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We present experimental observations of seven vibrational levels, v′ = 20–26, of the 13�+
g excited state of

Li2 molecules by the photoassociation (PA) of a degenerate Fermi gas of 6Li atoms. For each vibrational level,
we resolve the rotational structure using a Feshbach resonance to enhance the PA rates from p-wave collisions.
We also determine the spin-spin and spin-rotation interaction constants for this state. The absolute uncertainty of
our measurements is ±0.00002 cm−1 (±600 kHz). We use this data to further refine an analytic potential for this
state.
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I. INTRODUCTION

Photoassociation (PA) of ultracold atoms is a powerful
spectroscopic technique that has been used extensively since
the advent of laser cooling to make precise measurements
of high-lying vibrational levels that are often difficult to
access with traditional bound-bound molecular spectroscopy.
In addition to improving our knowledge of weakly bound
molecular states, PA spectroscopy has also allowed precise
determinations of atom-atom scattering lengths and excited
atomic state lifetimes. PA resonances have also been used to
control atomic interactions via optical Feshbach resonances
and for the production of ultracold molecules, as discussed in
several excellent review articles [1–5].

In this work, we measure the binding energies of seven vi-
brational levels, v′ = 20–26, of the 13�+

g excited state of 6Li2
molecules by photoassociating a quantum degenerate Fermi
gas of lithium atoms held in a shallow optical dipole trap. The
absolute uncertainty of our measurements is ±0.00002 cm−1

(±600 kHz). As in previous high-resolution photoassociative
spectra of lithium, our frequency resolution allows us to
resolve the rotational structure of these levels [6]. In addition,
we observe and quantify the spin-spin and spin-rotation
coupling constants for this state. As shown in Fig. 1, these
measurements bridge a gap between measurements of the
deeply lying v′ = 1–7 levels by Fourier transform infrared
(FTIR) spectroscopy (of both 7,7Li2 and 6,6Li2 molecules) [7,8]
and measurements of the binding energies of levels v′ = 62–90
of 7,7Li2 and v′ = 56–84 of 6,6Li2 by photoassociation of
atoms in a magneto-optic trap [9].

The motivations for the present work of mapping the
excited-state potential in this wavelength range include the
following: (a) these measurements provide an important
addition to the existing data allowing us to make a much more
complete and accurate, global description of this state; (b)
knowing the locations of these intermediate states is important
for the eventual formation of ultracold ground triplet state
molecules since these states are expected to strike the best
compromise between a good Franck-Condon overlap with
the initial state (either a Feshbach resonance molecule or an
unbound collision state) and the final state in the a3�+

u poten-
tial; and (c) this wavelength range is particularly convenient

for future experiments since it is easily accessible by both
solid-state (Ti:sapphire) and diode lasers. This latter point
is relevant to future experiments on the probing, alignment,
and spinning of ultracold, weakly bound Li2 molecules (i.e.,
either Feshbach halo dimers or molecules in the ground triplet
state) with high-intensity, ultrashort pulses from Ti:sapphire
lasers [11–13]. In such experiments, knowing the excited-state
energy levels is important as off-resonant excitation of the
ground-state molecule is intended and excited-state transfer
should be avoided.

This paper is organized as follows. Section II presents a
description of the experimental apparatus and our measure-
ment methodology. In Sec. III, we show several examples of
measured spectra, and in Sec. IV, we discuss the interpretation
and assignment of the PA spectral features. In Sec. V, we
introduce the model for the potential-energy curve for Li2
(13�+

g ), and we present refined analytic potentials for this state
and the a3�+

g state of 6,6Li2 and 7,7Li2, which were calculated
using experimental results from this paper. We conclude with
a summary and outlook for future work in Sec. VI.

II. EXPERIMENTAL METHODS

For these measurements, we load a magneto-optic trap
(MOT) with 3 × 107 6Li atoms in 20 s directly from an
effusive oven, as described in [14,15]. We then compress
and cool the MOT by increasing the axial magnetic field
gradient from 40 to 60 G cm−1, lowering the intensity and
shifting the frequency of both the “pump” light (near the
2s1/2, F = 3/2 → 2p3/2, F = 5/2 transition frequency) and
the “repump” light (near the 2s1/2, F = 1/2 → 2p3/2, F =
3/2 transition frequency) to 10 MHz below resonance. During
this compression and cooling phase, a crossed dipole trap
(CDT) of 200 W total power is turned on and, in less than
10 ms, 5% of the 6Li atoms are transferred into the CDT.
We observe extremely rapid trap losses due to light-assisted
collisions and hyperfine relaxation, and we therefore optically
pump to the lower hyperfine state (F = 1/2) during the
transfer by extinguishing the repump light. This procedure
produces an almost equal population of the two sublevels
of the lower hyperfine state: |1〉 ≡ |F = 1/2, mF = 1/2〉
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FIG. 1. (Color online) The 13�+
g potential studied in this work

(solid line). The solid filled areas indicate regions where experimental
data is available for 6,6Li2. The present work includes high-resolution
data from seven new vibrational states (v′ = 20 to 26), including the
N ′ = 0,1,2 rotational states in each case. The theoretical long-range
potential according to [10] is shown by the dotted line.

and |2〉 ≡ |F = 1/2, mF = −1/2〉. The light for the CDT is
derived from a 100 W fiber laser (SPI Lasers, SP-100C-0013)
operating at 1090 nm with a spectral width exceeding 1 nm.
The CDT is comprised of two nearly copropagating beams
crossing at an angle of 14◦. Each beam has a maximum power
of 100 W (for a total power of 200 W) and is focused to a
waist (1/e2 intensity radius) of 42 μm and 49 μm. After the
MOT light is extinguished, the CDT beam power is ramped
down linearly in time to 100 W total (50 W per beam) in
100 ms, while applying a homogenous magnetic field of 800 G.
Rapid thermalization occurs because of the large collision
rate induced by a very wide s-wave Feshbach resonance
between the |1〉 and |2〉 states at 834 G [16]. At the end of
this forced evaporation stage, there are approximately 106

atoms remaining at a temperature of 200 μK (verified by a
time-of-flight expansion measurement). At this point, atoms
are transferred into a lower-power CDT which is superimposed
on the high-power CDT. The light for this second CDT is
generated by a narrow-linewidth (<10 kHz), 20 W fiber laser
operating at 1064 nm (IPG Photonics, YLR-20-1064-LP-SF).
This transfer is done to avoid ensemble heating observed in the
SPI laser CDT and allows further forced evaporative cooling
to much lower temperatures. The IPG CDT is comprised of
two beams crossing at an angle of 60◦ and with a total power
of 15 W. The beams are focused to a waist (1/e2 intensity
radius) of 25 and 36 μm. The IPG CDT beam powers are
controlled by two independent acousto-optic modulators and
are configured to have a frequency difference of 190 MHz
so that the rapidly moving interference pattern generated at
the intersection of the two beams has no effect on the atomic
motion and the atoms experience the averaged potential of the
two beams. After the transfer of atoms into the IPG CDT, the
magnetic field is lowered to 300 G, where the s-wave collision
cross section between the |1〉 and |2〉 states is large enough
to continue efficient evaporation. This magnetic field is also
chosen because at this value there are no bound molecular
states near to the atom-atom threshold into which the atoms
can decay via three-body recombination. The goal of this is to

produce very cold atomic distributions without also forming
Feshbach molecules which would occur for evaporation near
the 834 G Feshbach resonance. The trap depth is lowered
using a combination of linear and exponential ramps from
Utrap = 500 μK to Utrap = 8 μK in typically 5 s. At the
end of this evaporation step, the ensemble is composed of
3 × 104 atoms with equal populations of the |1〉 and |2〉 states,
and the temperature (verified by time-of-flight expansion)
is 800 nK.

