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Shape resonances in the electron-hydrogen system with screened Coulomb potentials
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We investigate the shape resonances of the electron-hydrogen system embedded in Debye plasma environments
modeled by screened Coulomb potentials. The complex-coordinate rotation method is employed to calculate the
resonance parameters and the Hylleraas-type wave functions are used to represent the correlation effects of the
two electrons. The 1Se resonance states of H− above the N = 2–5 thresholds of H atom are investigated and
the resonance parameters for a Debye length ranging from infinity to small values are reported. It is shown that
the widths of the shape resonances lying above the H(N = 4,5) thresholds exhibit some interesting behaviors in
relatively strong screening situations. The possible reason for such phenomena is discussed.
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I. INTRODUCTION

The investigation of resonance phenomena in electron-
hydrogen systems with screened Coulomb potentials has
gained considerable attention due to its important applications
in various aspects of atomic physics, plasma physics, and astro-
physics [1–4]. For example, the screened Coulomb potentials
can be used to describe the weakly coupled plasmas in the
Debye-Hückel model. The screening parameter is referred to
as the Debye length D, which is related to the temperature and
the number density of the charged particles in plasmas [5]. In
the past few years, several theoretical methods have been used
by different groups to calculate the Feshbach resonances in the
electron-hydrogen system with screened Coulomb potentials
such as the stabilization method initiated by Kar and Ho [6–8],
the close-coupling approximation employed by Basu [9–11],
the R-matrix method with pseudostates introduced by Zhang
et al. [12–14], and the complex-coordinate rotation method by
Ho and co-workers [15,16]. In addition, the scattering of the
electron-hydrogen system in Debye plasmas and the photode-
tachment processes of H− embedded in weakly coupled and
dense quantum plasmas have also been investigated by other
authors [17–20] and abundant phenomena have been found.

Although there is considerable work on Feshbach reso-
nances of H− with screening environments, investigations on
shape resonances are scarce. The formations of Feshbach and
shape resonances in the scattering of electron and hydrogen
are based on different underlying mechanisms. The shape
resonances, which are also called open-channel resonances,
depict the electron tunneling through a potential barrier formed
by the nonzero angular momentum of the electron, remaining
confined inside the barrier for the lifetime of the resonance,
and then tunneling out. The Feshbach resonances, or the
closed-channel resonances, are formed when the electron is
temporarily trapped by the potential well formed by the at-
tractive static and polarization potentials between the electron
and excited target. The shape resonances generally lie above
the corresponding thresholds and have larger widths, whereas
the Feshbach resonances always lie below the thresholds
and have smaller widths. Details of the classification of
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shape and Feshbach resonances have been given previously
[21,22]. For the unscreened case where only pure Coulomb
interactions exist, the shape resonances of the H− system have
been extensively investigated in the past few decades both
theoretically and experimentally (see [23–26] and references
therein). A detailed analysis of S- and P -wave shape and
Feshbach resonances in H− was presented by Bürgers and
Lindroth [27] using the complex-coordinate rotation method
with a Sturmian-type basis in perimetric coordinates. The
Feshbach resonances were well classified by approximate
group-theoretic quantum numbers N (K,T )An [28]. It is also
worth mentioning here that recently the lowest S-wave shape
resonances of H− were investigated by Kar and Ho [29]
and interesting results were obtained by tracing the shape
resonance pole from H− to Ps− via changing the mass of
the target nucleus.

In this work we focus our attention on the singlet-S-
wave shape resonances of electron-hydrogen system in the
Debye model plasmas described by the screened Coulomb
potentials. Due to the different formation mechanism and
possible autoionization routes between the shape and Feshbach
resonances, Debye plasmas may have different screening
effects on the resonance parameters. Therefore, the inves-
tigations of shape resonances are supplementally important
for a full understanding of the electron correlations and
plasma screening effects for multielectron atoms. In the present
calculation, the complex-coordinate rotation method [30,31]
is employed to extract the 1Se shape resonance parameters.
The highly correlated Hylleraas-type basis functions are used
to construct the system wave functions and the electron-
electron correlations can be taken into account properly.
The convergence of our calculations has been achieved by
increasing the numbers of Hylleraas basis functions. Atomic
units are used throughout the work.

