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Smooth scaling of valence electronic properties in fullerenes:
From one carbon atom, to C60, to graphene
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Scaling of quantum capacitances and valence electron detachment energies is studied for icosahedral and
nonicosahedral fullerenes. Scaling trends are considered from zero to infinite average radius, where a fullerene’s
local surface properties are similar to those of graphene. Detailed density-functional-theory calculations are
performed to determine the geometries and detachment energies of icosahedral fullerenes, while values of these
quantities are obtained for nonicosahedral species from previously published experimental results. Strongly linear,
quasiclassical scaling versus average radii rn is seen for the quantum capacitances, but on two different scaling
lines for icosahedral and nonicosahedral species, respectively. By contrast, nonclassical, nonlinear scaling versus
1/rn is seen for the electron detachment energies, i.e., the valence ionization potentials and electron affinities.
This nonlinearity is not accounted for by classical theories that are used to explain trends in electronic properties
of fullerenes and usually give accurate quantitative estimates. Instead, simple quantum equations are derived to
account for nonlinearities in the metal-particle-like electron detachment energy scaling and to show that these are
responsible for nonclassical, nonzero intercepts in the capacitance scaling lines of the fullerenes. Last, it is found
that points representing the carbon atom and the graphene limit lie on scaling lines for icosahedral fullerenes, so
their quantum capacitances and their detachment energies scale smoothly from one C atom, to C60, to graphene.
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I. INTRODUCTION

Fullerene molecules have fascinating and potentially valu-
able properties [1]. Because they are large molecules, though,
containing many atoms and electrons, accurate quantum
theoretical treatments are difficult and computationally in-
tensive. Measurements of the electronic properties of the
isolated molecules are similarly challenging [2,3]. On the
other hand, the regular, quasispherical structures of these
pure carbon systems [4], along with results from quantum
scaling investigations on other systems [5–8], suggest that
the fullerenes’ quantum properties, especially their valence
energetics, might vary or “scale” with their dimensions in
very regular ways. Understanding this quantum scaling, as
well as how it differs from classically expected [9,10] trends,
might simplify greatly predictions of similar properties, even
for very large fullerenes. Such insights also might provide
an archetype for understanding and predicting such trends
in the quantum electronic properties for homologous series
of other large molecules or nanostructures. Still further, the
structures of fullerenes permit us to envisage and to examine
trends for a homologous series in which the smallest members
are nanoscopic and, in principle, the largest could be truly
macroscopic.

To those ends, here we explore the scaling of the fullerenes’
quantum capacitances and valence electron detachment ener-
gies. The exploration follows the scaling trends, starting with
a single carbon atom C1 and continuing up to the limit of
infinite average radius, where the local surface structure and
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geometry of a fullerene are very similar to that of graphene.
These trends are followed for fullerenes of both icosahedral
and nonicosahedral symmetries.

As seen in Fig. 1, two different, strongly linear, quasi-
classical scaling trends are found for the icosahedral and
nonicosahedral fullerenes, respectively, when their quantum
capacitances [11,12],

Cn = 1/(In − An), (1)

are plotted versus their average radii rn. Above, In and An

are the first ionization potential and first electron affinity,
respectively, for an N -electron, n-carbon neutral fullerene Cn.
These valence electron detachment energies are measured in
eV, so values of quantum capacitances Cn are calculated in the
molecular-scale units [5,6] of fundamental positive charges
per volt (+e/V). Linear, symmetry-dependent scaling of Cn

versus rn for the fullerenes, as seen in Fig. 1, is similar to that
observed previously for atoms [5,8] and small molecules [6,7].

In Figs. 2 and 3 it is observed, however, that the linear
scaling behaviors of Cn versus rn for the fullerenes are
produced by values of In and An that each exhibit distinctly
nonlinear scaling versus 1/rn. In addition, these figures show
that different types of nonlinearities are exhibited by the
detachment energies of both the icosahedral and nonicosahe-
dral species. Figure 2 further illustrates that such nonlinear
behaviors are contrary to expectations (dotted lines) from
purely classical theories [9,10] that have been applied [3] to
explain the scaling of fullerene detachment energies and their
limiting behavior as 1/rn approaches zero.

At the same time, other nonclassical behaviors are seen in
Fig. 1. These are the nonzero capacitance intercepts associated
with the quantum capacitance scaling lines that otherwise are
classical in form.
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Moreover, it is discovered and proven algebraically in
this work that the nonclassical, nonzero curvatures in the
detachment energy trends for the fullerenes lead, via Eq. (1), to
the nonclassical, nonzero intercepts in their otherwise classical
capacitance scaling lines. These capacitance intercepts have
two different signs for the icosahedral and nonicosahedral
species, which correspond to the two different sets of curva-
tures for their detachment energy trends. This correspondence
is summarized schematically in Fig. 4.

