ordinary Wannier basis by a basis constructed
from single-atom eigenstates in the double well. For each
band p the left and right Wannier functions are constructed
by superpositions of the nth symmetric eigenstate with energy
E(even)

p and the nth antisymmetric eigenstate with energy E(odd)
n .

The corresponding atomic Wannier functions of the first four
Bloch bands are shown in Fig. 8. As one can see they are
neither symmetric nor antisymmetric so that any selection rule
for the BH parameters (such as that of the coupling between
the open and the closed channel) of the OL does not apply. The
onsite energies are given as εn = 1

2 (E(odd)
n + E(even)

n ) and the
hopping parameters as Jn = 1

2 (E(odd)
n − E(even)

n ). Furthermore,
to be sure that all errors are solely due to deficiencies
of the representation of the Feshbach resonance in the
BH model also next-neighbor (background) interaction is
included.

In Fig. 9 the spectrum of the ab initio calculation for three
different coupling strengths is compared to the corresponding
dressed and nondressed BH spectrum. In contrast to Fig. 5 the
trap states do not appear in energy bands due to the reduced
size of the system. The bound states appear as duplets with
one symmetric and one antisymmetric c.m. excitation in the x

direction. Again, excited bound states in higher Bloch bands
are able to couple to the first trap state (lowest horizontal
line) by next-neighbor coupling; i.e., the bound state couples
to a state of one atom in the same well and one in the
neighboring well. For symmetry reasons only the lower bound
state of each dublet can couple to the lowest symmetric trap
state [32].
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FIG. 9. (Color online) Spectra of the ab initio calculations (dots) and the BH model with usage of the dressed bound-state energies and
coupling (lines). Also shown are the energies of the undressed BH model (dotted lines). The ab initio calculations include the representation
of bound states with many COM excitations. Not all of these bound states are present in the BH model that only includes four Bloch bands.
For example, in the right graph all ab initio energies for 7.4h̄ω < E < 8.4h̄ω and Eres < 0 are not covered by the BH model. From left to right
the parameters abg = (88,87,85) a.u. = (9.3,9.2,9.0) × 10−3d , �E = (1.4,4.9,24.2)h̄ω are chosen. This corresponds to a coupling strength of
χ = (0.41,0.75,1.66) h̄ω = (0.36,0.67,1.48) VL. The red shading marks the energy of the repulsively interacting atoms within a single-band
approximation. From left to right the energy of this state is significantly influenced by the bound state in the second, third, and fourth Bloch
band demonstrating that for stronger coupling bound states in more Bloch bands have to be included to obtain accurate eigenenergies.
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FIG. 10. (Color online) Zoom on the resonance of the bound
state in the second Bloch band (right circle) and third Bloch band
(left circle) with the state of two separated atoms in the ground state
for χ = 0.75h̄ω. The splitting energies of the left resonance (0.04h̄ω)
and that of the right resonance (0.06h̄ω) are well reproduced by the
dressed BH models.

Figure 10 shows a detailed view onto two of these avoided
crossings around E = 8.4h̄ω for a resonance energy of Eres =
2.9h̄ω and Eres = 3.9h̄ω. Clearly, the splitting of the avoided
crossing and hence also the next-neighbor coupling strength is
well reproduced by the dressed BH model.

Given the large degree of anharmonicity of the lattice
potential the agreement between the ab initio spectra and BH
spectra in Figs. 9 and 10 is very good. The dressed bound-state
energies are obtained from a harmonic approximation of the
two lattice sites. Already in the second Bloch band the potential
and therefore the states and energies differ significantly from
their harmonic counterparts (see Fig. 8). Nevertheless, the
dressed bound-state energies and the dressed coupling strength
lead to a drastic improvement of the undressed results in all
three cases shown in Fig. 9. In general, the dressed parameters
should lead to an improvement as long as the couplings of
the bound states to trap states that probe anharmonic parts of
the potential, i.e., with energies above E = VL, is negligible.
Approximately, for χ � VL this is not the case any more
since at the avoided crossing of the lowest bound state with
the lowest trap state an energy regime above VL is entered.
Indeed, considering the spectrum with the largest coupling
energy χ = 1.48VL = 1.66h̄ω, the lowest bound-state energy
of the BH model is slightly lower than that of the ab initio
calculations. But still the disagreement is surprisingly small.
As one can expect the correction of the bound-state energies in
the third and fourth Bloch band is less accurate than that of the
first and second Bloch band. Already for the lower coupling
energies of χ = 0.36VL = 0.41h̄ω and χ = 0.67VL = 0.75h̄ω

small disagreements between the corresponding eigenenergies
of the ab initio calculations and the corrected BH model
appear.

The coupling of the two atoms in the lowest Bloch band
to the bound state in the lowest Bloch band leads to the
appearance of both attractively and repulsively interacting
states. The energy of the repulsively interacting state is marked
by the red shading in Figs. 9 and 10. As one can see for larger
and larger coupling energy χ this state is strongly influenced

by bound states in higher and higher Bloch bands. If this
energy range shall be correctly reproduced this sets a lower
limit for the number of Bloch bands that must be included
in the BH model. In Fig. 10 one can see that the dressed
BH model reproduces correctly the energy of the repulsively
interacting state while the undressed model underestimates its
energy.