II. CALCULATIONS

The nonrelativistic Hamiltonian describing the negative
hydrogen ion in the screening environments is given by

H = −1

2
∇2

1 − 1

2
∇2

2 − exp (−r1/D)

r1
− exp (−r2/D)

r2

+ exp (−r12/D)

r12
, (1)
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where r1 and r2 are the radial coordinates of the two electrons
from the hydrogen nucleus and r12 is the relative distance
between the electrons. The screening parameter D is the Debye
length, which characterizes the range of the plasmas. The
infinite value of D corresponds to the free-atom situation,
whereas the smaller value of D represents strong screening
effects. In the present calculation, the screened Coulomb
potential is approximated by using the Taylor expansion

exp (−rij /D)

rij

=
m∑

n=0

(−1)n
rn−1
ij

Dnn!
, (2)

where rij is the radial coordinate between any pairs of charged
particles i and j , with i and j the electrons or the nucleus.
In Eq. (2) m = 0 indicates the pure Coulomb interactions
and m > 0 represents the first-, second-, and higher-order
perturbations of screening effects on the Coulomb interaction.
In the present calculation, an extensive expansion of m = 18
throughout our work (the order for 1/D up to the power of
18) is used and the smallest value for D is restricted to 10 a.u.
(1/D = 0.1). It is therefore believed that keeping the lowest 19
terms of the Taylor series in the expansion would be reasonably
accurate for the problems investigated here.

For the S-wave states we use the Hylleraas-type wave
functions to describe the system

�klm(r1,r2) =
∑

klm

Cklme−α(r1+r2)rk
12

(
rl

1r
m
2 + rl

2r
m
1

)
, (3)

with k + l + m � ω, where k, l, m, and ω are positive integers
or zero and α is the nonlinear scaling parameter. In the present
work we have performed calculations with ω = 18, 19, 20, and
21 separately, which couple to total of 715, 825, 946, and 1078
terms in the system wave functions, respectively, to examine
the convergence behaviors of our calculations.

The complex-coordinate rotation method is employed to
extract the resonance parameters. The radial coordinates are
rotated through an angle of θ ,

r → |r|eiθ . (4)

The Hamiltonian of the system is then transformed into

H (θ ) = T e−2iθ + V ′(θ ), (5)

where T is the kinetic energy operator and the potential V ′(θ )
reads

−exp (−r1e
iθ /D)

r1eiθ
− exp (−r2e

iθ /D)

r2eiθ
+ exp (−r12e

iθ /D)

r12eiθ
.

(6)

Under the complex scaling, the potential operators in the form
of Eq. (2) would be scaled like

exp (−rij e
iθ /D)

rij eiθ
=

m∑

n=0

(−1)n
rn−1
ij

Dnn!
ei(n−1)θ . (7)

We calculate the matrix elements 〈rn−1
ij 〉 for n = 0 and 2 �

n � 18 analytically. These matrix elements are then multiplied
by the scaling factor ei(n−1)θ , respectively, for different n. The
final θ -dependent matrix elements for the potential operators
can be constructed by combining all the θ -dependent matrix
elements for various expectation values of rij factors.

Due to the fact that the Hylleraas-type wave functions
are nonorthogonal basis functions, the complex eigenvalue
problem is solved with

∑

j

Cλ
j (Hij − EλNij ) = 0, (8)

in which

Hij = 〈ψi |H (θ )|ψj 〉 (9)

and the overlapping matrix

Nij = 〈ψi |ψj 〉. (10)

The resonances are determined by finding the position where
the complex eigenvalues exhibit the most stabilized character
with respect to the changes of rotation angle θ , the nonlinear
scaling parameter α, and the expansion length of the resonant
wave function [31]

|∂Eres|
∂θ

∣∣∣∣
α=αopt

= min,
|∂Eres|

∂α

∣∣∣∣
θ=θopt

= min. (11)

Once the position of the pole is determined, the resonance
energy Er and total width 	 are given by

Eres = Er − 1
2 i	. (12)

TABLE I. Convergence of the present calculations using different expansion lengths of basis sets at D = ∞ and comparisons with previous
complex-scaling calculations using different kinds of bases. Half of the total width (	/2) is used for convenience. All the results are given in
atomic units.

