
PHYSICAL REVIEW A 87, 052504 (2013)

Magic wavelengths for optical cooling and trapping of potassium
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We carry out a systematic study of the static and dynamic polarizabilities of the potassium atom using a
first-principles high-precision relativistic all-order method in which all single, double, and partial triple excitations
of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values and
uncertainties are provided for the relevant electric-dipole matrix elements. Polarizabilities of the 4s, 4pj , 5s, 5pj ,
and 3dj states are compared with other theoretical and experimental values when possible. We identify magic
wavelengths for the 4s-np transitions for n = 4,5, i.e., those wavelengths for which the two levels have the same
ac Stark shifts. The magic wavelengths for the 4s-5p transitions are of particular interest for attaining a quantum
gas of potassium at high phase-space density. We find 20 such wavelengths in the technically interesting region
of 1050–1130 nm.
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I. INTRODUCTION

Due to their applications in ultraprecise atomic clocks,
degenerate quantum gases and quantum information, the
magic wavelengths of atoms have become a subject of great
interest in both experiments [1–4] and theory [5–15]. The
energy levels of atoms trapped in a light field are shifted by
an amount that is proportional to their frequency-dependent
polarizability, so the difference in the energies of any two
levels depends upon the trapping field. This difference is often
called the “ac Stark shift.”

The idea of a “magic” wavelength, λmagic, at which there
is no relative shift of a given pair of energy levels, was first
proposed in Refs. [16,17] in the context of optical atomic
clocks. An atom confined in a trap constructed of light with
a magic wavelength for the clock transition will, to lowest
order, have the same transition energy as it does in free
space.

This idea has a number of other applications. A problem
arises in cooling and trapping schemes, where the ac Stark
shift of the cooling or trapping transition may lead to heating.
Recent experiments in 6Li [18] and 40K [2] degenerate
quantum gases in optical traps demonstrated temperature
reductions by a factor of about 5 and phase-space density
increases by at least a factor of 10 by laser cooling using
ultraviolet (UV) transitions (2s-3p and 4s-5p, respectively)
compared to conventional cooling with the visible or infrared
D1 and D2 transitions. However, the ac Stark shifts due to
trap light must be nearly the same for both levels in the
transition to allow for efficient and uniform cooling [18]. This
is accomplished by building the optical trap using light with
the magic wavelength for the corresponding UV transitions.
The use of the magic wavelengths is also advantageous for
trapping and controlling atoms in high-Q cavities in the
strong-coupling regime, so as to minimize decoherence in
quantum computation and communication protocols [19],
and in the implementation of the Rydberg gate for quantum
computing with neutral atoms [20,21].

Variations on the magic wavelength idea include the use of
multiple light fields to attain ac Stark shift cancellation [22]
or to maximize differential response between different atomic
species—for example, the “tune-out” wavelengths that trap
one species but not another [23–25]. Design and evaluation
of all these applications requires accurate data on atomic
frequency-dependent polarizabilities. One goal of our present
work is to provide a list of all magic wavelengths for potassium
UV 4s-5pj transitions in regions that are convenient for laser
cooling of ultracold gases to high phase-space densities, as has
been demonstrated in 2011 by McKay et al. [2].

In this paper we provide a list of magic wavelengths
for the 4s-4p and 4s-5p transitions, calculate dc and ac
polarizabilities for several low-lying states, and provide
recommended values for a number of relevant electric-dipole
transitions which are of interest to applications such as those
described above. Where possible, we compare our results
with available experimental [26] and high-precision theoretical
values [27–30].

In Sec. II we summarize the calculation of electric-dipole
matrix elements and static and dynamic polarizabilities as
well as the estimation of their uncertainties. Some of the
calculations reported here required evaluation of the electric-
dipole matrix elements for very highly excited states, such
as 14s. These states are needed since the ac polarizabilities
for the magic wavelengths of particular experimental interest
(around 1050 nm) are dominated by the 5p-nl transitions
with n = 12–14. Such states were previously beyond the
capabilities of the all-order method used here due to the large
spatial extent of the orbitals. In this work, we resolved the
numerical problems associated with such calculations and
successfully demonstrated the stability of our approach. Our
results are presented in Sec. III.