After this preparation step, the magnetic field is lowered
to a very small value and PA light from a single-frequency,
tunable Ti:sapphire laser beam illuminates the atomic cloud
for an exposure (hold) time in the range 0.5–2 seconds. The
PA light is a single beam that propagates colinearly with one
of the arms of the lower-power CDT and is focused to a waist
(1/e2 intensity radius) of 50 μm. The light is linearly polarized
and aligned along the direction of the bias magnetic field
used for the measurements of p-wave Feshbach enhanced PA.
When the bias field is off, there persists a residual magnetic
field below 400 mG. For these experiments, the power of
the PA light is up to 100 mW, corresponding to an intensity
of 1270 W cm−2. When the photon energy hνPA equals the
energy difference between the unbound state of a colliding
atomic pair and a bound molecular excited state, molecules
form at a rate proportional to the atom-atom collision rate and
atoms are subsequently lost from the trap. This loss occurs
because the excited-state molecule either radiatively decays
into the unbound continuum of two free atoms with sufficient
energy to be lost from the shallow CDT or it decays into
a bound-state molecule which is not detected in our atom
number measurement. The probability of this latter event can
be quite high when exciting particular vibrational levels in the
13�+

g excited state [17]. After this exposure time, the number
of atoms remaining is determined by an absorption image of
the cloud immediately after the extinction of the CDT.

For some of the measurements presented here, νPA was
determined by a commercial wave meter (Bristol 621A-NIR)
with an absolute accuracy of 60 MHz and a shot-to-shot
repeatability (i.e., precision) of 10 MHz in the frequency
range of this work. For the high-resolution measurements,
the Ti:sapphire laser, operating in the range from 770 to
820 nm, is stabilized to a fiber-based, self-referenced, fem-
tosecond frequency-comb operating with a center wavelength
of 1550 nm, as described previously [19]. Briefly, the fre-
quency comb is an erbium-doped, fiber laser frequency comb
with two amplified output branches. One branch is used for
self-referencing the carrier-envelope offset frequency via an
f –2f interferometer. The second branch is also spectrally
broadened in a highly nonlinear fiber, but not to a full octave
of optical frequencies. The output of this branch is frequency
doubled using an array of periodically poled lithium niobate
waveguides with different poling periods. The frequency-
doubled comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is used to
stabilize the Ti:sapphire laser to the frequency comb. For this
work, we verified the comb-referenced Ti:sapphire’s absolute
frequency uncertainty by measuring the resonant frequencies
of the D2 line at 780 nm (the 5s1/2, → 5p3/2 transition) of
85Rb atoms in a vapor cell and comparing them with their
known values [18]. We verified that the absolute uncertainty
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is ±600 kHz, which is consistent with that determined
previously [19].

III. OBSERVATIONS

In our initial search of PA resonances, we held the
magnetic field near to the s-wave Feshbach resonance between
the |1〉 and |2〉 states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA loss
feature, which facilitated initial detection [20]. After the
approximate locations of the PA resonances were found in this
way, we performed a high-resolution scan with an ensemble
temperature of 15 μK and with no bias magnetic field [21].
We observed that the PA spectrum of each vibrational level
had associated with it three narrow (below 10 MHz FWHM)
features distributed across a range of 0.7 GHz, as shown
in Fig. 2. Figure 3 shows a higher-resolution scan of the
second feature shown in Fig. 2. In order to reduce as much
as possible the thermal broadening and the inhomogeneous ac
Stark shift produced by the optical dipole trapping potential,
these data were obtained in a very shallow trap (Utrap/kB ∼
8 μK) and at an ensemble temperature of 800 nK, which
is a temperature well below the Fermi temperature for this
two-component Fermi gas (T/TF = 0.4). We then verified that
these PA resonances arise from collisions between atoms in
states |1〉 and |2〉 by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The spin
purification was done at the end of the preparation sequence,
and we observed the absence of these atom loss features
with either one of the states removed [22]. To rule out the
absence of these loss features due to a simple reduction of
the density, we observed a reappearance of the PA features
when using an incoherent mixture of the |1〉 and |2〉 states
with the same total number of particles and temperature
as the ensembles after spin purification. Given that p-wave
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FIG. 2. Normalized 6Li atom number as a function of photoas-
sociation laser energy hνPA after a 2 s hold time with zero-bias
magnetic field and a PA laser intensity of IPA = 635 W cm−2. These
three resonances correspond to a transition from an initial unbound
molecular state with N = 0, G = 0 to the v′ = 21 vibrational level
of the 13�+

g excited state with N ′ = 1, G′ = 0. The ensemble
temperature was 15 μK.
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FIG. 3. High-resolution scan of the normalized 6Li atom number
as a function of photoassociation laser energy hνPA after a 750 ms hold
time with zero-bias magnetic field and a PA laser intensity of IPA =
635 W cm−2. This is the second of the three resonances shown in
Fig. 2 corresponding to a transition from an initial unbound molecular
state with N = 0, G = 0 to the v′ = 21 vibrational level of the 13�+

g

excited state with N ′ = 1, G′ = 0. The ensemble temperature was
800 nK. The FWHM of this loss peak is 0.00048 cm−1 (14.4 MHz).

collisions are dramatically suppressed at these temperatures
and that these PA loss features were visibly enhanced by the
s-wave Feshbach resonance (FR), we inferred that they arise
from s-wave collisions between atoms in states |1〉 and |2〉.
Thus, they correspond to a transition from an initial unbound
molecular state with N = 0, G = 0 to an excited state with
N ′ = 1, G′ = 0 (assuming G is a good quantum number).
As we describe later, we find that spin-spin and spin-rotation
coupling split the excited state into three sublevels, producing
the three PA features. In this case, G is no longer a good
quantum number. The locations of these three features for
each of the seven vibrational levels is provided in Table I.

TABLE I. Experimentally measured PA resonances for s-wave
collisions in an incoherent mixture of the |1〉 and |2〉 states of 6Li.
These three PA resonances correspond to a transition from an initial
unbound molecular state with N = 0, G = 0 to the vth vibrational
level of the 13�+

g excited state with N ′ = 1. As we explain in Sec. IV,
spin-spin and spin-rotation coupling split the excited state into three
sublevels, producing the three PA features corresponding to quantum
numbers (N ′ = 1, J ′ = 1), (N ′ = 1, J ′ = 2), and (N ′ = 1, J ′ = 0),
respectively. The absolute uncertainty in each of these measurements
is ±0.00002 cm−1 (±600 kHz).

