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Sudden quench in a model Hamiltonian with interactions: The time-dependent
components of Wigner’s correlation
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Based on the correlated ground-state wave function of an exactly solvable interacting one-dimensional two-
electron model Hamiltonian we address the switch-off of the external confining interaction in order to calculate
the exact time-evolving wave function from a correlated initial state. The Hartree-Fock approximation for
the initial state of the model system is considered as well. By taking the differences of kinetic and potential
energy terms obtained with these treatments, the time-dependent components of Wigner’s correlation energy are
determined.
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I. INTRODUCTION AND MOTIVATION

It is now standard textbook knowledge [1] that the simple
one-dimensional, two-fermion Hamiltonian
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has analytic solutions [2] in the exact and Hartree-Fock (HF)
treatments for its singlet ground state. These solutions can
be used to define Wigner’s correlation energy, an important
measure of inseparable entanglement in a stationary state [3].
The correlation energy is a basic quantity in many fields. In
the present paper we investigate its time-dependent extension
to the stationary case defined on the time domain in analogy
to Ref. [4].

Actually, governed by the time-dependent density-
functional method (TD-DFT), there is a large effort [4–11]
involving the application of one-dimensional, two-particle
models to the time domain numerically. This effort motivates
us to perform a detailed analytical study on the time-dependent
components of Wigner’s correlation energy. Traditionally,
this energy is defined by using wave functions of the
Schrödinger equation. The DFT and TD-DFT methods are
derived also from the many-particle Schrödinger equation
but are expressed finally entirely in terms of the density.
An effective single-particle formulation of these methods is
of considerable practical interest and could contribute to our
understanding [12]. Thus, the analysis of details about the
link between the traditional and density-based treatments is
an important theoretical issue relevant to the development of
reliable density-based tools.

The exact stationary solution is based on the x+ =
(x1 + x2)/

√
2 and x− = (x1 − x2)/

√
2 canonical transfor-

mations introduced to rewrite the Hamiltonian Ĥ as
follows:
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Due to this separated form, its ground-state wave function
ψ(x+,x−) becomes a product,
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The ψ(x1,x2) function has a pointwise [13] decomposition in
terms of natural [14] orbitals,

ψ(x1,x2) =
∞∑
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where z = [(λ + 2�)1/4 − λ1/4]/[(λ + 2�)1/4 + λ1/4] and
ω̄ = [λ(λ + 2�)]1/4. The occupation numbers in the asso-
ciated single-particle reduced density matrix [15,16] are
Pn = (1 − z2)z2n, and the uncertainty product takes [17] the
following informative form:
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]
. (5)

The exact ground-state energy is the sum of kinetic and
potential terms. With the ψ(x1,x2) function from Eq. (3) to
the original Hamiltonian in Eq. (1), this energy becomes
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and reduces to E(λ,�) = (1/2)(
√

λ + √
λ + 2�), as the

separable form in Eq. (2) dictates.
By solving the HF integro-differential equation, one gets [1]

for the space wave function
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(

α

π

)1/4

exp

[
−1

2
αx2

1

] (
α

π

)1/4

exp

[
− 1

2
αx2

2

]
,

(7)

where αHF = √
λ + � is the resulting value. Notice that

during the evaluation of the HF equation for two interacting
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fermions the exchange term drops out. Alternatively, applying
for the HF wave function its conveniently (see Sec. II) rewritten
form

ψHF (x+,x−) =
(

α

π

)1/4

exp

[
−1

2
αx2

+

] (
α

π

)1/4

× exp

[
−1

2
αx2

−

]
(8)

and a variational calculation for the ground-state energy with
the reordered Hamiltonian
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we arrive at the HF result for α since the last term vanishes
upon integration and

E(α,λ,�) = 1

2

(
α + λ + �

α

)
. (10)

One can see why the HF wave functions are called total-energy
optimal ones [12].

In terms of the precise [E(αHF ,λ,�) ≡ EHF (λ,�)] sta-
tionary ground-state energies, Wigner’s correlation (c) energy
is defined (for t � 0 in our case) as a difference,

Ec(λ,�) = E(λ,�) − EHF (λ,�), (11)

which results in Ec(t = 0−,� → 0) � −(
√

λ/8)(�/λ)2 at
small coupling. Since the kinetic and potential energy terms
of Eqs. (6) and (10) satisfy the virial theorem, the correlation
energy consists of two equal parts. The simple product form
in Eqs. (7) and (8), with a properly chosen αe parameter,
could serve as a ground-state wave function to an effective
(e) single-particle approximation based on the noninteracting
picture.