For the icosahedral fullerenes, the aforementioned results
are derived from detailed density-functional-theory (DFT)
calculations performed in this work to determine the valence
electron detachment energies and average radii. We calculated
In, An, and rn for nine such molecules containing numbers
of C atoms ranging from n = 60 to 2160. Also, for ten
nonicosahedral fullerenes of C2 and D2 symmetries, we
tabulated from the literature experimental values [2,3] of In

and An, as well as theoretical values [13,14] of rn. All these
data, plus the associated values of Cn, appear in Table I and
are used to plot the graphs in Figs. 1, 2, and 3.

II. METHOD AND RESULTS

To obtain the detachment energies for the nine icosahedral
fullerenes, we performed DFT calculations, using a specially
developed computer program [15]. The neutral-state geometry
of each structure Cn was optimized and its average radius
rn determined using a Gaussian 6-311G** basis and a
functional [16] that gives the experimental geometry for
C60. The DFT calculations involved the reoptimization of
previously determined [17] icosahedral geometries, as well
as the optimization of a new geometry for C320. Unlike the
other icosahedral fullerenes, which have closed-shell neutral
ground states, C320 has an open-shell, triplet electronic state,
with two unpaired electrons in the 33gu orbital. This ionizes to
a doublet cationic state, as do the other icosahedral fullerenes.
After electron attachment, though, C320 does not yield the
usual doublet but forms a quartet anion with three electrons in
the 33gu orbital.

After determination of the neutral geometries, to evaluate
the electron detachment energies, In = [En(N − 1)−En(N )]
and An = [En(N )−En(N + 1)] for each n, the same program
and basis but a different functional that gives very accurate
atomic energies [15] were used to separately determine
the total energies, En(N ), En(N − 1), and En(N + 1), for
the lowest-energy neutral, cationic, and anionic states, re-
spectively. Numerical results calculated in this way for the
icosahedral fullerenes appear in Table I(a).

Table I(b) presents the corresponding data for nonicosa-
hedral fullerenes. These values were assembled from the
experimental literature, as described in the previous section.
Most of the experimental valence electron detachment energies
available in the literature for nonicosahedral fullerenes were
for species of C2 and D2 symmetries. Limited data [2,3,14]
were available for species [1,4] of other nonicosahedral
symmetries, and these produced radius-capacitance points that
were somewhat off the regression lines shown in the inset of
Fig. 1 and in Fig. 3. However, the available data for points
corresponding to species of these other symmetries were too
sparse to determine scaling lines for them. Thus, we only

FIG. 1. Quantum capacitances Cn of n-carbon fullerenes plotted
vs their average radii rn. The solid, dashed, and dotted regression
lines, respectively, in the main portion of the figure fit to high degree of
confidence (rn,Cn) points for icosahedral (Ih) fullerenes (crosses), for
nonicosahedral fullerenes of C2 and D2 symmetries (solid squares),
and for a classical sphere model (open circles) of the icosahedral
fullerene capacitors. Regression equations and parameters for scaling
lines are displayed in the graph. The inset expands the scale for the
plot of the nonicosahedral fullerene points, their scaling line, and the
classical scaling line. See text.

display here the data and points for C2 and D2 nonicosahedral
fullerenes.

The DFT I and A values, 7.70 and 2.90 eV, respectively, that
are calculated for C60 and presented in Table I(a) each are in
reasonably good agreement with the respective experimental
values [2,3] of 7.57 and 2.65 eV. The relative errors of 1.7% and
9.4% differ considerably, but the absolute errors of concern in
calculating the capacitance via Eq. (1) are small, of the same
sign, and of approximately the same magnitude. Thus, they
nearly cancel in calculating C60. For this reason, we have
seen that substituting a value of C60 determined from the
experimental I and A values affects the capacitance scaling
parameters very little, though it makes the already high R2

value very slightly higher.
The source of the small absolute errors in the C60 de-

tachment energies is believed to arise primarily from the
self-interaction in the DFT local-density approximation. This
self-interaction might be removed, but only with considerable
computational cost. Using a different density functional,
the effect of the self-interaction was studied for atoms and
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FIG. 2. Icosahedral fullerene ionization potentials (solid circles)
and electron affinities (solid squares), as calculated in this work using
density-functional theory, are plotted vs reciprocals of the n-carbon
neutral molecules’ average radii, 1/rn. Values are from Table I(a). The
solid curved line for ionization potential function I and dashed curved
line for electron affinity function A are determined via second-order
regression, for which equations and parameters appear in the figure.
Dotted straight lines present scaling of I and A according to a purely
classical electrostatic model. Points representing the carbon atom
would lie on the solid and dashed lines for I and A, were the axes
extended. See text.

small, well-behaved molecules [20]. It was found that the
self-interaction error in the detachment energies decreased as
the number of electrons increased. If that is the case here, the
effect on the capacitance scaling of not correcting I and A

for the self-interaction should be negligible. However, even if
self-interaction errors like those seen in C60 were to persist in
I and A for the larger fullerenes, they would be expected
to cancel each other, for the most part, in calculating the
capacitances via Eq. (1). To be sure of the DFT-based scaling
trends, though, we replotted the capacitance scaling line for the
icosahedral fullerenes assuming the same percentage errors in
I and A for the larger molecules as for C60. Then, we replotted
again assuming the same absolute errors in I and A as for
C60. In both of these sensitivity analyses the effects on the
capacitance scaling were very small: the linear scaling trend
remained very strong, with no diminishment in the R2 values,
and the regression lines still passed through the point for the
carbon atom.