II. MATRIX ELEMENTS AND POLARIZABILITIES

The magic wavelengths for a specific transition are located
by calculating the frequency-dependent polarizabilities of the
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lower and upper states and finding their crossing points. The
present approach to the calculation of atomic polarizabilities
was discussed in Refs. [14,24,27,34–37], and we provide
only a brief summary of the methods here. Unless stated
otherwise, all specific data refers to the K atom, and we use
the conventional system of atomic units, a.u., in which e, me,
4πε0, and the reduced Planck constant h̄ have the numerical
value 1. Polarizability in a.u. has the dimension of volume, and
its numerical values presented here are expressed in units of a3

0 ,
where a0 ≈ 0.052 918 nm is the Bohr radius. The atomic units
for α can be converted to SI units via α/h [Hz/(V/m)2] =
2.488 32 × 10−8α (a.u.), where the conversion coefficient is
4πε0a

3
0/h and the Planck constant h is factored out.

We represent the polarizability α(ω) of the K atom as
the sum of the polarizabilities of the K+ core and the
valence polarizability, described by the sum over valence states
[Eq. (1)]. The effect of the valence electron on the ionic K+
core polarizability αcore is accounted for by the core-valence
αvc term. This term subtracts out the excitations from the
ionic K+ core to the occupied valence shell forbidden by
the Pauli principle. Such approach is very well established
and has been tested for a large number of atoms and ions,
including systems with one, two, and three valence electrons.
Particularly high-accuracy benchmarks were established for
Na-like [38] and Mg-like ions [39], where very high-precision
(0.1%) measurements of polarizabilities exist. We verified that
the ionic core polarizability and αvc term depend weakly on ω

for the frequencies treated here and are approximated by their
dc values calculated in the random-phase approximation (RPA)
[40]. The contribution of the core polarizability (5.5 a.u.) is
very small (1.9% of the static ground state static polarizability);
αvc = −0.18 a.u. for the ground state and is smaller for the
other states.

The valence contribution to frequency-dependent scalar
α0 and tensor α2 polarizabilities is evaluated as the sum over
intermediate k states allowed by the electric-dipole transition
rules [40]

αv
0 (ω) = 2

3(2jv + 1)

∑
k

〈k‖d‖v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

(1)

αv
2 (ω) = − 4C

∑
k

(−1)jv+jk+1

{
jv 1 jk

1 jv 2

}

×〈k‖d‖v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

where C is given by

C =
(

5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

)1/2

and 〈k‖d‖v〉 are the reduced electric-dipole matrix elements.
In these equations, ω is assumed to be at least several
linewidths off resonance with the corresponding transitions.
Linear polarization is assumed in all calculations.

We use the linearized version of the coupled cluster
approach (also referred to as the all-order method), which
sums infinite sets of many-body perturbation theory terms, for
all significant terms in the equations above. The 4s-np, 4p-nl,
5s-nl, and 3d-nl transitions with n � 26 and 5p-nl transitions
with n � 40 are calculated using this approach [35,37].

As we noted in the Introduction, the present calculation
required evaluation of the electric-dipole matrix elements
for highly excited states, since the frequency-dependent
polarizabilities for the 4s-5p magic wavelengths of particular
experimental interest are dominated by the 5p-nl transitions
with n = 12–14. The difficulty with the application of the
all-order method for these states results from the use of
a complete set of Dirac-Fock (DF) wave functions on a
nonlinear grid generated using B splines constrained to a
spherical cavity. A large cavity with a radius of R = 220a0 is
needed to accommodate all valence orbitals with ns = 4s-10s,
np = 4p-10p, and nd = 3d-9d. A cavity radius of 400a0

was chosen to accommodate additional valence orbitals with
ns = 11s-14s, np = 11p-13p, and nd = 10d-12d. Our basis
set consists of 70 splines of order 11 for each value of the
relativistic angular quantum number κ for R = 220a0 and 100
splines of order 13 for R = 400a0. We have conducted test
comparisons of the basis set energies with the actual DF values
to demonstrate the numerical stability of this calculation. We
note that calculations of the few highest 4s-4p magic wave-
lengths (above 680 nm) do not require such large basis sets, as
the contributions of the highly excited states are not resonant
for these wavelengths. We use available experimental energies
for the ns = 4s-11s, np = 4p-10p, and nd = 3d-12d states
from [41] and theoretical all-order energies for other states
with n � 26 (n � 40 for in the 4s-5p magic wavelength
calculations). The remaining small contributions with n > 26
are calculated in the DF approximation. For example, the
contributions from states with n > 26 give only 0.075 a.u.
to the polarizability of the 4p1/2 state. We note that states
with n > 19 in our basis have positive energies and provide a
discrete representation of the continuum.