First Second Third
v′ (cm−1) (cm−1) (cm−1)

20 12237.17755 12237.18587 12237.20126
21 12394.39726 12394.40535 12394.42039
22 12546.06767 12546.07552 12546.09025
23 12692.17316 12692.18080 12692.19509
24 12832.70080 12832.70820 12832.72214
25 12697.64147 12967.64862 12967.66219
26 13096.99114 13096.99804 13097.01125
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We also located for each of the vibrational states the PA
resonances associated with p-wave ground-state collisions.
However, these features were only observable in our experi-
ment when measures were taken to enhance the PA scattering
rate. In order to observe these PA resonances, we enhanced
the p-wave scattering rate by stopping the evaporation at an
ensemble temperature of 250 μK and by holding the magnetic
field at 185 G during the PA stage. This magnetic field is
near the p-wave Feshbach resonance between the |1〉 and
|2〉 states at 185.1 G [16]. Due to the Feshbach-resonance
enhancement of inelastic ground-state collisions, the ensemble
particle loss in the absence of the PA light was approximately
50% during the 2 s hold time. Additional loss was induced
when the light was near a PA resonance. Figure 4 shows
the loss spectrum for a transition from an initial unbound
molecular state with N = 1, G = 1 to the v′ = 20 vibrational
level of the 13�+

g excited state with N ′ = 2, G′ = 1. For each
of the seven vibrational levels, we observed at least four (three)
distinct loss features for transitions to the N ′ = 2, G′ = 1
(N ′ = 0, G′ = 1) final state. By evaporating the ensemble
to 15 μK and holding the magnetic field at 184.7 G, we
observed that each of these loss features results from multiple
PA resonances that are unresolvable at 250 μK. The locations
of the loss features observed at 250 μK for each of the
seven vibrational levels is provided in Tables II and III. These
measurements were performed in the absence of the comb
stabilization. Instead, the Ti:sapphire laser was locked to an
external cavity and its frequency was measured with the wave
meter whose uncertainty is 60 MHz.

Characterization of systematic shifts

While the absolute uncertainty of our PA measurements
made using the frequency comb is ±600 kHz, the data was
taken in the presence of a small but nonzero magnetic field and
in an optical dipole trap with a known intensity. These residual
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FIG. 4. (Color online) Normalized 6Li atom number as a function
of photoassociation laser energy hνPA after a 2 s hold time. The circles
are for an ensemble temperature of 250 μK at 185 G, and four distinct
features are observed. The diamonds denote the atom loss for an
ensemble temperature of 15 μK and at a magnetic field of 184.7 G.
At this lower temperature, these loss features are seen to result from
multiple PA resonances that are unresolvable at 250 μK. These PA
features arise from p-wave ground-state collisions and are enhanced
by proximity to a p-wave Feshbach resonance between the |1〉 and
|2〉 states at 185.1 G.

TABLE II. Experimentally measured PA resonances for p-wave
collisions in an incoherent mixture of the |1〉 and |2〉 states of 6Li
held at a magnetic field of B = 185 G. Each of these values was
extracted by fitting a loss spectrum like that shown in Fig. 4. These
PA resonances correspond to a transition from an initial unbound
molecular state with N = 1, G = 1 to the vth vibrational level of
the 13�+

g excited state with N ′ = 0, G′ = 1. While the precision in
these measurements is 0.001 cm−1, the uncertainty, limited by the
wave meter, is ±0.002 cm−1.

First Second Third
v′ (cm−1) (cm−1) (cm−1)

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

fields as well as the PA laser itself can lead to a systematic
shift of the resonance positions from their zero-field values.
Therefore, in an effort to quantify the role of the PA laser
intensity, the CDT laser intensity, and the residual magnetic
field on the PA loss features, we varied each one and measured
the PA resonance position and width for various excited states.
In each case, we assumed a linear dependence and determined
a shift rate of the resonance position with the corresponding
field strength. The uncertainty in this rate is a one-σ statistical
uncertainty on the slope of the linear fit.

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2, we observed that
the centroid of the first feature (J ′ = 1) associated with the
v′ = 26 excited state shifted to higher frequencies at a rate of
471 ± 433 kHz per kW cm−2. When the CDT laser intensity
was varied from 5.4 kW cm−2 (145 mW total CDT power) to
140 kW cm−2 (3.1 W total CDT power), the PA feature centroid
associated with the v′ = 24, J ′ = 1 state shifted down in
frequency at a rate of −(19 ± 1.2) kHz per kW cm−2. The

TABLE III. Experimentally measured PA resonances for p-wave
collisions in an incoherent mixture of the |1〉 and |2〉 states of 6Li
held at a magnetic field of B = 185 G. Each of these values was
extracted by fitting a loss spectrum like that shown in Fig. 4. These
PA resonances correspond to a transition from an initial unbound
molecular state with N = 1, G = 1 to the vth vibrational level of
the 13�+

g excited state with N ′ = 2, G′ = 1. While the precision in
these measurements is 0.001 cm−1, the uncertainty, limited by the
wave meter, is ±0.002 cm−1.

First Second Third Fourth
v′ (cm−1) (cm−1) (cm−1) (cm−1)

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355
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resonance positions reported in Table I were determined using
a PA laser intensity of IPA = 635 W cm−2 and a CDT intensity
of 7.5 kW cm−2. Assuming the differential ac Stark shift is the
same for all excited states, the reported values are therefore
shifted lower by 142 ± 9 kHz due to the CDT and higher by
300 ± 274 kHz due to the PA laser than their extrapolated posi-
tion at zero-differential ac Stark shift. The overall ac Stark shift
of the resonance positions is thus higher by 157 kHz with an un-
certainty of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency comb.
For the resonance positions reported in Tables II and III, the
trapping power was larger (40 W total) and the differential ac
Stark shift due to the CDT is estimated to be −(15 ± 1) MHz.

When the magnetic field was varied from 0 to 10 G, the
PA features associated with the v′ = 24, J ′ = 1, J ′ = 2, and
J ′ = 0 states were observed to shift and, in the case of J ′ =
1 and J ′ = 2, to broaden and eventually split into multiple
resolvable peaks. In each case, we measured the PA feature
center of mass and found that when the magnetic field was
varied from 0 to 1 G, the barycenter of the PA features moved
by −(91.2 ± 18.3) kHz for the J ′ = 1 state, +(46 ± 28) kHz
for the J ′ = 2 state, and +(74.5 ± 30.1) kHz for the J ′ = 0
state. Since the resonance positions reported in Table I were
determined in the presence of a residual magnetic field below
400 mG, the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small compared
to the absolute uncertainty of the frequency comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with a brief
review of the symmetry properties and corresponding selection
rules relevant for the photoassociation process. Molecules in
the 13�+

g excited state are characterized by the Hund’s case
“b” coupling scheme in which the total electronic (nuclear)
spin �S = �s1 + �s2 ( �I = �i1 + �i2) is completely uncoupled from
the internuclear axis. Here, �sj (�ij ) is the electronic (nuclear)
spin of atom “j”. This occurs when � = 0, i.e., the projection
of the orbital angular momentum of the electrons along the
internuclear axis is zero, and there is therefore no axial
magnetic field to couple the total spin to the axis. For “�”
states, the orbital angular momentum of the electrons is zero
and therefore � is always identically zero; however, even in
some cases where � 	= 0, especially for light molecules, the
coupling is sufficiently weak that Hund’s case b is still the
appropriate scheme [23]. The total angular momentum, apart
from the spin, is �K ≡ �N + ��, i.e., the vector sum of �� and the
rotational angular momentum of the nuclei �N . Therefore, for �

states, �K = �N , and thus �K is perpendicular to the internuclear
axis. The total spin of the molecule is �G = �S + �I and is a
good quantum number so long as the hyperfine interaction
and spin-rotational couplings are small. The total spin ( �G)
combines with the total angular momentum apart from spin
( �K) to result in the total angular momentum including spin as
�J = �K + �G.