In Fig. 1, the solid line and the dashed line in the main
graph are fit by linear regression to the icosahedral and
nonicosahedral (rn,Cn) points from Tables I(a) and I(b),
respectively. The inset in Fig. 1 provides a more detailed view
of the nonicosahedral capacitance scaling line and the points
that define it, all of which represent fullerenes of C2 or D2

symmetry types, as indicated in Table I. Each (rn,Cn) point on
the nonicosahedral scaling line represents values associated
with the lowest-energy [18,19] neutral geometry for that value
of n.

In the inset of Fig. 1, it also is seen that the radius-
capacitance point for C76 (open square) falls significantly

FIG. 3. Nonicosahedral fullerene ionization potentials (solid cir-
cles) and electron affinities (solid squares) are plotted vs reciprocals
of the n-carbon neutral molecules’ average radii, 1/rn. Values of In

and An are from experimental results reported in the literature and
presented in Table I(b). Values of 1/rn are from theory [13,14]. As
in Fig. 2, the solid curved line for ionization potential function I and
dashed curved line for electron affinity function A are determined via
second-order regression, for which equations and parameters appear
in the figure. Unlike the nonlinear regression lines in Fig. 2, above,
the lines’ intercepts at (1/rn) = 0 were fixed in advance at the value
of the graphene work function, 4.7 eV. See text.

below the scaling line. This is because the experimental value
determined by Boltalina et al. for A76 does not conform to
the trend of increasing value with fullerene size that those
investigators observed for other fullerene electron affinities [2].
The discrepancy in this A value is significant enough that
the experimentalists remark upon it in their paper. For this
reason, we did not use points for the C76 molecule in any
of the regressions in this work. However, we include the C76

point in Fig. 1 for completeness, along with points for the
other fullerenes of C2 or D2 symmetry for which detachment
energies were measured [2,3] by Boltalina et al.

Additionally, because the values of In and rn for C76 that
appear in Table I are thought to be accurate, we can apply
the nonicosahedral fullerene capacitance scaling parameters
shown in Fig. 1 to provide an improved estimate [7,8] for the
electron affinity, A76 = 3.08 eV. This estimate is improved in
the sense that it would place the radius-capacitance point for
C76 on the scaling line with those of the other nonicosahedral
fullerenes.

The linear fits that define the icosahedral and nonicosahe-
dral capacitance scaling lines both are very strong, as seen from
the large values of R2 for each displayed in Fig. 1. Additionally,
it is seen there that the icosahedral and nonicosahedral scaling
lines nearly intersect at the C60 point. This might be explained
by observing that C60 is a kind of “progenitor” structure for
both symmetry types because it is the only fullerene whose
points all rest on a single sphere. As more carbon atoms
are added to produce larger fullerenes, two growth paths are
possible: either the carbons are added in such a way as to
maintain the high-symmetry, truncated icosahedral structure
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FIG. 4. Sketches for three basic cases illustrating (left) the
relationship between the scaling vs 1/rn of the electron detachment
energies I and A, plus (right) the scaling vs rn of the quantum
capacitances Cn derived from those detachment energies. Specifically,
the sketches show the manner in which the intrinsic nonlinearities
seen in the quantum electron detachment energy graphs at left in (a)
and (c), as well as in Figs. 2 and 3, are associated with the nonclassical,
nonzero intercepts shown in the corresponding capacitance graphs at
right, as well as in Fig. 1. By contrast, as shown in (b), purely classical
linear scaling of the detachment energies leads the capacitance
intercept to vanish. Classical scaling is not realized for the fullerenes
but is a very good approximation for molecular wires [6]. See text.

of C60, or they are added in such a way as to reduce the
symmetry of the molecule.

We observe further in Fig. 1 that the radius-capacitance
point for the C atom [5] lies right on the scaling line defined
by the (rn,Cn) points for the icosahedral fullerenes, even
though the C atom point is not used in the regression that
determines the line. If the C atom point were to be included
in the regression with the points for the icosahedral fullerenes,
though, the correlation coefficient would increase to
R2 = 0.9994. For this reason, the carbon atom may be thought
of as a progenitor capacitive structure for the icosahedral
fullerene capacitors; the icosahedral molecules share a certain
similarity to the atom in their valence energetics.