The evaluation of the uncertainty of the matrix elements
in this approach was described in detail in [35,36]. Four all-
order calculations were carried out, including two ab initio all-
order calculations with and without the inclusion of the partial
triple excitations and two other calculations that incorporated
semiempirical estimates of high-order correlation corrections
starting from both ab initio runs. The spread of these four
values for each transition defines the estimated uncertainty
in the final results when considered justified based on the
dominant correlation contributions to the E1 matrix elements
[35,36]. We note that this procedure does not work in the small
number of cases where we cannot estimate uncertainty in the
dominant contributions using the procedure described above.
No uncertainties are listed for such matrix elements; however,
their contributions are small, leading to negligible effects on
the final uncertainties of the polarizabilities.

The absolute values of the reduced electric-dipole matrix
elements used in our subsequent calculations and their un-
certainties are listed in a.u. in Table I. We list only the most
important subset of the several hundred matrix elements that
were calculated in this work. The results are compared with
recent coupled-cluster calculations including single, double,
and perturbative triple excitations [CCSD(T)] of Ref. [28]
and relativistic configuration interaction plus core polarization
(RCICP) calculations of Ref. [29]. The present values are
in excellent agreement with most of the CCSD(T) values
of Ref. [28] with the exception of some 4p-nd and 5p-nd

transitions. In these cases, the correlation corrections, and
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TABLE I. Absolute values of the reduced electric-dipole matrix elements in K and their uncertainties in a.u. The present all-order values
are given unless noted otherwise. The uncertainties are estimated where possible (see text).

Transition Present Other Transition Present Other Transition Present Other
4s-4p1/2 4.106(4)a 4.13(2) [28] 4s-4p3/2 5.807(7)a 5.84(2) [28] 4p3/2-3d5/2 10.734(47)b 10.75(5) [28]

4.103 [29] 5.802 [29] 10.719 [29]
4s-5p1/2 0.276 0.282(6) [28] 4s-5p3/2 0.406 0.416(6) [28] 4p3/2-4d5/2 0.117(15) 0.260(5) [28]

0.263 [29] 0.389 [29] 0.155 [29]
4s -6p1/2 0.086 0.087(5) [28] 4s-6p3/2 0.130 0.132(6) [28] 4p3/2-5d5/2 0.467(6) 0.374(5) [28]

0.076 [29] 0.116 [29] 4p3/2-6d5/2 0.471(7) 0.404(5) [28]
4s-7p1/2 0.039 0.041(5) [28] 4s-7p3/2 0.061 0.064(5) [28] 4p3/2-7d5/2 0.409(7) 0.356(5) [28]
4s-8p1/2 0.023 0.023(3) [28] 4s-8p3/2 0.036 0.038(3) [28] 4p3/2-8d5/2 0.349(5) 0.286(5) [28]
4s-9p1/2 0.015 0.016(3) [28] 4s-9p3/2 0.024 0.027(3) [28] 4p3/2-9d5/2 0.299(4)
4s-10p1/2 0.011 4s-10p3/2 0.018 5p3/2-3d5/2 9.57(10) 9.73(15) [28]
4p1/2-6s 0.903(4) 0.909(10) [28] 4p3/2-6s 1.279(5) 1.287(10) [28] 9.574 [29]
4p1/2-7s 0.476(2) 0.479(5) [28] 4p3/2-7s 0.673(3) 0.677(6) [28] 5p3/2-4d5/2 22.93(8) 22.84(30) [28]
4p1/2-8s 0.314(2) 0.316(5) [28] 4p3/2-8s 0.444(2) 0.447(5) [28] 22.93 [29]
4p1/2-9s 0.230(1) 0.225(3) [28] 4p3/2-9s 0.325(2) 0.317(5) [28] 5p3/2-5d5/2 1.19(4) 1.461(5) [28]
4p1/2-10s 0.1791(9) 0.171(3) [28] 4p3/2-10s 0.253(1) 0.242(5) [28] 5p3/2-6d5/2 0.119(17) 0.045(5) [28]
4p1/2-11s 0.1452(8) 4p3/2-11s 0.205(1) 5p3/2-7d5/2 0.318(15)
4p1/2-3d3/2 7.979(35)b 7.988(40) [28] 4p3/2-3d3/2 3.578(16)b 3.583(20) [28] 5p3/2-8d5/2 0.335(12)

7.966 [29] 3.573 [29] 5p3/2-9d5/2 0.312(9)
4p1/2-4d3/2 0.112(14) 0.220(5) [28] 4p3/2-4d3/2 0.040(6) 0.088(5) [28] 3d3/2-6p1/2 1.03(1) 1.04(1) [28]