For electric dipole radiation, the selection rule is that
�J = 0, ± 1 with the restriction that J = 0 � J = 0. In
addition, under the emission or absorption of a photon, the
parity of the electronic orbital must change (+ ↔ −), and

for a homonuclear molecule, the symmetry of the coordinate
function under the interchange of the two nuclei must change
from symmetric to antisymmetric, or vice versa (g ↔ u).
In the present scenario of Hund’s case b coupling, the spin
is so weakly coupled to the other angular momenta that
both quantum numbers S and K are well defined and we
have, in addition, the selection rules �S = 0 (or, equivalently,
�G = 0) and therefore �K = 0, ±1 with the restriction that
�K = 0 is forbidden for � → � transitions. Since we are
here only concerned with transitions to the 13�+

g excited state,
we have that �N = ±1 and �G = 0.

We now discuss the allowed quantum numbers for the initial
and final states. In this work, we only consider collisions
between two 6Li atoms, which are composite fermions (con-
sisting of 9 fermions: 3 protons, 3 neutrons, and 3 electrons),
and we note that the two-body eigenstates, composed of a spin
part and an orbital part, must be antisymmetric upon exchange
of the two atoms. The consequence is that only certain spin
states are possible given a particular orbital state. An important
example of this constraint imposed by exchange symmetry is
that the two-body position wave function (sometimes called the
“coordinate function” or orbital state) must be antisymmetric
for a collision between two fermions in the same spin state
(for which the spin wave function is manifestly symmetric).
Thus, a spin-polarized Fermi gas can only have odd partial
wave collisions (p-, f -, h-wave, etc.) corresponding to odd
values of the rotational angular momentum of the complex
(N = 1,3,5, . . .), which are antisymmetric with respect to
atom exchange. For a gas composed of two distinct spin states,
even partial wave collisions can occur (s-, d-, g-wave, etc.) so
long as the spin wave function is antisymmetric upon atom
exchange. As we described in Sec. III, the ability to turn off
s-wave collisions by spin polarizing the gas is a useful feature
of our system that we use to validate our assignment of the PA
lines.

The total spin angular momentum of the initial unbound
molecular state is given by the vector sum of the f quantum
numbers for the isolated atoms: �G = �f1 + �f2. Here, �f1 =
�s1 + �i1. In our experiment, the atoms are optically pumped
to the lowest hyperfine state before being exposed to the
photoassociation light. Therefore, we have that f1 = f2 = 1

2
and there are two allowed values of the total spin: G = 0,1.
Certain values of G (specifically, G = f1 + f2, f1 + f2 −
2, . . .) are associated with spin states symmetric with respect to
the interchange of the atoms, while the orbital states with even
values of N are symmetric under the interchange of the atoms.
Therefore, all even partial wave collisions (N = 0,2,4, . . .)
have a total spin of zero (G = 0) and all odd partial wave
collisions (N = 1,3,5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 13�+
g potential. For

this triplet state, the total electronic spin is well defined
(S = 1) and the “gerade” symmetry signified by a subscript
“g” denotes that all states with an even rotational quantum
number (N = 0,2,4, . . .) are symmetric under the interchange
of the two nuclei. Because the electronic spin is well defined
and fixed for this excited state, we now consider interchanging
just the nuclei while leaving the electrons untouched. There
are three possible values of the total nuclear spin (I = 0,1,2)
since the nuclear spin of each atom is i = 1. Similar to
the symmetry of G, states with I = i1 + i2, i1 + i2 − 2, . . .
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TABLE IV. Allowed rotational levels and corresponding nuclear
spin configurations for 6Li2 molecules in the limit that spin-spin and
spin-rotation couplings are small enough that G is a good quantum
number.

Electronic Nuclear Allowed Total
State spin spin rotational states spin

Ground states
N = 0,2,4, . . . G = 0
N = 1,3,5, . . . G = 1

Excited states
13�+

g : S = 1 I = 0 N = 0,2,4, . . . G = 1
I = 1 N = 1,3,5, . . . G = 0,1,2
I = 2 N = 0,2,4, . . . G = 1,2,3

(corresponding here to I = 0 and I = 2) are symmetric with
respect to the interchange of the nuclei, whereas the I = 1
state is antisymmetric. Since the nuclei are bosons, the total
wave function must be symmetric under the interchange of
the nuclei. Putting this together, we have that the even (odd)
values of I occur with even (odd) values of N . The total spin
angular momentum quantum number G can take on all values
between and including |I + S| and |I − S|.

The possible quantum numbers for the ground and excited
states are tabulated in Table IV. For a ground-state s-wave
collision (N = 0), we find that there is only one allowed value
for the total spin: G = 0. From an initial state with N = 0
and G = 0, we see that there is only one possible transition
to the excited triplet state: (N = 0, G = 0) → (N ′ = 1, G′ =
0). For a ground-state p-wave collision, the initial state is (N =
1, G = 1) and there are two possible transitions to the excited
triplet state: (N = 1, G = 1) → (N ′ = 0, G′ = 1) and (N =
1, G = 1) → (N ′ = 2, G′ = 1). In both cases, there are two
possible values of the total nuclear spin: I = 0 or 2.

In the preceding discussion, we have assumed that both the
spin-spin coupling and the coupling of the total electronic spin
�S with the molecular rotation �N are negligible. In this case,
the total spin (characterized by �G) is a good quantum number.
However, while these couplings are small, we nevertheless
do resolve a splitting of the excited-state energy levels by
observing three PA resonances, as seen in Fig. 2, instead of
a single feature for an initial s-wave collision. As we explain
later, the ground state is not split in this particular case because
N = 0.

In order to properly label the three PA resonances (as-
sociated with ground-state s-wave collisions) observed for
each rovibrational state given spin-spin and spin-rotational
coupling, we redefine �J to be the total angular momentum
apart from nuclear spin, �J ≡ �N + �S. Here, a magnetic
coupling between �S and �N (involving an interaction with
an effective Hamiltonian of the form Ĥspin−rot = γv

�N · �S) as
well as a spin-spin coupling term (of the form Ĥspin−spin =
2λv[Ŝ2

z − Ŝ2/3]) cause a splitting of the rotational levels,
previously labeled by N , according to the J quantum num-
ber, given by J = (N + S), (N + S − 1), (N + S − 2), . . . ,
|N − S|. Therefore, each level with a given N (� S) consists
of 2S + 1 sublevels, and the number of sublevels is equal to the
spin multiplicity. However, for N < S, the number of sublevels

is equal to 2N + 1 (the rotational multiplicity). Hence, all
N = 0 levels do not split, as mentioned previously. For a
particular rovibrational state |ν,N〉, with a total spin S = 1,
the rotational energy is given by [23,24]

FJ=N+1 = BvN (N + 1) + (2N + 3)Bv − λv

−
√

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1),

FJ=N = BvN (N + 1), (1)

FJ=N−1 = BvN (N + 1) − (2N − 1)Bv − λv

+
√

(2N − 1)2B2
v + λ2

v − 2λvBv − γvN,

where λv and γv are constants. Here, λv is related to the spin-
spin interaction and it describes the coupling between the total
spin �S and the molecular axis; γv is related to the spin-rotation
interaction and it is a measure of the coupling between �S and
�N . Under most circumstances, these two constants describe

small effects which are not spectroscopically resolvable and
are typically ignored in the Dunham expansion. However, at
the level of resolution in the current experiment, one needs
to take into account these second-order perturbations. In the
case where spin-spin and spin-rotation couplings are small
(Bv � |λv|, |γv|), we can simplify Eq. (1) to

FJ=N+1 = BvN (N + 1) − 2N + 2

2N + 3
λv + γv(N + 1),

FJ=N = BvN (N + 1), (2)

FJ=N−1 = BvN (N + 1) − 2N

2N − 1
λv − γvN.