We note at this point that in the case of a repulsive
interparticle coupling in Ĥ , we have a strong restriction,
−0.5 λ � � � 0, on its value. This is more stringent than
the lower limit allowed by the Hartree-Fock approximation, in
which −λ � � � 0. Considering the sign of the interparticle
coupling, the occupation numbers Pn and also the uncertainty
product have a dual property [16] which was further empha-
sized recently for an extended model [18] with three particles.
Thus, entropic measures cannot resolve the sign of �. We
restrict ourselves in this theoretical study to the attractive case.

The rest of this paper is organized as follows. Section II is
devoted to the analytical result derived for the time-dependent
correlation energy by switching off suddenly, at t = 0, the
external confining field characterized by λ in the original
Hamiltonian. Section III contains a short summary and our
comments.

II. RESULTS

We apply a sudden [10,19] complete quench at t = 0 for
the external (∼λ) confinement in the Hamiltonian, Eqs. (2)
and (9), and write the new (n) Hamiltonian as follows:

Ĥn = −1

2
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2
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−

]
. (12)

We solve two separated, time-dependent single-particle
Schrödinger equations using the propagator method for the
two independent (normalized) initial states in the product form
of Eq. (3) and in ψHF (x+,x−) ≡ φHF (x+)φHF (x−) of Eq. (8).
The single-particle Green’s function, with an attractive har-
monic potential (1/2)ω2 ξ 2 [instead of (1/2)2�ξ 2] in Ĥn to a
time-dependent, one-dimensional single-particle Schrödinger
equation, is given by

G(ξ,ξ ′,ω,t) =
(

ω

2π i sin ωt

)1/2

× exp

{
iω

2 sin ωt
[(ξ 2 + ξ ′2) cos ωt − 2ξξ ′]

}
,

(13)

which reproduces the well-known free case [20] when ω → 0.
Then we use this propagator with a model (m) initial state
φm(ξ ) = (ωm/π )1/4 exp[−(1/2)ωmξ 2] in

�m(ξ,t) =
∫ ∞

−∞
dξ ′ G(ξ,ξ ′,ω,t) φm(ξ ′). (14)

The resulting time-dependent wave function �m(ξ,t) has
the following form:

�m(ξ,t) =
(

ωm

π

)1/4 √
Am exp

[
−1

2
ξ 2Bm(1 − i Cm)

]
,

(15)

where the new coefficients, Am(ωm,ω,t), Bm(ωm,ω,t), and
Cm(ωm,ω,t), are given by

Am = ω

ω cos ωt + iωm sin ωt
,

Bm = ωm ω2

ω2 cos2 ωt + ω2
m sin2 ωt

,

Cm = 1

2

ω2
m − ω2

ωmω
sin(2ωt).

When ωm = ω, one recovers the Schrödinger state function
for an attractive harmonic oscillator in its ground state since√

Am = exp(−iωt/2), Bm = ω, and Cm = 0 in that case.
Furthermore, there is a remarkable relation between the
time-dependent coefficients,

Bm(t)[1 − iCM (t)] = i
Ȧm(t)

Am(t)
,

in complete formal agreement with the evaluation [21] based
on different A(t) inputs.

Based on the above details and using the relevant (see
below) substitutions for ξ , ωm, and ω in Eqs. (13) and (15)
as dictated by Eqs. (11), (3), and (8), we write the product
forms of the time-dependent exact and Hartree-Fock solutions
as

�(x+,x−,t) = �(x+,t)�(x−,t),

�HF (x+,x−,t) = �HF (x+,t)�HF (x−,t).

In order to facilitate the evaluation and reading, in
Table I we summarize the relevant correspondences between
the parameters applied. The attractive case, � � 0, is analyzed.
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TABLE I. Correspondence between parameters applied. The
� � 0 case is used.

Exact Hartree-Fock

ξ ω2
m ω2 ω2

m ω2

x+ λ 0 λ + � 0
x− λ + 2� 2� λ + � 2�

First, we discuss the total energies obtained after the sudden
quench at t = 0 of the external confining field. Since the field
behind the interparticle interaction is conservative, we obtain
the constant total energies from Eqs. (6) and (10), respectively,

E(t > 0) = 1

4

√
λ +

(
1

4

√
λ + 2� + 1

2

�√
λ + 2�

)
, (16)

EHF (t > 0) = 1

4

√
λ + � +

(
1

4

√
λ + � + 1

2

�√
λ + �

)
.