0.140 [29] 0.053 [29] 3d3/2-7p1/2 0.497(5) 0.500(6) [28]
4p1/2-5d3/2 0.333(5) 0.264(5) [28] 4p3/2-5d3/2 0.155(2) 0.124(5) [28] 3d3/2-8p1/2 0.317(3) 0.321(5) [28]
4p1/2-6d3/2 0.341(5) 0.293(5) [28] 4p3/2-6d3/2 0.157(2) 0.135(5) [28] 3d3/2-9p1/2 0.228(3) 0.250(4) [28]
4p1/2-7d3/2 0.298(5) 0.261(4) [28] 4p3/2-7d3/2 0.136(2) 0.119(3) [28] 3d3/2-10p1/2 0.176(2)
4p1/2-8d3/2 0.254(4) 0.221(4) [28] 4p3/2-8d3/2 0.116(2) 0.101(3) [28] 3d3/2-6p3/2 0.464(5) 0.467(3) [28]
4p1/2-9d3/2 0.218(3) 4p3/2-9d3/2 0.100(2) 3d3/2-7p3/2 0.224(2) 0.225(5) [28]
5s-4p1/2 3.885(8) 3.876(10) [28] 5s-4p3/2 5.54(1) 5.52(2) [28] 3d3/2-8p3/2 0.143(1) 0.144(4) [28]

3.888 [29] 5.538 [29] 3d3/2-9p3/2 0.103(1) 0.113(3) [28]
5s-5p1/2 9.49(3) 9.489(10) [28] 5s-5p3/2 13.40(4) 13.40(2) [28] 3d3/2-10p3/2 0.079(1)

9.497 [29] 13.410 [29] 3d5/2-6p3/2 1.39(1) 1.39(1) [28]
5s-6p1/2 0.90(1) 0.91(1) [28] 5s-6p3/2 1.30(2) 1.312(6) [28] 3d5/2-7p3/2 0.673(7) 0.676(10) [28]
5s-7p1/2 0.335 0.341(5) [28] 5s-7p3/2 0.491 0.499(5) [28] 3d5/2-8p3/2 0.428(4) 0.432(5) [28]
5s-8p1/2 0.183(3) 5s-8p3/2 0.271(4) 3d5/2-9p3/2 0.308(4) 0.339(5) [28]
5s-9p1/2 0.120(2) 5s-9p3/2 0.178(3) 3d5/2-10p3/2 0.238(3)
5s-10p1/2 0.087(1) 5s-10p3/2 0.129(2) 3d3/2-4f5/2 12.3(2) 12.4(1) [28]
5p1/2-6s 8.79(2) 8.76(1) [28] 5p3/2-6s 12.50(2) 12.47(2) [28] 3d3/2-5f5/2 4.92(2) 4.95(3) [28]

8.777 [29] 12.490 [29] 3d3/2-6f5/2 2.899(8) 2.908(30) [28]
5p1/2-7s 1.801(8) 1.814(10) [28] 5p3/2-7s 2.54(1) 2.56(1) [28] 3d3/2-7f5/2 2.001(5) 2.002(20) [28]
5p1/2-8s 0.912(5) 0.918(6) [28] 5p3/2-8s 1.287(7) 1.310(6) [28] 3d5/2-4f5/2 3.27(4) 3.32(3) [28]
5p1/2-9s 0.592(3) 5p3/2-9s 0.834(4) 3d5/2-5f5/2 1.315(6) 1.322(10) [28]
5p1/2-10s 0.430(2) 5p3/2-10s 0.607(3) 3d5/2-6f5/2 0.775(2) 0.777(10) [28]
5p1/2-11s 0.334(2) 5p3/2-11s 0.471(3) 3d5/2-7f5/2 0.535(1) 0.535(10) [28]
5p1/2-3d3/2 7.16(10) 7.28(13) [28] 5p3/2-3d3/2 3.19(5) 3.24(5) [28] 3d5/2-4f7/2 14.6(2) 14.84(12) [28]

7.169 [29] 3.193 [29] 3d5/2-5f7/2 5.88(3) 5.91(4) [28]
5p1/2-4d3/2 17.04(6) 16.97(24) [28] 5p3/2-4d3/2 7.64(3) 7.61(10) [28] 3d5/2-6f7/2 3.47(1) 3.46(3) [28]