The regression lines in Fig. 1 have equations of the form

C = 4πε0κr + C0, (2)

where ε0 = 5.526350 × 10−3 + e/V Å is the permittivity of
free space. The first term on the right of Eq. (2) is Faraday’s
and Maxwell’s law for spherical capacitors in classical

TABLE I. Quantum capacitances Cn for n-carbon fullerenes tabu-
lated as a function of their average radii rn. Values of Cn are calculated
via Eq. (1) from each fullerene’s ionization potential In and electron
affinity An. In (a), In and An are determined for icosahedral fullerenes
via detailed density-functional-theory calculations performed in this
work, while in (b) they are from experiments on nonicosahedral
fullerenes by Boltalina et al. [2,3]. Data are tabulated here only for
nonicosahedral fullerenes of C2 and D2 symmetries. See text.

Number
of carbon
atoms n

Average
radiusa

rn (Å)

Ionization
Potential
In (eV)

Electron
affinity
An (eV)

Quantum
capacitanceb

from
Eq. (1), Cn

( + e/V) Symmetryc

(a) Icosahedral fullerenes

60 3.548 7.6996 2.9005 0.2084 Ih

180 6.135 6.9189 3.4520 0.2884 Ih

240 7.073 6.5460 3.5379 0.3324 Ih

320d 8.038 5.7332 4.1975 0.6512 Ih

540 10.553 6.0483 3.9212 0.4701 Ih

720 12.166 5.9342 4.0278 0.5245 Ih

960 14.034 5.7617 4.1097 0.6053 Ih

1500 17.522 5.5736 4.2276 0.7430 Ih

2160 21.014 5.4419 4.3068 0.8810 Ih

(b) Nonicosahedral fullerenes

76e 3.991 7.34 2.89 0.238 D2

80 4.094 7.30 3.17 0.242 D2

82 4.142 7.25 3.14 0.243 C2

84 4.193 7.17 3.14 0.248 D2

86 4.241 7.16 3.23 0.254 C2

90 4.339 7.09 3.27 0.262 C2

94 4.432 6.96 3.21 0.267 C2

96 4.482 6.92 3.28 0.275 D2

98 4.53 6.95 3.26 0.271 C2

100 4.572 6.95 3.32 0.275 D2

aAverage radius rn is the arithmetic mean of distances of all the
carbon atoms in a fullerene from a central point within the molecule,
as determined from icosahedral fullerene geometries optimized in
this work and from nonicosahedral geometries due to Yoshida and
Osawa [13,14].
bQuantum capacitances Cn are reported in +e/V, fundamental units
of positive charge per volt. Multiplication by 1.602188 × 10−19

Coulombs per fundamental unit of charge converts these capacitances
to the more familiar mks units of farads. Using these capacitance units,
the permittivity of free space is ε0 = 5.526350 × 10−3 + e/V Å.
cFor nonicosahedral fullerenes, symmetry type is taken from Shao
et al. [18,19] for the lowest-energy fullerene with that number of
carbon atoms.
dC320 has an open-shell electronic structure, unlike that of the other
icosahedral fullerenes listed, which are closed shell.
eC76 point not used in regressions. A better estimate for the species’
electron affinity might be A76 = 3.08 eV. See text.

electrostatics [21,22]. Thus, the dimensionless parameter κ ,
which determines the slope of the scaling line, is the analog
of a classical dielectric constant, but for individual fullerene
molecules. Equation (2) implies the values 0.562 and 1.043 for
κ in the icosahedral and nonicosahedral cases, respectively. A
strikingly nonclassical [5] feature, though, is the additional
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constant term C0 that is required to account for the empirically
observed nonzero values of the capacitance intercepts at r = 0.

In Fig. 2, the icosahedral fullerenes’ electron detachment
energies from Table I(a) are plotted versus the reciprocal of the
icosahedral fullerenes’ average radii. Then, two second-order
fits determine the regression curves through the (1/rn,In) and
(1/rn,An) points, respectively. The values of In and An are seen
to progress smoothly along these curves, from those for C60 at
the far right to very nearly equal intercepts I∞ ≈A∞ ≈ 4.7 eV
at 1/rn =0 (the limit of very large, macroscopic fullerenes).
There, the energy gap (In − An) vanishes to the accuracy of
the calculations. Such an intercept sometimes is taken to be
an estimator for the work function of graphene [3], which
the carbon surface of a very large fullerene locally resembles.
This is because, in the limit of very large n and rn, a fullerene’s
surface is effectively flat, locally, and consists of almost purely
hexagonal arrangements of atoms since it still contains only
a small, fixed number of pentagonal “impurities” (12 for any
fullerene). The limiting value of 4.7 eV determined here is in
close agreement with prior estimates of 4.6 eV for the work
function of graphene [23] and graphite [24], which are thought
to be approximately equal.