As discussed above, the dressed BH model reproduces
accurately the correct eigenenergies up to coupling energies
χ ∼ VL. This corresponds usually to small up to medium FRs.
As discussed in Sec. II a FR in a harmonic trap is broad
if abg�E � ahoh̄ω. Since χ is a measure for the energy
splitting of the avoided crossing of the lowest bound state
with the first band, it is comparable to

√
abg�E/(ahoh̄ω)h̄ω

in the harmonic trap. Therefore, a broad resonance requires
[χ/(h̄ω)]2 � 1. Since the BH model is valid for χ ∼ VL it can
only accurately describe broad FRs in a very deep lattice with
(VL/(h̄ω))2 = VL/(4Er ) � 1.

0 d
x Position

E
ne
rg
y

(a)

(b)

(c)

(d)

FIG. 11. (Color online) Sketch of the dynamical behavior while
accelerating (inclining) the double-well. (a) The initial state consists
of separated atoms (red disks) in the ground state of the left and right
well. The four molecular states in the c.m. ground state (blue double
disk below red disks) and in the first excited c.m. state (blue double
disk above red disks) are not in resonance. (b) Upon inclining the
potential the energy of an excited molecular state in the left well (dark
blue) comes in resonance with the energy of the separated atoms.
The molecular state is occupied and the c.m. of the system moves
to the left. (c) After a further inclination the energy of the excited
molecule in the left well comes into resonance with the ground-state
molecule in the right well. By occupying this state the c.m. of the
system moves to the right. (d) Finally, the molecule on the right well
comes into resonance with the initial state of two separated atoms
and the c.m. of the system moves again to the left.

052712-11



PHILIPP-IMMANUEL SCHNEIDER AND ALEJANDRO SAENZ PHYSICAL REVIEW A 87, 052712 (2013)

However, for broad FRs all details of the interaction apart
from the value of the scattering length for E → 0 are irrelevant
(see Sec. II). In this situation there is not required to explicitly
include the bound state in the BH model. Instead, corrected
BH models like the one introduced in Ref. [5] already provide
accurate results.

B. Time-dependent manipulations

In the following it is studied how well the BH model can
predict the dynamic behavior of the system under the influence
of some time-dependent perturbation

V̂pert(t) =
M∑
i=1

vpert(�ri )f (t),

which acts on each of M identical atoms in the same way.
Normally, any external potential vpert(�ri) is approximately

constant on the length scale of the bound state. Hence, the
perturbation cannot couple the orthogonal closed and open
channel states. The matrix elements of the perturbation of the

closed channel evaluate to

〈ψbw̃i,n|
M∑
i=1

vpert(�ri )|w̃j,mψb〉

=
∫

d �R
∫

d�r |ψb(�r )|2w̃i,n( �R)

[
vpert

(
�R + 1

2
�r
)

+ vpert

(
�R − 1

2
�r
)]

w̃j,m( �R)

≈
∫

d �R w̃i,n( �R)
∫

d�r |ψb(�r )|2 2vpert( �R)w̃j,m( �R)

= 2〈w̃i,n|v̂pert|w̃j,m〉.
Hence, in second quantization the perturbation is expressed as

V̂pert(t) = f (t)

(∑
〈i,j〉

N∑
n,m=1

〈wi,n|v̂pert|wj,m〉a†
i,naj,m

+ 2
∑
〈i,j〉

N∑
n,m=1

〈w̃i,n|v̂pert|w̃j,m〉b†i,nbj,m

)
.

As usual, only next-neighbor coupling and on-site coupling
are considered, and the basis is restricted to the first N Bloch
bands.

FIG. 12. (Color online) Dynamic behavior of two separated atoms in the ground state of the double-well potential during an inclination of
the lattice for different coupling energies χ and resonance energies Eres shown in the graphs. At t = tend = 2000h̄/Er each atom experiences
a perturbation of Ŵ = 0.7h̄ωx̂/d , which suffices to bring both the first and second bound state into resonance (see Fig. 11). The projection of
the time-dependent wave function |�(t)〉 onto the eigenstates |n〉 of the unperturbed system is shown in (a), (b), and (c). The corresponding
upper graphs show the results of the ab initio calculations, and the lower graphs the result of the dressed BH model using both times the same
color coding as in Figs. 9 and 10. In (d), (e), and (f) the mean c.m. position 〈�(t)|X̂|�(t)〉 is shown for the ab initio results and the dressed and
undressed BH model. The insets show a magnified region of the beginning of the fast oscillations between 1200h̄/Er and 1400h̄/Er .
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In the following, the case of a linear perturbation with
increasing strength,

V̂pert(t) =
N∑

i=1

x̂iλt,

is considered, which corresponds to an increasing acceleration
of the lattice [22]. The dynamical behavior due to V̂pert is
governed mainly by two effects: (i) The linear perturbation
leads to a coupling between Wannier functions of odd and even
symmetry, i.e., between bands with odd and even quantum
numbers. (ii) The energy of the states at each lattice site is
shifted proportionally to the product λdj and thus depends on
the site number j .