H−(N = 2) H−(N = 3) H−(N = 4) H−(N = 5)

ω M Er 	/2 Er 	/2 Er 	/2 Er 	/2

18 715 −0.103035727 0.015627345 −0.03544006 0.00813109 −0.0285491 0.00131957 −0.0168706 0.0012751
19 825 −0.103035664 0.015627309 −0.03543887 0.00813107 −0.0285507 0.00131951 −0.0168850 0.0012726
20 946 −0.103035685 0.015627314 −0.03543916 0.00813108 −0.0285505 0.00131835 −0.0168845 0.0012672
21 1078 −0.103035677 0.015627312 −0.03543900 0.00813104 −0.0285501 0.00131871 −0.0168847 0.0012678

−0.103035676a 0.015627312a −0.03543901a 0.00813107a −0.0285503a 0.00131876a −0.0168848a 0.0012685a

−0.10303569b 0.01562729b

−0.1030357c 0.0156273c

aSturmian-type basis [27].
bHylleraas-type basis [29].
cExponential correlated basis [29].
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III. RESULTS AND DISCUSSION

We have examined the convergence of our calculations. The
shape resonances that lie above the H(N = 2,3,4,5) thresholds
at D = ∞ are calculated with ω = 18,19,20,21, respectively.
To find the stabilized character of the complex eigenvalue,
calculations are performed by varying the rotational angle θ

from 0.3 to 0.9 rad at intervals of 0.02 rad and the nonlinear
scaling parameter α from 0.02 to 0.50 at intervals of 0.02.
All the results are shown in Table I. Previous complex-scaling
calculations employing a Sturmian-type basis by Bürgers and
Lindroth [27] and exponential-correlated and Hylleraas wave
functions by Kar and Ho [29] are also included for comparison.
It can be seen that the convergence of the present calculations
improves with increasing size of the basis set and the results
with ω = 21 are in excellent agreement with the elaborate
calculations of Bürgers and Lindroth with the Sturmian-type
basis [27]. For the lowest H−(N = 2) shape resonance, the
present results are closer to the results in Ref. [27] than those
of Ref. [29].

In Fig. 1(a) we have displayed the 1Se shape resonances in
the present calculations and the Feshbach resonances predicted

FIG. 1. (Color online) The 1Se shape resonances of H− above
the H(N = 2–5) thresholds in the complex energy plane with
different Debye lengths D: (a) D = ∞, (b) D = 50, (c) D = 30, and
(d) D = 15. The dash lines (blue) represent the thresholds of H [32].
The solid circles (red) refer to the shape resonances lying above
the corresponding thresholds in the present calculations. The stars
(magenta) are the Feshbach resonances lying below the thresholds
predicted in previous work [6,15,16,27].

FIG. 2. (Color online) Rotational paths for the H−(N = 2) shape
resonances at D = 100 for a set of scaling parameters α = 0.22–0.34.
Each line represents a single value of α with different rotational angle
θ ≈ 0.40–0.90. Two rotational paths (α = 0.24 and 0.28) are shown
in detail. The (black) solid line refers to the rotational path with an
optimized value of αopt = 0.28.

in previous work [6,15,16,27], as well as the corresponding H
thresholds [32] in the complex energy plane. It is clear that the
shape resonances generally have much larger widths than the
Feshbach resonances associated with the same thresholds. The
larger widths also imply that larger θopt are required in Eq. (4)
to make sure that all the shape resonances can be extracted
from the rotated continuum. In the present calculations,
the optimized θ for H−(N = 2,3,4,5) shape resonances are
0.675, 0.475, 0.575, and 0.425 rad, respectively. We show
also results for the shape resonance poles in the screening
environment for D = 50, 30, and 15 in Figs. 1(b)–1(d),
respectively.