Figure 3 analogously plots data from Table I(b) for the
nonicosahedral fullerenes. A difference in the fitting procedure
for Fig. 3, though, is that we fixed the intercepts with the
energy axis at the value of the work function of graphene: I∞ =
A∞ = 4.7 eV. Then, we performed the regression analyses to
determine the curves.

The curves in Figs. 2 and 3 are fit with high confidence
to the points via second-order regression, defining polynomial
expansions:

In = I∞ + λI (1/rn) + 1
2τI (1/rn)2, (3a)

An = A∞ + λA(1/rn) + 1
2τA(1/rn)2. (3b)

Parameters λk and τk represent the slopes and curvatures,
respectively, of the detachment energy scaling curves. The
fact that the progression of the detachment energies from
those of C60 to the limiting values, I∞ and A∞, occurs along
second-order, curved functions of 1/r contrasts with the linear
functions of 1/r anticipated by simple, classical electrostatic
models [9,10], as noted above.

Such linear functions are displayed in Fig. 2 as the dotted
lines that were constructed to connect the I60 point and the A60

point to I∞ and A∞, respectively. It is seen that these classical
lines give reasonable approximations for all the I and A values
determined by DFT for the icosahedral fullerenes. A similarly
constructed classical linear approximation would be even
closer to the solid and dashed scaling curves shown in Fig. 3 for
the nonicosahedral fullerene detachment energies. In fact, the
dotted lines are not drawn in for the classical approximation
because they would be too close to the curves determined by
the experimental values and would obscure them.

The classically expected lines in Fig. 2 have the equations
I = 10.642(1/r) + 4.7 and A = −6.385(1/r) + 4.7. Values
of In and An from along these classically expected detachment
energy functions are used to determine the classically expected
capacitances for each r = rn and thereby plot the points (open
circles) and their dotted classical capacitance regression line in
Fig. 1, which has an intercept C0 that vanishes to the accuracy
of the data.

By definition, the dotted classical capacitance regression
line in Fig. 1 goes through the radius-capacitance point for
C60. Even so, it is seen that it does not give good estimates
for the capacitances of the other icosahedral fullerenes (along
the solid regression line). However, the dotted classical line
provides good quantitative estimates for the capacitances of the
nonicosahedral fullerenes (along the dashed regression line).
This is made particularly clear by the close proximity of the
two scaling lines in the inset of Fig. 1.

In order to preserve the detail presently seen in Fig. 2, the
points for a single carbon atom are not included on the graph
there. Nonetheless, just as the point representing the carbon
atom or C1 lies on the quantum capacitance scaling line for
the icosahedral fullerenes in Fig. 1, the points representing
C1 (with 1/r1 =1.087 Å−1, I =11.26 eV, and A=1.26 eV)
would be seen to lie on the icosahedral fullerene quantum
scaling curves for I and A in Fig. 2, were the scales of the axes
extended. Inclusion of these C1 points in the regressions does
induce a small energy gap of approximately 0.3 eV between
I and A in the plot at 1/r = 0. However, fits versus 1/r of
fullerene detachment energies, including the C1 points, both
are very strong, with R2 = 0.997 for both I and A. Further, if
the induced gap is eliminated from these fits, by constraining
both intercepts at 1/r = 0 to assume the value of the graphene
work function, 4.7 eV, the fits continue to be very strong, with
R2 � 0.992 for both curves. Thus, an additional important
result of this work is that both the quantum capacitances and the
electron detachment energies of icosahedral fullerenes scale
smoothly from the limit of a single carbon atom, through points
for C60, to the points representing a graphene-like structure, in
the limit of n=∞ at 1/r = 0.

III. DISCUSSION AND ANALYSIS

Analysis of the foregoing results reveals that the nonzero
quantum capacitance intercepts C0 for the fullerenes, as seen in
Fig. 1, are a consequence of the nonclassical, nonlinear scaling
of the electron detachment energy functions in Figs. 2 and 3
and vice versa. To demonstrate this algebraically, we substitute
Eqs. (3) in Eq. (1), then expand the result in a geometric series
through first order in rn:

Cn =
(

1

λI − λA

)
rn + 1

2

[
τA − τI

(λI − λA)2

]
. (4)

To derive this result, we assume that I∞ ≈ A∞, so that their
difference vanishes, at least approximately, as discussed above.
Then, order-by-order comparison of Eq. (4) to Eq. (2) enables
us to evaluate, in terms of the slope and curvature of the
detachment energy scaling curves, the molecular dielectric
constant

κ = 1

4πε0

(
1

λI − λA

)
(5)

and the capacitance intercept

C0 = 1

2

[
τA − τI

(λI − λA)2

]
(6a)

= 8π2ε2
0κ

2(τA − τI ). (6b)

Equations (4) through (6) involve no classical approximations.
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Now, applying Eq. (6b) to Fig. 2, for example, it is seen
that the curvatures, τA and τI , of the second-order regression
curves for In and An are of opposite sign, so the two curvatures
do not cancel in Eq. (6b), and C0 does not vanish. Thus, from
Eq. (6b), the positive nonzero capacitance intercept may be
regarded as a consequence of the nonzero curvatures of the
detachment energy scaling curves plotted in Fig. 2. This case
also is summarized in Fig. 4(a).