Of course, the dynamical behavior also strongly depends
on the value of the resonance energy Eres. For the dynamical
studies a resonance energy is chosen such that an inclination
leads to the resonant next-neighbor coupling of two separated
atoms in the ground state to a bound state in the first and
second Bloch band. The corresponding dynamical behavior
is sketched in Fig. 11. As one can see the c.m. movement of
the system upon accelerating the lattice depends crucially on
the resonance energy, i.e., the energy of the RBS. Depending
on the bound state and its c.m. excitation that comes into
resonance the system can move against the direction or in
direction of the acceleration. A precise representation of the
system is thus necessary to predict the mobility behavior of
two atoms at a Feshbach resonance.

Figure 12 shows the projections |〈n|�(t)〉|2 of the time-
dependent wave functions |�(t)〉 onto the eigenstates |n〉
of the unperturbed system for a slow inclination with λ =
0.0003Er

h̄
h̄ω
d

. If the perturbation would be suddenly switched
off, the projections give the probability of finding the system
in the corresponding eigenstate. For the same three coupling
energies as shown in Fig. 9 the qualitative agreement between
the result of the ab initio approach (upper row) and the
dressed BH model (middle row) is very good. As is visible
in Fig. 11, initially the bound state in the second Bloch band is
slowly occupied. After t ≈ 1300h̄/Er this bound state gets into
resonance with the bound state in the first Bloch band, which
is then occupied. After t ≈ 1500h̄/Er the main occupation
moves back to the initial state. Additionally to the behavior
described in Fig. 11 the inclination leads to a strong coupling
of the bound states in the first and second Bloch bands on each
lattice site. Due to the large energy separation of these states
this coupling leads to fast oscillations of the population of the
eigenstates.

In order to examine the quantitative agreement between
the ab initio and dressed BH results the time-dependent c.m.
motion of the system 〈�(t)|X̂|�(t)〉 has been determined.
As one can see in the lower row in Fig. 11 the quantitative
agreement is very good for the smallest coupling energy
χ = 0.41h̄ω. For the larger coupling energies especially
the fast oscillations appearing after t ≈ 1200h̄/Er are less
accurately reproduced by the dressed BH model. The phase
shift and altered frequency of the oscillations is mainly due to
a small underestimation by about 1% of the coupling strength
between the stationary eigenstates within the dressed BH
model. In contrast to the dressed BH model, the undressed BH
model leads even for small coupling energies to a dynamical

behavior significantly disagreeing from the one of the ab initio
calculations.

VIII. CONCLUSION

We have introduced a Bose-Hubbard model with dressed
bound states and a dressed coupling strength, which can be
used to accurately determine the stationary and dynamical
wave functions of two atoms in an optical lattice at a
Feshbach resonance. The dressed parameters, which can
be straightforwardly obtained from the analytically known
solution of a Feshbach resonance in a harmonic trap, allow
one to obtain an accurate solution with including only a small
number of Bloch bands. The dressing avoids the problem
that the eigenenergies, obtained by a finite expansion of the
solution in single-atom basis states, do not converge to the
correct eigenenergies in the presence of a delta-like coupling
to the bound state. Hence, the introduced method permits us
to determine accurate solutions without a regularization of
the potential and a numerically demanding expansion of the
solution, e.g., in Bloch functions or Wannier functions of many
Bloch bands. The solution of this problem should be relevant
to many approaches that seek to describe strongly interacting
atoms via a multiband Hubbard model.

Comparisons to eigenenergies and time-dependent wave
functions obtained from a nonperturbative approach have
shown that the method is accurate as long as the coupling en-
ergy is smaller or comparable to the lattice depth. Furthermore,
we have described a possibility to realistically mimic FRs
within nonperturbative single-channel approaches by using a
square-well interaction potential.

We believe that the approach is applicable not only to optical
lattices but to various kinds of anharmonic trapping potentials.
The introduced methods should be therefore a valuable tools
for investigating the exciting physics of Feshbach-interacting
atoms in various potentials. In the context of confinement-
induced resonances especially the weak coupling between
unbound atoms to molecular bound states has recently proven
to have a large impact on ultracold-atom experiments [34–36].
In this respect the accurate determination of the location
and width of the avoided crossings with molecules with
center-of-mass excitation at a Feshbach resonance is very
important to interpret experimental measurements. Multiband
systems of ultracold atoms [37], especially those employing
resonances with repulsively bound states can be used to quan-
tum simulate solid-state systems [38] and might be eventually
used to perform also universal quantum computations [39].
The correct description and understanding of both attractively
and repulsively bound states in different Bloch bands appear-
ing at a Feshbach resonance could add more flexibility to
further extend the capabilities of ultracold atoms in optical
lattices.
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