The essential procedure to extract the resonance parameters
within the framework of complex-coordinate rotation can be
found elsewhere. In Fig. 2 we show the rotational diagram of
the H−(N = 2) shape resonance at D = 100 for illustrative
purposes. The rotational paths for a set of scaling parameters
α are displayed with different rotational angle θ . For each
curve, the movement of the complex energy with increasing θ

slows down (i.e., the energy is stabilized) when θ approaches
θopt = 0.675 rad, as described in Eq. (11). With further
examination of the changes of resonance energy with respect
to α at θopt, the value of αopt = 0.28 is obtained. Finally, the
complex eigenvalue at θopt and αopt can be used in Eq. (12)
to extract the resonance parameters. In such a manner, we
have calculated the lowest four shape resonances at Debye
lengths from ∞ to 10. All the results are shown in Table II.
The resonance energies and the corresponding H thresholds
are displayed in Figs. 3 and 4 with the change of 1/D; the
resonance widths are shown in Fig. 5.

From Figs. 3 and 4 we can see that all the resonance energies
move upward with decreasing D due to the overall repulsive
effect of the screened potentials. It is also very interesting to
note that the shape resonances increase with a speed similar
to the corresponding H thresholds, despite the splitting of
hydrogen states with the same principle quantum number n

in the screening environments. This reflects the height of
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TABLE II. The 1Se shape resonances of H− above the H(N = 2–5) thresholds for selected values of the screening parameter D. The
resonance energies and widths are generally kept to six significance digits. All the results are given in atomic units.

H−(N = 2) H−(N = 3) H−(N = 4) H−(N = 5)

D Er 10−2	 Er 10−2	 Er 10−3	 Er 10−3	

∞ −0.1030357 3.12546 −0.0354390 1.62621 −0.0285501 2.63741 −0.0168847 2.53567
500 −0.1010465 3.12602 −0.0334629 1.62730 −0.0265850 2.64569 −0.0149406 2.53958
300 −0.0997325 3.12700 −0.0321721 1.62917 −0.0253137 2.65936 −0.0137059 2.54467
200 −0.0981035 3.12887 −0.0305882 1.63270 −0.0237683 2.68394 −0.0122303 2.55123
150 −0.0964896 3.13145 −0.0290372 1.63747 −0.0222711 2.71516 −0.0108288 2.55624
125 −0.0952092 3.13399 −0.0278198 1.64211 −0.0211081 2.74382 −0.0097599 2.55841
110 −0.0941688 3.13637 −0.0268392 1.64641 −0.0201793 2.76909 −0.0089194 2.55880
100 −0.0933067 3.13856 −0.0260326 1.65033 −0.0194210 2.79118 −0.0082422 2.55819
85 −0.0916459 3.14334 −0.0244941 1.65875 −0.0179891 2.83542 −0.0069871 2.55489
75 −0.0901837 3.14813 −0.0231566 1.66708 −0.0167607 2.87550 −0.0059368 2.55011
70 −0.0893023 3.15128 −0.0223583 1.67250 −0.0160351 2.89999 −0.0053288 2.54679
65 −0.0882915 3.15514 −0.0214499 1.67907 −0.0152164 2.92739 −0.0046549 2.54286
60 −0.0871203 3.15993 −0.0204072 1.68719 −0.0142868 2.95902 −0.0039062 2.53853
55 −0.0857475 3.16598 −0.0191987 1.69727 −0.0132228 2.99433 −0.0030733 2.53503
50 −0.0841163 3.17378 −0.0177822 1.71008 −0.0119952 3.03347 −0.0021481 2.53434
45 −0.0821465 3.18405 −0.0161001 1.72668 −0.0105667 3.07518
40 −0.0797210 3.19796 −0.0140729 1.74884 −0.0088905 3.11610
37 −0.0779767 3.20882 −0.0126457 1.76586 −0.0077427 3.13712
35 −0.0766622 3.21747 −0.0115874 1.77915 −0.0069103 3.14779
32 −0.0744120 3.23318 −0.0098110 1.80324 −0.0055518 3.15495
30 −0.0726878 3.24599 −0.0084804 1.82265 −0.0045693 3.15082
27 −0.0696780 3.26991 −0.0062240 1.85852 −0.0029808 3.12170
25 −0.0673211 3.28999 −0.0045176 1.88851 −0.0018587 3.07920
20 −0.0596975 3.36281
17 −0.0533887 3.43166
15 −0.0481045 3.49489
13 −0.0416472 3.57849
12 −0.0378691 3.63033
11 −0.0336577 3.69033
10 −0.0289651 3.75952

the repulsive potential barrier related to the formation of
shape resonances being nearly unchanged when changing the