Evaluating Eq. (6b) for the case depicted in Fig. 3 once again
yields a nonzero value of C0. Here, however, the difference
between the curvatures is negative because τI > 0 and τA ≈ 0.
Thus, C0 < 0, as plotted in Fig. 1 and depicted schematically
in Fig. 4(c).

Conversely, we also may regard the nonzero curvatures for
the detachment energy graphs as a consequence of a nonzero
capacitance intercept. Considering only the valence ionization
potential and starting from the purely classical electrostatic
formulas of Smith [9] and of Leach [10], we may write

In = I∞ + 1/2Cn (7a)

≈ I∞ +
(

1

8πε0κ

)
1

rn

− 2C0

(
1

8πε0κ

)2( 1

rn

)2

. (7b)

The second line in the previous equation follows from
substitution of quantum capacitance equation (2) into Eq. (7a),
then applying a first-order geometric series expansion to the
result. Analogously, using Smith’s [9] classical expression for
the electron affinity as a starting point, we may write

An = A∞ − 1/2Cn (8a)

≈ A∞ −
(

1

8πε0κ

)
1

rn

+ 2C0

(
1

8πε0κ

)2( 1

rn

)2

. (8b)

In Eqs. (7) and in Eqs. (8), to obtain the third term on the
right that corresponds to a nonzero curvature like that observed
in the quantum results plotted in Fig. 2, it is essential that the
expansions above utilize both terms of Eq. (2). This differs
from the purely classical expansion procedure employed by
Smith [9] and by Leach [10] that utilizes only the first term
on the right of Eq. (2), effectively setting C0 = 0 in Eqs. (7b)
and (8b).

The expressions in Eq. (7b) and Eq. (8b) for the coefficients
of the powers of 1/rn can be verified to be reasonably
accurate, quantitatively. For example, we obtain from the
regression equations in Fig. 1 the values 4πε0κ = 4.69 + e/V
Å and C0 = 0.0582 + e/V, in the case of the icosahedral
fullerenes. Using these in Eq. (7b), the values for the first-
and second-order coefficients are 12.82 eV Å and −19.13 eV
Å2, respectively. These compare favorably to the respective
values 16.61 eV Å and −20.95 eV Å2 seen in the regression
equation for the accurate ionization potentials in Fig. 2.

Continuing the derivation, from a comparison of Eqs. (7b)
and (8b) with Eqs. (3a) and (3b), respectively, one may obtain
approximate relations for the slopes and curvatures of I and
A with respect to 1/r:

λI = −λA = 1

8πε0κ
, (9)

τI = −τA = −4C0λ
2
I . (10)

Equations (7b) through (10) incorporate quantum effects in
the nonzero curvatures but can only be approximate because
of the use of the classical expressions in Eqs. (7a) and (8a)
as starting points in their derivations. Nonetheless, Eqs. (9)
and (10), along with Eq. (3), do provide a rationale for the
near symmetry of I and A as a function of 1/r that is manifest
in both Figs. 2 and 3.

From the accurate quantum results embodied in the regres-
sion equations within these figures one can verify, as well,
that τI ≈ −τA. In the values of the regression parameters for
the icosahedral fullerenes given in Fig. 2, there is order of
magnitude agreement of τI and τA with Eq. (10). In Fig. 3,
for the nonicosahedral fullerenes, the approximate agreement
with this curvature relation is manifest if one recognizes there
that τA ≈ 0.

Equation (10) also shows explicitly that a nonzero capaci-
tance intercept results in a nonzero curvature for I and for A

as a function of 1/rn, as asserted above. Still further, from that
equation it is clear that the sign of the capacitance intercept
C0 and the signs of the curvatures τ of the detachment energy
scaling graphs are mutually related. Thus, for example, just as
a positive value of C0 for the icosahedral fullerenes is ensured
by (and ensures) a negative value of τI , a negative value of C0

in the case of the nonicosahedral fullerenes is associated with
a positive value of τI . This can be verified empirically from
the results in Figs. 1, 2, and 3.