In addition, when spin-spin coupling is much more important
than spin-rotation coupling (|λv| � |γv|), the energy ordering
results from the λv terms, and we can label these three peaks in
Table I, energetically from low to high, as (N ′ = 1, J ′ = 1),
(N ′ = 1, J ′ = 2), and (N ′ = 1, J ′ = 0) because λv is
negative.

Using the peak spacings reported in Table I and Eq. (2),
we extract the two parameters, λv and γv . The determined λv

constants as a function of v′ are plotted in Fig. 5. The dashed
line is provided to show its trend. These results agree well with
the previous ab initio calculation for lithium diatoms [25]. By
using Fig. 3 of Ref. [25] and averaging λ(R) over the inter-
nuclear distance R using the wave functions corresponding
to the eigenfunctions of the excited-state potential curve we
refined with our data, λv ≡ 〈	v(R)|λ(R)|	v(R)〉,we estimate
these ab initio λv constants for all v′ states and plot those also
in Fig. 5. Note that the uncertainty of the ab initio results given
in Fig. 5 is estimated to be a few tens of MHz. This results
from the estimated error of the original ab initio calculation
(a few percent corresponding to ≈10–30 MHz) and the error
(≈10 MHz) associated with our digitization of the data in
Fig. 3 from Ref. [25], as well as the fact that the ab initio
calculation was likely done for 7,7Li2 rather than 6,6Li2.

This comparison of λv obtained from experimental data and
that obtained from ab initio calculations clearly demonstrates
the validity of the current model to label separate peaks in
Table I. The values for λv and γv determined from our data
are provided in Table V. The uncertainty in these parameters
is estimated to be ±400 kHz and results from the uncertainty
in the PA resonance positions. Using Eq. (1), we verified that

052505-6



HIGH-RESOLUTION PHOTOASSOCIATION SPECTROSCOPY . . . PHYSICAL REVIEW A 87, 052505 (2013)

20 21 22 23 24 25 26
Vibrational quantum number

-380

-360

-340

-320

-300

S
pi

n-
sp

in
 in

te
ra

ct
io

n 
pa

ra
m

et
er

: 
ss

 (
M

H
z)

ab initio  results
Experimental Results

FIG. 5. (Color online) The experimentally determined (circles)
and ab initio computed (squares) spin-spin interaction constants λv as
a function of the vibrational quantum number for the 13�+

g electronic
state. These constants were determined from the frequency splittings
of the three features observed for the N = 0 → N ′ = 1 transition.
The uncertainty in these values is estimated to be ±400 kHz. The
dashed lines are guides to the eye.

the uncertainty in the exact value for Bv is not expected to
contribute significantly to the uncertainty in these parameters.
We note that this is a direct measurement of the spin-spin and
spin-rotation coupling constants in a diatomic lithium system.

The interpretation of the PA resonances arising from p-
wave ground-state collisions requires a model to fully account
for the hyperfine structure and Zeeman splitting of the ground
and excited states at the nonzero magnetic field used. This
analysis is a subject for future work.

V. REFINED POTENTIAL

The Morse/long-range (MLR) model for potential-energy
functions was first introduced in 2006 [26,27] and major
developments were made in 2009 [28] and 2011 [29]. Over
these years, the MLR and related models have been very
successful in representing the internuclear potentials for
dozens of diatomic and polyatomic molecules [26–40].

A particular advantage of the MLR model is that it is
a single analytic function that very naturally represents the

TABLE V. The values for the spin-spin interaction constant λv

and the spin-rotation interaction constant γv determined from Eq. (2)
and the peak spacings reported in Table I. The uncertainty in these
values is ±400 kHz. The λv values are plotted in Fig. 5, along with
their expected values determined from ab initio calculations.

v′ λv (MHz) γv (MHz)

20 − 348.2 − 14.5
21 − 339.4 − 14.5
22 − 331.1 − 14.7
23 − 321.7 − 14.2
24 − 312.2 − 14.4
25 − 303.6 − 14.0
26 − 294.3 − 14.3

correct shape of the potential function in good agreement with
the experimentally observed energies, while also providing
an accurate description of the potential’s long-range region
according to theory. This makes the MLR model especially
convenient to use when the known experimental energies
are sparse. For example, the most comprehensive study of
Li2(13�+

g ) in existence before this work [38] only had a small
amount of data available near the bottom of the potential well,
and a small amount at the top (see Fig. 1). In that case, since
the MLR model is a single analytic function, it was able to
interpolate between those two regions very well (see column
4 of Table VIII).

In this section, we report a refined version of the Li2(13�+
g )

MLR potential from [38] that now incorporates the J = N = 1
energies of the seven additional vibrational levels studied in
this paper. Various candidate MLR potentials were calculated
by direct potential fits (DPFs), where the parameters of the
potential are optimized so that the predicted Schrödinger
eigenenergies match the experimental energies as closely as
possible. We used the same Hamiltonian form as in [38] (see
Eq. (3) of [38] and its surroundings), and the least-squares
fitting was computed with the publicly available free computer
program DPotFit [41]. The MLRrref

p,q (Nβ) models for Li2 that
were used as candidates for this refined potential, were defined
the same way as those in [38].

These models are defined by

VMLR(r) ≡ De

[
1 − uLR(r)

uLR(re)
e−β(r)yre

p (r)

]2

, (3)

where De is the dissociation energy, re is the equilibrium
internuclear distance, and β(r) is

β(r) ≡ βrref
p,q(r) ≡ β∞yrref

p (r) + [
1 − yrref

p (r)
] Nβ∑

i=0

βi

[
yrref

q (r)
]i

,

(4)

with

β∞ ≡ lim
r→∞ β(r) = ln

[
2De

uLR(re)

]
. (5)

Equations (3) and (4) also depend on the radial variable

yrref
n (r) = rn − rn

ref

rn + rn
ref

, (6)

where the reference distance rref may simply be the equilibrium
distance re as explicitly written in Eq. (3), but adjusting it can
significantly reduce the required value of Nβ in Eq. (4) for
an accurate fit to the experimental data and more consistent
predictions of the physical parameters in the model (see, for ex-
ample, Fig. 5 of [38]). The Šurkus power n is an integer greater
than or equal to 1, which is also adjusted to optimize the fit.