FIG. 3. (Color online) The H−(N = 2)1Se and H−(N = 3)1Se

shape resonances and their corresponding H thresholds as a function
of 1/D: thin lines, H thresholds; dashed lines, H− shape resonances
above the thresholds. (See the text about the splitting of energy levels
of the parent states in the screening environment.)

screening strength. Also in Figs. 3 and 4, the degeneracies of
the H(nl) states with the same principle quantum number n

FIG. 4. (Color online) The H−(N = 4)1Se and H−(N = 5)1Se

shape resonances and their corresponding H thresholds as a function
of 1/D. The H(N = 6) thresholds are also shown for comparison.
(See the text about the splitting of energy levels of the parent states
in the screening environment.)
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(a) (b)

(c)
(d)

FIG. 5. Width of the 1Se shape resonances in the H− system as a function of 1/D. The H−(N = 2–5) resonances are shown in (a)–(d),
respectively.

are destroyed in the screening environment. For example, the
n = 3 parent states (the 3s, 3p, and 3d states of the H atom)
are split into three separate curves when 1/D is increased
from zero, with the lower angular momentum states lying at
lower energies, and the separation becomes more visible in
the figures when 1/D is sufficiently large. Additionally, as we
can see from Eq. (1), the long-range pure Coulomb interactions
become short-range ones when the screening environments are
introduced. With increasing screening strength, i.e., decreasing
D, the potentials between the outer electron and the excited
H atom will be compressed to a smaller region. As a result,
the thickness of the potential barrier would decrease. From the
above discussion that shape resonances always lie at nearly
the same positions above the corresponding thresholds, the
lifetime of the autoionizing electron will be shortened and
the resonance width would consequently increase due to the
uncertainty principle.

We show the widths of H−(N = 2 and 3) shape resonances
in Figs. 5(a) and 5(b), respectively. It can be seen that both of
them increase monotonically with decreasing D in the entire
region that we investigated. However, it is interesting to find
that the widths of H−(N = 4,5) shape resonances displayed

in Figs. 5(c) and 5(d) show different trends from the H−(N =
2,3) resonances. Their widths first increase with decreasing D,
reaching the maximum at D = 32 and 110 for N = 4 and 5
shape resonances, respectively, and then decrease as the value
of D is further decreased. The convergence of our calculations
at different Debye length D has been examined and the results
are shown in Table III. Both the resonance energies and widths
reported here are accurate to at least four significant digits. We
present here an explanation for such phenomena. Generally,
the 1Se shape resonance states may have components of prod-
ucts with more than one angular momentum, i.e., the npn′p,
ndn′d, nf n′f , etc., due to the strong configuration interac-
tions. It was also conjectured by Bürgers and Lindroth [27] that
“these shape resonances are due to a [nonadiabatic] coupling
between different binding and [antibinding] adiabatic poten-
tials [that] corresponds to a mixing of N (KT ) or [N1N2m]
approximate quantum numbers [28,33] where both positive
and negative K would occur.” The couplings between different
configurations are very strong for higher-lying resonances. As
a result, the shape resonance may have more routes to autoion-
ization. First, the shape resonance can autoionize to one of the
lower-lying target states by ejecting an electron. Such a process
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TABLE III. Convergence of the present calculations using different expansion lengths at D = 100 and 30. All the results are given in atomic
units.