More generally, in Fig. 4, we map out schematically
three major cases of this relationship between the quantum
capacitance intercepts and the curvatures in detachment energy
scaling graphs. These apply for the fullerenes studied here and
for molecular wires studied in prior work [6]. Other cases may
arise for still other quantum systems. For the cases depicted in
Figs. 2, 3, and 4, the near symmetry in the scaling of I and A

about the work function in the fullerenes strongly resembles
that observed previously for clusters of metal atoms [12,25]
and affirms the fullerenes’ classification as semimetals.

Considering the results displayed in Fig. 1 from a more
qualitative viewpoint, the two different scaling lines for the
differently shaped icosahedral and nonicosahedral fullerenes,
respectively, are consistent with the classical notion that
capacitances depend strongly on the shapes of capacitors. In
this connection, we observe further that the nonicosahedral
fullerene capacitances lie above the scaling line for the
icosahedral fullerenes. This is consistent with the facts that (a)
isoperimetric principles [26] of classical electrostatics indicate
that the capacitance of a conductor of any shape is proportional
to the square root of its surface area and (b) the more aspherical
nonicosahedral species should have larger surface areas for a
given average radius than do icosahedral fullerenes.

In addition, we see in Fig. 1 that the radius-capacitance
point for open-shell C320 (the ×) lies well above the scaling line
for the other icosahedral fullerenes, which have closed-shell
valence electron configurations. This outlier point suggests
that electronic structure (especially, the multiplicity), as well
as the geometric structure of the nuclear framework, plays
an important role in determining the effective shape and
dimensions of a fullerene capacitor. A related explanation of
the inordinately large capacitance of C320 is that its open-shell
electronic structure is more diffuse. This produces a larger
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effective radius and surface area of its valence electron
distribution for its value of rn than would a closed-shell
electron distribution.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the scaling of fullerene
quantum capacitances as a function of their average radii rn and
the scaling of the molecules’ valence electron detachment ener-
gies as a function of 1/rn. Detailed density-functional-theory
calculations of electron detachment energies for icosahedral
fullerenes and results from earlier experimental measurements
of detachment energies for nonicosahedral fullerenes were
employed for this purpose. Linear scaling was found for the
capacitances of both symmetry types; however, this scaling
occurred along two different scaling lines, one for icosahedral
fullerenes and one for nonicosahedral fullerenes of D2 and C2

symmetries. (See Fig. 1.)
Though linear scaling was found for the capacitances as

a function of rn, nonclassical, nonlinear scaling was found
for the fullerene detachment energies as a function of 1/rn.
These nonlinear trends were seen to resemble those for clusters
of metal atoms. Further, a proof in Sec. III shows that the
nonlinear behavior seen in Figs. 2 and 3 for the detachment
energies leads to the nonclassical, nonzero intercepts seen in
Fig. 1 for the capacitance scaling lines. The converse also was
proven to be true.

Thus, classical scaling is not realized in the fullerenes.
Classical models [9,10] commonly employed to represent their
detachment energies and capacitances yield reasonably good
quantitative estimates but fail to reproduce key features of
the accurate quantum scaling trends. Especially, they miss the
nonlinearity of the detachment energies as a function of 1/rn

and nonzero intercepts for the capacitance as a function of
rn. They also fail to account for the differences between the
trends for the icosahedral and nonicosahedral species. Instead,
a simple set of algebraic equations is derived in Sec. III to
explain these quantum behaviors and the relationships among

them, as well as to contrast them with classically expected
behaviors.

Quantum capacitance scaling of the icosahedral and non-
icosahedral fullerenes also is contrasted with classically
expected capacitance scaling in Fig. 1, while the departures
from classical detachment energy scaling are shown in Figs. 2
and 3. The relationships discovered between the nonclassical
detachment energy scaling behaviors and the nonclassical fea-
tures in quantum capacitance scaling are depicted conceptually
in Fig. 4.

Another key finding of this work is that points representing
the carbon atom lie on scaling lines for icosahedral fullerenes,
as do points for C60, while the detachment energy scaling
curves also intersect points representing a graphene-like
structure in the limit of a very large radius. Thus, the icosahe-
dral fullerene quantum capacitances and electron detachment
energies all scale smoothly from a single carbon atom to the
graphene limit.

Last, the algebraic formalism derived to show the con-
nection between nonclassical behaviors in detachment energy
scaling and quantum capacitance scaling for fullerenes should
be useful, as well, for interpreting quantum scaling trends for
other systems, such as atoms [5] and diatomic molecules [7].
Similarly, the equations and conceptual insights developed
here may be useful in providing more accurate, simple esti-
mators of electron detachment energies for other homologous
series of molecules and for still other types of nanostructures.

ACKNOWLEDGMENTS

The authors gratefully acknowledge valuable conversations
with C. Picconatto and S. Das of the MITRE Nanosystems
Group, plus valuable comments on the manuscript by C. White
of NRL. At MITRE, this research was funded by the MITRE
Innovation Program, while at the Naval Research Laboratory
it was supported by the Office of Naval Research, both directly
and through NRL. At the University of Texas at El Paso,
financial support came from DOE Basic Energy Sciences
Grant No. DE-SC0006818.