Finally, the definition of uLR(r) depends more on the system
being modeled. For large r , Eq. (3) usually has the form
V (r) � De − uLR(r) [28]; therefore, defining uLR(r) to be the
true theoretical long-range difference between De and V (r)
is often a good starting choice. As described in [10], for very
large internuclear distances, the potential energy of Li2(13�+

g )
is given by De − λmin(r), so λmin(r) can be a good first choice
for uLR(r). λmin(r) is defined as the lowest eigenenergy of
the (symmetric) matrix that describes the near-dissociation
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interaction of the 13�+
g state with the nearby 11�g and

13�g states. When exchange energy terms and the factors

describing the relativistic retardation effect are neglected, this
matrix is [10]

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

∑
m = 3,6,8,

9,10,11, . . .

C
3�

+
g

m +C
1�g
m +C

3�g
m

rm
1

3
√

2

∑
m = 3,6,8,

9,10,11, . . .

−2C
3�

+
g

m +C
1�g
m +C

3�g
m

rm
1√
6

∑
m = 3,6,8,

9,10,11, . . .

−C
1�g
m +C

3�g
m

rm

1
3
√

2

∑
m = 3,6,8,

9,10,11, . . .

−2C
3�

+
g

m +C
1�g
m +C

3�g
m

rm �E + 1
6

∑
m = 3,6,8,

9,10,11, . . .

4C
3�

+
g

m +C
1�g
m +C

3�g
m

rm
1

2
√

3

∑
n = 3,6,8,

9,10,11, . . .

−C
1�g
m +C

3�g
m

rm

1√
6

∑
m = 3,6,8,

9,10,11, . . .

−C
1�g
m +C

3�g
m

rm
1

2
√

3

∑
m = 3,6,8,

9,10,11, . . .

−C
1�g
m +C

3�g
m

rm �E + 1
2

∑
m = 3,6,8,

9,10,11, . . .

C
1�g
m +C

3�g
m

rm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where �E is the (positive) difference between the 2P1/2

and 2P3/2 atomic spin-orbit levels, C3 ≡ C
2S+1�

(+/−)
g

3 are the
resonant dipole-dipole interaction terms, and when m > 3,

Cm ≡ C
2S+1�

(+/−)
g

m are the dispersion interaction terms. Note the
overall negative sign which reflects that our convention is the
opposite to that in [10], where this matrix was first defined in
this form.

Using quantum electrodynamics, it has been shown (see
[42] and references therein) that the relativistic retardation
effect can be described for large r by making the following
modifications in Eq. (7):

C
3�+

g

3 → C
3�+

g

3

[
cos

(
r

λ

)
+

(
r

λ

)
sin

(
r

λ

)]
≡ C

3�+
g

3,ret (r),

(8)

C
2S+1�g

3 → C
2S+1�g

3

[
cos

(
r

λ

)
+

(
r

λ

)
sin

(
r

λ

)

−
(

r

λ

)2

cos

(
r

λ

)]
≡ C

2S+1�g

3,ret (r), (9)

where λ = λSP /2π is the wavelength of light associated with
the atomic 2S–2P transition, which for 6Li is implicitly given
in the caption to Table VII.

The only Cm terms used in the analysis of [38] were

C
3�+

g

3 , C
1�g

3 , C
3�g

3 , C
3�+

g

6 , and C
3�+

g

8 since the C
2S+1�g

6/8 terms

were found not to have a significant effect on the 13�+
g

potential. Though fairly accurate values for all three C10 terms
involved were available (with the infinite mass approximation)
as early as 2007 [43], their effects were not considered in [38]
due to the unavailability of the values for the three C9 terms
(which emerge in third-order perturbation theory) involved.
Now that values for the involved C9 and C11 terms have been
reported (with the infinite mass approximation) in [44], we
are able to consider all terms appearing in Eq. (7) up to and
including the C11 terms. However, Fig. 6 shows that none of
these C9, C10, or C11 terms seem to have a noticeable effect on
the potential in our data region, and since including superfluous
Cm terms might lead to unphysical behavior in the short- to
mid-range regions that lack data [45], we chose to include

neither these terms nor the C
2S+1�g

6/8 terms in our potentials.
The Cm values used throughout this paper (including in
Fig. 6) are presented in Table VI, along with details about
how each of them was calculated, and their sources. The
calculations that were done with the Hylleraas-type basis set
are the most accurate; however, no such calculation has been
published for the C10 values, so for Fig. 6 we used the values
from [43], which were calculated using the Laguerre-type
orbital (LTO) basis. The only values for C9,10,11 that have
been published were calculated with the approximation that
the mass of Li is infinite, while finite mass corrections have
been included to calculate C3,6,8 for 6Li in [46]. While we
use these 6Li values for C6,8, we use the 7Li values for C3

published in [47], which are likely [48] to be closer to the

TABLE VI. Cm coefficients used in our refined potential. Numbers in parentheses are the uncertainties in the last digits shown.

Effective Relativistic
Li2(13�+

g ) Li2(11�g) Li2(13�g) Basis set mass corrections Source

C3 (cm−1Å
3
) 3.57773 × 105 −1.78887 × 105 1.78887 × 105 Hylleraas-type 7Li � [47]

C6 (cm−1Å
6
) 1.00059(3) × 107 6.78183(2) × 106 6.78183(2) × 106 Hylleraas-type 6Li ✘ [46]

C8 (cm−1Å
8
) 3.69965(8) × 108 1.39076(1) × 108 6.55441(5) × 108 Hylleraas-type 6Li ✘ [46]

C9 (cm−1Å
9
) 1.6340(1) × 108 3.694(1) × 107 3.694(1) × 107 Hylleraas-type ∞Li ✘ [44]

C10 (cm−1Å
10

) 1.1374 × 1010 3.3746 × 109 3.4707 × 108 Laguerre-type ∞Li ✘ [43]

C11 (cm−1Å
11

) −1.186 × 1010 1.985 × 1010 5.304 × 109 Hylleraas-type ∞Li ✘ [44]
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true 6Li values than the 6Li values from [46] since relativistic
corrections have been included in the former. The C6,8,10 used
for the a3�+

u state were nonrelativistic 6Li values from [46]
that were calculated with the Hylleraas-type basis set and with
finite mass corrections—they are presented in Table VII and
are slightly different from the 7Li values used in [38].

The caption to Fig. 6 and the remainder of this paper use
the following definitions for notational simplicity:

C�
m ≡ C

3�+
g

m , (10)

C�
3 ≡ C

1�g

3 = −C
3�g

3 = 1

2
C�

3 . (11)

Equation (11) also presents useful symmetry relations (see
Ref. [10] and references therein).

Finally, as described in [28,38], the long-range part of the
potential can be modeled more accurately with the inclusion
of another set of adjustments. Following [28,38], we define
C

�,adj
6 ≡ C�

6 + (C�
3,ret)

2/(4De) and C
adj
9 ≡ C�

3,retC
�,adj
6 /(2De).