D = 100 H−(N = 2) H−(N = 3) H−(N = 4) H−(N = 5)

ω M Er 	 Er 	 Er 	 Er 	

18 715 −0.09330672 0.03138572 −0.0260336 0.0165037 −0.0194219 0.00278922 −0.0082409 0.00255477
19 825 −0.09330666 0.03138563 −0.0260325 0.0165033 −0.0194212 0.00279250 −0.0082428 0.00255843
20 946 −0.09330668 0.03138565 −0.0260328 0.0165035 −0.0194210 0.00279146 −0.0082416 0.00255821
21 1078 −0.09330667 0.03138564 −0.0260326 0.0165033 −0.0194210 0.00279118 −0.0082422 0.00255819
D = 30 H−(N = 2) H−(N = 3) H−(N = 4)

ω M Er 	 Er 	 Er 	

18 715 −0.07268777 0.03246004 −0.0084851 0.0182461 −0.0045683 0.00315268
19 825 −0.07268776 0.03245996 −0.0084800 0.0182303 −0.0045691 0.00315121
20 946 −0.07268775 0.03245992 −0.0084807 0.0182312 −0.0045694 0.00315061
21 1078 −0.07268775 0.03245991 −0.0084804 0.0182265 −0.0045693 0.00315082

is similar to the autoionization of Feshbach resonances. It has
relatively small contributions to the total width and would re-
sult in the width narrowing with increasing screening strength
(see [6,7,15] for the changes of Feshbach resonance width).
Second, the shape resonance would also have the probability to
eject an electron, through tunneling out of the potential barrier,
and autoionize to the immediately-lower-lying states of target.
For example, the H−(N = 4) shape resonance can eject a P -,
D-, or F -wave electron and autoionize to the 4p, 4d, or 4f

excited state, respectively, of the H atom. The resonance width
is largely determined by the thickness of the potential barrier.
In general, the tunneling of the electron through the barrier is
usually quite fast [21] and the shape resonance tends to decay
into its parent state rather than into one of the lower-lying
states of the H atom. This process contributes a large part to the
total width and leads to the broadening of the resonance width
with increasing screening environments. For the H−(N = 2,3)
shape resonances, the resonance widths are much larger than
the nearby Feshbach resonances by one or two orders of
magnitude. The overall effect of the screening environments on
the total width is broadening. However, for the H−(N = 4,5)
shape resonances, as we can see from Fig. 1, their resonance
widths are relatively small and comparable to the Feshbach
resonance widths, which means that these two processes
may have comparable contributions to the total width. The
competition of these two effects results in the narrowing of
the total width after they have reached the critical values
of D.

Finally, we should also mention that there might be possible
interference between the shape resonances and those Feshbach
resonances associated with higher thresholds. For exam-
ple, the H−(N = 5) shape resonance (Er = −0.016 884 7)
lies between the H−(6s6s)1Se (Er = −0.018 011 9) and
H−(6p6p)1Se (Er = −0.016 669 5) Feshbach resonances [27]
at D = ∞ and reaches a position very close to the H(N = 6)
thresholds at D = 50 (see Fig. 4). This implies that the

potential barrier associated with H(N = 5) thresholds can
be affected by the potential well associated with H(N = 6)
states. Unfortunately, we are not in a position to construct
potential curves for the shape and Feshbach resonances for
such high-lying states in our present investigations. Further
work is needed to shed light on this open question.

IV. CONCLUSION

In the present work, we have investigated the 1Se shape
resonances of H− system embedded in Debye screening
environments. Four resonances associated with and lying
above the H(N = 2–5) thresholds are calculated and the
resonance parameters are reported from D = ∞ to small
values. For the unscreened case, our results agree with those
in Ref. [27] quite well. For the screened cases, it has been
shown that the resonance energy follows a trend similar
to the corresponding thresholds with increasing screening
effects. The resonance widths of H−(N = 2,3) resonances
increase monotonically; however, the widths for H−(N = 4,5)
resonances show a maximum structure. The decrease of
the resonance width for higher-lying shape resonances at
relatively strong screening environments is probably due to
the competition of two different autoionizing routes. The one
describing the tunneling of the electron through potential
barrier results in broadening of the width, whereas the other
describing the autoionization to lower-lying thresholds results
in narrowing. It seems further investigations on higher partial-
wave shape resonances are worthwhile, especially for the
region around high-lying H thresholds. We believe our results
will provide useful references for future investigations.
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