[1] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of
Fullerenes and Carbon Nanotubes (Academic, San Diego, CA,
1996).

[2] O. V. Boltalina, E. V. Dashkova, and L. N. Sidorov, Chem. Phys.
Lett. 256, 253 (1996).

[3] O. V. Boltalina, I. N. Ioffe, L. N. Sidorov, G. Seifert, and
K. Vietze, J. Am. Chem. Soc. 122, 9745 (2000).

[4] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes
(Dover, New York, 2006).

[5] J. C. Ellenbogen, Phys. Rev. A 74, 034501 (2006).
[6] J. C. Ellenbogen, C. A. Picconatto, and J. S. Burnim, Phys. Rev.

A 75, 042102 (2007).
[7] J. C. Ellenbogen, Phys. Rev. A 82, 012508 (2010).
[8] W. E. Bunting and J. C. Ellenbogen, Phys. Rev. A 85, 062503

(2012).
[9] F. T. Smith, J. Chem. Phys. 34, 793 (1960).

[10] S. Leach, Can. J. Phys. 79, 501 (2001).
[11] G. J. Iafrate, K. Hess, J. B. Krieger, and M. Macucci, Phys. Rev.

B 52, 10737 (1995).
[12] J. P. Perdew, Phys. Rev. B 37, 6175 (1988).
[13] M. Yoshida and E. Osawa, Fullerenes Nanotubes Carbon

Nanostruct. 1, 55 (1993).
[14] S. Weber, http://jcrystal.com/steffenweber/gallery/Fullerenes/

Fullerenes.html. This Web site provides a database of
M. Yoshida’s optimized coordinate files for fullerene structures.

[15] R. R. Zope and B. I. Dunlap, Phys. Rev. B 71, 193104 (2005).
[16] B. I. Dunlap and R. R. Zope, Chem. Phys. Lett. 422, 451

(2006).
[17] R. R. Zope, T. Baruah, M. R. Pederson, and B. I. Dunlap, Phys.

Rev. B 77, 115452 (2008).
[18] N. Shao, Y. Gao, S. Yoo, W. An, and X. C. Zeng, J. Phys. Chem.

110, 7672 (2006).

052515-7

http://dx.doi.org/10.1016/0009-2614(96)00460-5
http://dx.doi.org/10.1016/0009-2614(96)00460-5
http://dx.doi.org/10.1021/ja000734b
http://dx.doi.org/10.1103/PhysRevA.74.034501
http://dx.doi.org/10.1103/PhysRevA.75.042102
http://dx.doi.org/10.1103/PhysRevA.75.042102
http://dx.doi.org/10.1103/PhysRevA.82.012508
http://dx.doi.org/10.1103/PhysRevA.85.062503
http://dx.doi.org/10.1103/PhysRevA.85.062503
http://dx.doi.org/10.1063/1.1731676
http://dx.doi.org/10.1139/p01-008
http://dx.doi.org/10.1103/PhysRevB.52.10737
http://dx.doi.org/10.1103/PhysRevB.52.10737
http://dx.doi.org/10.1103/PhysRevB.37.6175
http://jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html
http://jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html
http://dx.doi.org/10.1103/PhysRevB.71.193104
http://dx.doi.org/10.1016/j.cplett.2006.02.100
http://dx.doi.org/10.1016/j.cplett.2006.02.100
http://dx.doi.org/10.1103/PhysRevB.77.115452
http://dx.doi.org/10.1103/PhysRevB.77.115452
http://dx.doi.org/10.1021/jp0624092
http://dx.doi.org/10.1021/jp0624092


LEWIS, BUNTING, ZOPE, DUNLAP, AND ELLENBOGEN PHYSICAL REVIEW A 87, 052515 (2013)

[19] N. Shao, Y. Gao, and X. C. Zeng, J. Phys. Chem. C 111, 17671
(2007).

[20] O. A. Vydrov and G. E. Scuseria, J. Phys. Chem. 122, 184107
(2005).

[21] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics,
6th ed. (Wiley, New York, 2001).

[22] J. C. Maxwell, in A Treatise on Electricity and Magnetism,
Vol. 1 (Clarendon, Oxford, 1873). See especially pp. 219–
221. Available online at http://posner.library.cmu.edu/Posner/
books/book.cgi?call=537_M46T_1873_VOL._1.

[23] Y.-J. Yu, Y. Zhao, S. Ryu, L. Brus, K. S. Kim, and P. Kim, Nano
Lett. 9, 3430 (2009).

[24] J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and
J. M. Tour, Appl. Phys. Lett. 76, 4007 (2000).

[25] M. Seidl, K. H. Meiwes-Broer, and M. Brack, J. Chem. Phys.
95, 1295 (1991).
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