(17)

For small coupling one has Ec(t > 0,� → 0) �
−5

√
λ(�/λ)2/16, which is (5/2) × Ec(� → 0). The

ratio Rc(�/λ) = Ec(t > 0)/Ec tends to unity asymptotically
for high values of (�/λ), as expected. At a moderate value of
� = λ/4 in Eq. (1), this ratio is Rc � 2.2.

The separated kinetic and potential components of the last
sums in Eqs. (16) and (17) are, as we will show below, time
dependent. It is this behavior of the separated components
which could make an effective single-particle approximation
via only the sum of these components difficult. The quantum-
mechanical definitions of the time-dependent kinetic- and
potential-energy terms in the exact and Hartree-Fock treat-
ments are given by using simple extension of the definition of
energies of a stationary system [22]. Therefore, we calculate
these energy terms with states �(x+,x−), �HF (x+,x−) and
Eq. (12) for Ĥn. Equipped with Table I, first, we give the
expectation value of the model potential term, denoted as
V −

m (t > 0), calculated by the last term of the Hamiltonian
Ĥn in Eq. (12):

V −
m (t > 0) = 1

2 (�/B−
m ), (18)

where the extra superscripts signal that it is determined by the
(x−)-dependent component of a product state, with relevant
parameters from the second line of Table I. The kinetic energies
Km(t) have two (j = + and j = −) contributions, and they
are calculated from

Kj
m(t > 0) = 1

2

∫ ∞

−∞
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4
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{
1 + [

Cj
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]2}
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which shows the role of the phase of a complex quantum-
mechanical description.

The total (constant) energy takes the following form in our
notations:

Em(t > 0) = K+
m + [K−

m (t > 0) + V −
m (t > 0)]. (20)

The first components of the kinetic energies K+
m are obviously

time independent and are given by
√

λ/4 and
√

λ + �/4. The

sums in Eq. (20) are time independent as well. They are given
by [K−

m (t > 0) + V −
m (t > 0)] = (ω2

m + ω2)/4ωm. For attrac-
tive interparticle interaction, the periodic time dependences
of Wigner’s kinetic (k) and potential (p) correlation energies
are encoded in the differences of the corresponding, exact and
HF, second and third terms of Eq. (20). We add for illustrative
purposes

Ek
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]
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32�
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]
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Ep
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2

[
f1(t)√
λ + 2�

− f2(t)√
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]
,

where f1(t) = 1 + (λ/2�) sin2(
√

2�t) and f2(t) = 1 +
[(λ − �)/2�] sin2(

√
2�t). The time periodicity occurs in

units of T = π/(4
√

2�), which increases when � decreases.
As we mentioned at Eq. (11), one can define an ef-

fective single-particle picture using, for instance, αe ≡
2
√

λ
√

λ + 2�/(
√

λ + √
λ + 2�) in Eq. (8), which, before the

sudden quench, reproduces the exact single-particle probabil-
ity density n(x), the basic variable of DFT. The associated
effective (Kohn-Sham) potential, with a certain prescription
for the constant term in it, was determined earlier [23]. We
can [24] also define, besides the density-optimal [12] choice, a
wave-function-optimal single-particle approximation via an
overlap maximization between the exact ψ(x1,x2) and the
right-hand side of Eq. (7). This constraint results in αe = ω̄,
to which ω̄ is given at Eq. (4). Thus, we could name this last,
well-motivated choice the wave-function-optimal one [14] in
effective approximations.

In the time domain, by taking an αe via ωm ≡ αe in
Table I, one could easily perform an investigation similar to
the Hartree-Fock case above, where we followed the changes
in the true (and not in an effective) Schrödinger Hamiltonian
at the wave-function level by using precise propagators. But
in the motivating efforts [22] in TD-DFT one attempts to
determine a single-particle potential energy for an effective
Hamiltonian which, in the corresponding time-dependent
Schrödinger equation, results in the exact time-dependent
probability density n(x,t) via its auxiliary time-
dependent orbital. We finish our paper with a brief
discussion of this case.