Using these adjustments, along with the treatment of the
retardation effect and the removal of the negligible Cm terms
mentioned in the caption of Fig. 6, brings us to the definition
of uLR(r) we use for this study (which happens to have the
same form as that in [38], though the Cm values used are those
in Table VI rather than those used in [38]),

uLR(r) = −λadj
min

(
C�

3,ret,C
�
3,ret,C

�,adj
6 ,C�

8 ; r
) + C

�,adj
9 /r9,

(12)
where λ

adj
min(r) is defined as the lowest eigenenergy of

the following matrix Madj
LR which is a modified version

of Eq. (7),
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FIG. 6. (Color online) Long range potentials in Le Roy space
demonstrating that all C9, C10, and C11 terms appearing in Eq. (7)
do not contribute significantly to λmin for the four vibrational levels
between the m-dependent Le Roy radius (taken from [44]) and the
long-range data region, and especially do not contribute much in
the long-range data region. V1(r) is the experimentally determined
potential-energy curve from Ref. [38]. V6(r) is the theoretical
nonretarded long-range potential of Aubert-Frécon [10] in which all

Cm coefficients are included from C
�,�
3 to C

�,1�g,3�g

11 , at the values

given in Table VI. V2(r) is the same as V6(r) but with C
1�g,3�g

6,8,9,10,11 = 0.

This shows that these C
1�g,3�g
m coefficients are unnecessary. V3(r)

is the same as V2(r) but also with C�
11 = 0 and shows that C�

11 is
unnecessary. V4(r) is the same as V3(r) but also with C�

10 = 0, which
shows that C�

10 is unnecessary. V5(r) is the same as V4(r) but also
with C�

9 = 0, which shows that C�
9 is unnecessary.

Madj
LR =

⎛
⎜⎜⎜⎜⎝

− 1
3

(C�
3,ret

r3 + C
�,adj
6
r6 + C�

8
r8

) √
2

3

(C�
3,ret

r3 + C
�,adj
6
r6 + C�

8
r8

)
2√
6

(C�
3,ret

r3

)
√

2
3

(C�
3,ret

r3 + C
�,adj
6
r6 + C�

8
r8

)
�E − 2

3

(C�
3,ret

r3 + C
�,adj
6
r6 + C�

8
r8

)
1√
3

(C�
3,ret

r3

)
2√
6

(C�
3,ret

r3

)
1√
3

(C�
3,ret

r3

)
�E

⎞
⎟⎟⎟⎟⎠ . (13)

To treat more than one isotopologue of Li2(13�+
g ), we

include Born-Oppenheimer breakdown (BOB) corrections in
the same way as described in Sec. 2.4 and Eqs. (3)–(7) of [38].
Since this study is focused on the 6,6Li2 isotopologue, we chose
to make this the “reference isotopologue” (as defined after
Eq. (3) in [38]), rather than 7,7Li2, which was the reference
isotopologue in [38].

As in [38], since most of the rovibrational observations of
the 13�+

g state of Li2 were FTIR emissions from the 13�+
g state

into the a3�+
u state [7,8], our DPF is a multistate fit to MLR

potential models for each of these states. The term values of
the relatively small number of observed rovibrational energies
from perturbation-facilitated optical-optical double resonance
(PFOODR) emissions from the 23�g state into the a3�+

u state
of 7,7Li2 [49] were treated as fitting parameters in the fit.

Since no new data for Li2(a3�+
u ) is being considered, we

chose to use the MLR8.0
5,3(3)-d model for this state, just as in

the final potential reported in Table II of [38], except with
the parameters reoptimized by the multistate fit to the current
data set. This is the data set described in Table I of [38], but
expanded to include the J = N = 1 column (the first column)
of Table I of the present paper. The “d” in the name for the
MLR model is used to indicate that damping functions are
included in the model to take into account the weakening of
interactions due to the overlap of the electronic wave functions
of the interacting atoms, as described in [29]. The Li2(a3�+

u )
potentials used for the present work use damping functions
that are defined exactly as in Eqs. (12) and (13) of [38]; and as
in [38], the present paper neglects damping functions for the
13�+

g state for simplicity.
The MLR model chosen in [38] for the final Li2(13�+

g )
potential presented in Table II of that paper was of the form
MLR3.8

6,3(9). When the parameters of an MLR3.8
6,3(9) model

are reoptimized by a fit to the current data set, the resulting
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TABLE VII. Parameters defining our recommended MLR poten-
tials. Parameters in square brackets were held fixed in the fit, while
numbers in parentheses are 95% confidence limit uncertainties in the
last digit(s) shown. The analysis used the 6Li 2P1/2 ← 2S1/2 excitation
energy of 1/λSP ≡ D1 = 14903.2967364 cm−1 from [52], and the
6Li 2P3/2 ← 2P1/2 spin-orbit splitting energy of �E ≡ D2 − D1 =
0.3353246 cm−1 with D2 from [53]. Units of length and energy
are Å and cm−1 respectively, and the polynomial coefficients βi are
dimensionless. dd = 0.791.

a(1 3�+
u ) c(1 3�+

g )

De 333.7795(62) 7093.4926(86)

re 4.170006(32) 3.065436(16)

C6 [6.7190 × 106] C�
3 3.576828(44) × 105

C8 [1.12635 × 108] C�
6 [1.00059 × 107]

C10 [2.78694 × 109] C�
8 [3.69965 × 108]

ρLi [0.54] [∞]

{p,q} {5,3} {6,2}
rref [8.0] [4.8]

β0 − 0.516129 − 1.819413208

β1 − 0.0980 − 0.4729259

β2 0.1133 − 0.518639

β3 − 0.0251 − 0.16109

β4 − 0.8608

β5 3.933

β6 0.965

β7 − 2.81

β8 − 2.27

β9 1.2

{pad,qad} {6,6} {3,3}
u0 0.069(12) 1.596(8)

u1 3.1(4)

u2 − 1.5

u3 − 2.0

u∞ [0.0] [1.2315155]

potential predicts the rovibrational energies very well within
their respective experimental uncertainty ranges (on average,
over the entire data set). However, with the additional data
(that happens to lie in a region of the potential about which
studies previous to this one had no experimental information),
it quickly became apparent that slightly different MLR models
could give better fits to the experimental data, and are more ro-
bust for predicting the physical parameters C3, Re, and De. For
MLR models different from MLR3.8

6,3(9), we obtained starting
parameters for the least-squares fitting from the freely available
program betaFIT [50]. Parameters from betaFIT were first
reoptimized using DPotFit to the current data set, but with
an upper limit set for v. The resulting parameters were then
reoptimized again with DPotFit to the full current data set.

We focused our studies on MLRrref
p,q (Nβ) models with p = 6

since p must be larger than 5, and making it 7 or larger may
require a much larger Nβ [45]. Of all the (p,q) = (6,1–4)
potentials calculated, the MLR4.8

6,2(9) model stood out as having
the best balance of reproducing the experimental data closely,
maintaining a low value of Nβ , and predicting C3, Re, and

De values that are consistent with a large number of other
MLR models. The MLRrref

6,2(8) models were also excellent for
4.5 � rref � 4.8, but the predictions of C3, Re, and De were
not as consistent with respect to rref as they were with higher
Nβ values. While in [38] q < 3 was not considered due to the
fact that models with low q values have more of a tendency to
result in potentials with inflection points on the inner wall, the
added data considered in this study significantly reduced the
tendency for inflection points to appear on the inner wall of the
q = 3 potentials, and inflections did not appear here for q = 2
in the regime surrounding (Nβ,rref) = (9,4.8). For models with
q = 1, it was challenging to find the global minima in the
least-squares fitting procedure; and for modest values of Nβ ,
potentials in our test cases that reproduced the experimental
energies more closely with q = 1 than with q ∈ {2,3} were not
found. Finally, with the 13�+

g state modeled by an MLR4.8
6,2(9)

function, and the a3�+
u modeled by an MLR8.0

5,3(3)-d function,
it was found that the appropriate number of BOB terms did
not change from [38] (adding two adiabatic or nonadiabatic
BOB terms still did not significantly improve the fit to the data
for the 13�+

g state, and reducing the number of adiabatic BOB
terms by just one for the 13�+

g state had a noteworthy effect
on the quality of the fit to the data).