An effective potential energy, denoted by V d
e (x,t) for

a noninteracting Hamiltonian, can be constructed via the
following [22] textbook equation:

V d
e (x,t) = 1

4
(ln ne)

′′ + 1

8
[(ln ne)

′
]2 − 1

2
(k

′
e)2 − ∂ke

∂t
, (21)

where primes indicate differentiations with respect to x. This
V d

e (x,t) follows from the real part of a complex equation ob-
tained after substitution of �e(x,t) = √

ne(x,t) exp[ike(x,t)]
into the single-particle time-dependent Schrödinger equation

i
∂

∂t
�e(x,t) =

[
−1

2

∂2

∂x2
+ V d

e (x,t)

]
�e(x,t). (22)
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The probability current [1] with the above �e(x,t) is simply

je(x,t) = ne(x,t)
∂ke(x,t)

∂x
, (23)

and the continuity equation of Schrödinger’s wave mechanics,

∂

∂t
ne(x,t) + ∂

∂x
je(x,t) = 0,

is satisfied, of course, with these real quantities, independent
of the real potential. From the imaginary part of the above-
mentioned resulting complex equation one gets

ne∇ · ∇ke + ∇ke · ∇ne + ∂tne = 0. (24)

In our one-dimensional problem, this constraint is equivalent
to the continuity equation. Clearly, the circle in the above
single-particle modeling of possible practical importance
might be closed simply by specifying the real ne(x,t) and
je(x,t) quantities of �e(x,t).

In light of this practically desirable but hard [19,25]
mapping problem and with the knowledge of our exact
propagating function �(x1,x2,t), we calculate the normalized
probability density n(x,t) and the probability current j (x,t) as
follows:

n(x,t) =
∫ ∞

−∞
|�(x,x ′,t)|2 dx ′,

j (x,t) = Re

∫ ∞

−∞
�∗(x,x ′,t)

∂

i ∂x
�(x,x ′,t) dx ′.

After straightforward calculation, the basic quantity of
TD-DFT becomes

n(x,t) =
√

�(t)

π
e−�(t) x2

, (25)

where a new frequency, �(t), is introduced via the definition
of

�(t) ≡ 2 B+
m (t) B−

m (t)

B+
m (t) + B−

m (t)
.

In terms of the already known quantities the exact current is
given by

j (x,t) = �(t) x n(x,t)

[
C+

m (t) + C−
m (t)

2

]
, (26)

where the two separate phases from Eq. (15) appear in an
arithmetic-mean form. Needless to say, these exact results
satisfy the fundamental continuity equation.

With the exact n(x,t) and j (x,t) the circle may be
closed, similar to recent efforts with one-dimensional two-
particle models [4–7,22], by putting them into Eq. (23) in
order to find an effective phase ke(x,t), but only up to
a purely time-dependent function, i.e., one has ke(x,t) ⇒
Ke(x,t) = [ke(x,t) + f (t)]. Due to the f (t) function, Ke(x,t)
can modulate the effective potential via the last term in
Eq. (21). Thus, since f (t) does not modify the kinetic
energy contribution, only the expectation value of the potential
energy is subject to it. Clearly, we arrive at the dynamical
version of the freedom considered earlier in time-independent
energetics [23] to fix a constant there. We postpone therefore
the presentation of our mapping results for the potentials and
energies, corresponding to different (and not only sudden)
quenches in the correlated model system, to a dedicated
future presentation. There, in particular, the capability of the
adiabatic [Ke(x,t) = 0] and dynamic approximations will be
investigated in detail within the TD-DFT framework.

III. SUMMARY

There is a general expectation that, in principle, the time-
dependent density-functional theory is an exact formulation
of the time evolution of an interacting system. Motivated
by this challenge of considerable practical interest, in this
study we have investigated the time-dependent extension of
Wigner’s correlation by using an interacting one-dimensional
model system. We applied a sudden quench in the external
confinement behind the singlet ground-state state in order
to propagate the wave functions from their initial forms in
the exact and Hartree-Fock treatments. We have derived, and
discussed briefly, the exact time-dependent probability density
and probability current density, which can be the inputs in
constructing an effective single-particle potential according
to the motivating recent efforts. We pointed out, however,
a freedom in such a construction which resides in a purely
time-dependent phase component to an auxiliary complex
wave function on which the presently applied mapping of exact
probabilistic information onto a single-particle model is based.
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