This analysis for choosing the model was done without the
sequential rounding and re-fitting (SRR) procedure of [51].
Once the MLRrref

6,2(9) model was chosen, and the appropriate
number of BOB terms was chosen, the SRR procedure was
applied. First DPotFit was run with all fitting parameters
free. Then C3 for the 13�+

g state was manually rounded to
the second digit of its 95% confidence limit uncertainty and
DPotFit was rerun with this rounded C3 value fixed and with
the rest of the fitting parameters free. Then the re values for
both states were manually rounded in the same way as C3 was,
and DPotFit was rerun with these rounded re values fixed
and with the remaining fitting parameters free. Finally, De for
both states were rounded manually in the same way as C3 was,
and DPotFit was run with these De values fixed, with all the
remaining fitting parameters free, and with IROUND = −1.

The final potentials for the a3�+
u and 13�+

g states after
this SRR procedure are given in Table VII. The dimensionless
root-mean-square deviation (labeled dd , and defined by Eq. (2)
of [38]) of this overall multistate fit after the SRR procedure
was 0.791, which is less than 0.3% higher than in [38] where
dd was 0.789, despite the very high accuracy of the additional
observed levels, making the fit much more demanding. The fact
that dd < 1 means that the rovibrational energies predicted
by the fitted potentials match the observed values to well
within their experimental uncertainties (on average, over the
entire data set). In Table VIII, the J = N = 1 energies for the
seven vibrational levels experimentally found in this work are
compared to the energies predicted by the refined potential in
Table VII, and to those of the potential from Table IIb of the
Supplemental Material of [38], which were calculated without
knowledge of these seven additional energies.

Potentials for the 7,7Li2 isotopologue can be obtained from
those for 6,6Li2 that were presented in Table VII, by using
the BOB corrections as described in Sec. 2.4 and Eqs. (3)–(7)
of [38].

There is currently a discrepancy between the 13�+
g state C3

value obtained from experiments [28,38] and from ab initio
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TABLE VIII. Comparison of the J = N = 1 binding energies,
found experimentally in this work, to the energies predicted by the
refined potential in Table VII and the potential in Table IIb in the
Supplemental Material of [38]. All energies are in cm−1, and the
predicted energies are represented as the predicted (calculated) energy
minus the experimental (observed) energy. In our measurements,
the initial free atomic state is 2a2s below the hyperfine center of
gravity of the 2S1/2 + 2S1/2 threshold (where a2s for 6Li is 152.137
MHz [58]). Consequently, the binding energy is computed by adding
304.274 MHz to the D1 transition frequency and subtracting our
measured frequency for the PA loss feature.

This work Ref. [38]
This work (predicted) (predicted)

v′ (experimental) Calc. − obs. Calc. − obs.

20 2666.12934 ± 2 × 10−5 −2.60 × 10−6 −0.525
21 2508.90963 ± 2 × 10−5 1.41 × 10−5 −0.648
22 2357.23922 ± 2 × 10−5 −9.80 × 10−7 −0.781
23 2211.13373 ± 2 × 10−5 −1.07 × 10−5 −0.920
24 2070.60609 ± 2 × 10−5 −1.77 × 10−6 −1.059
25 1935.66542 ± 2 × 10−5 1.51 × 10−5 −1.194
26 1806.31575 ± 2 × 10−5 −8.91 × 10−6 −1.319

calculations [47] (see also [44]). The most accurate estimate
of the 6Li C3 value for this state is 3.57773 × 105 cm−1Å3

from [47], which was actually calculated for 7Li but is expected
to be more accurate than any other currently known estimate
for 6Li [48] since it was calculated with relativistic effects
included. The value of C3 that came from the fit in 2009
[28] of an MLR model potential for the A(11�+

u ) state to
experimental data was larger than this ab initio value, and the
value from the fit in 2011 [38] to an MLR potential model for
the c(13�+

g ) state was smaller than the ab initio value. The
additional data used in this analysis brought the fitted value of
C3 = (3.576828 ± 0.000044) × 105 cm−1Å3 from this study
closer to the ab initio value than that from [38], but it is still
significantly smaller than the ab initio value, meaning that
more data for the 13�+

g state is perhaps required to resolve the
current discrepancy between experiment and theory.

VI. CONCLUSIONS

In summary, we have measured the binding energies of
seven vibrational levels v′ = 20–26 of the 13�+

g excited
state of 6Li2 molecules with an absolute uncertainty of

±0.00002 cm−1 (±600 kHz) by photoassociating a quantum
degenerate Fermi gas of lithium atoms. For each vibrational
state, we provide measurements of the three rotational states
N ′ = 0,1,2. In addition, we observe a splitting of the N ′ = 1
excited state due to spin-spin and spin-rotation interactions
and we use our data to extract the corresponding interaction
constants. We also use our data to further refine the analytic
potential-energy function for this state and provide the updated
Morse/long-range model parameters. These measurements
and refined potential provide a starting point to map the
10 bound levels of the ground triplet state a3�+

u of 6,6Li2
and the 11 bound levels of the a3�+

u state of 7,7Li2 by
two-color photoassociation [54], and to eventually transfer
Feshbach molecules into one of these ground-state levels using
a two-photon stimulated Raman adiabatic passage (STIRAP)
process [55]. Molecules in the triplet rovibrational ground
state can, in theory, relax to the singlet state X1�+

g via
inelastic collisions; however, this process, which requires a
change of the spin configuration, may be suppressed by weak
couplings in the ground state resulting in a spin-blockade
metastability of the triplet state. Such a metastability would be
very interesting for the study of ultracold controlled chemistry,
as ground-state triplet molecules possess a magnetic moment
and collisions between them should exhibit magnetically
tunable scattering resonances [56]. In addition, work has been
done that shows that ground-state homonuclear molecules
with rotational quantum number N = 1 may be collisionally
stable, and these exhibit long-range anisotropic quadrupole-
quadrupole interactions [57]. Finally, metastable triplet state
molecules might be a good candidate for experiments on the
alignment and spinning of ultracold molecules with high-
intensity, ultrashort pulsed lasers.
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and E. Tiemann, J. Chem. Phys. 135, 174303 (2011).

[38] N. S. Dattani and R. J. Le Roy, J. Mol. Spectrosc. 268, 199
(2011).

[39] F. Xie, L. Li, D. Li, V. B. Sovkov, K. V. Minaev, V. S. Ivanov,
A. M. Lyyra, and S. Magnier, J. Chem. Phys. 135, 024303 (2011).
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