17.040 [29] 7.643 [29] 3d5/2-7f7/2 2.392(6) 2.386(20) [28]
5p1/2- 5d3/2 0.931(35) 1.138(10) [28] 5p3/2-5d3/2 0.398(16) 0.490(5) [28]
5p1/2-6d3/2 0.063(14) 0.059(5) [28] 5p3/2-6d3/2 0.039(6) 0.015(5) [28]
5p1/2-7d3/2 0.219(11) 5p3/2-7d3/2 0.105(5)
5p1/2-8d3/2 0.236(9) 5p3/2-8d3/2 0.111(4)
5p1/2-9d3/2 0.222(7) 5p3/2-9d3/2 0.103(3)

aExpt. [31].
bDetermined from Stark shift data in [14].

in particular contributions for higher excitations, are very
large. We have included the estimate of such higher excitation
correlations omitted in [28]. We note that the uncertainty
evaluation procedure used in [28] [taking the difference of the
CCSD and CCSD(T) results] may significantly underestimate

the uncertainties since it only works for cases where the per-
turbative triple contributions are the dominant high-excitation
corrections, which is not the case for these transitions. Our
results for these transitions are in good agreement with RCICP
values [29].
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FIG. 1. (Color online) The frequency-dependent polarizabilities
of the K 4s and 4p3/2 states. The magic wavelengths are marked
with circles. The approximate positions of the 4p3/2-nl resonances
are indicated by vertical lines with small arrows on top of the graph,
together with the corresponding nl.

Our results for scalar and tensor polarizabilities of the
4pj excited states of potassium are compared with theoretical
[27–30,32] and experimental values [26,33] in Table II. The
uncertainty in the experimental measurement [33] of the scalar
polarizability is too large to reflect on the accuracy of the
present calculations. Extensive comparison of the theoretical
and experimental static polarizabilities for the alkali-metal
atoms was recently given in the review [40].

III. MAGIC WAVELENGTHS

We define the magic wavelength λmagic as the wavelength
for which the ac polarizabilities of two states involved in the
atomic transition are the same, leading to a vanishing ac Stark
shift of that transition. For the ns-np transitions, a magic wave-
length is represented by the point at which two curves, αns(λ)
and αnp(λ), intersect as a function of the wavelength λ. The

FIG. 2. (Color online) The frequency-dependent polarizabilities
of the K 4s and 5p3/2 states. The magic wavelengths are marked
with circles and arrows. The approximate positions of the 5p3/2-14s

and 5p3/2-12d resonances are indicated by vertical lines with small
arrows on top of the graph.

TABLE II. Values of scalar (α0) and tensor (α2) polarizabilities in
K. The present results are compared with theoretical [27–30,32] and
experimental values [26,33]. All values are in atomic units.

Present Theory Expt.

α0(4s1/2) 290.4(6) 290.2(8) [32] 290.8(1.4) [26]
290.5(1.0) [28]
289.8(6) [30]
290.1 [29]

α0(4p1/2) 612(5) 604.1 [27] 587(87) [33]
606(7) [28]

605.3 [30]
α0(4p3/2) 621(4) 614.1 [27] 613(103) [33]

614(6) [28]
616.0 [30]

α2(4p3/2) −109.4(1.1) −107.9 [27]
−106(2) [28]

−107.5 [30]
α0(3d3/2) 1420(30) 1465.5(21.5) [28]
α0(3d5/2) 1412(30) 1452.8(32.5) [28]
α2(3d3/2) −482(19) −502.6(12.5) [28]
α2(3d5/2) −673(23) −701.7(25.6) [28]
α0(5s1/2) 4961(22)
α0(5p1/2) 7052(70)
α0(5p3/2) 7230(60)
α2(5p3/2) −1065(18)

total polarizability for the np3/2 states is given by α = α0 − α2

for mj = ±1/2 and α = α0 + α2 for the mj = ±3/2 case.
Therefore, the total polarizability of the np3/2 state depends
upon its mj quantum number and the magic wavelengths need
to be determined separately for the cases with mj = ±1/2 and
mj = ±3/2 for the ns-np3/2 transitions, owing to the presence
of the tensor contribution to the total polarizability of the np3/2

state. The uncertainties in the values of magic wavelengths are
found as the maximum differences between the central value
and the crossings of the αns ± δαns and αnp ± δαnp curves,
where the δα are the uncertainties in the corresponding ns and
np polarizability values. All calculations are carried out for
linear polarization. Several magic wavelengths were calculated
for the 4s-4p1/2 and 4s-4p3/2 transitions in K in Ref. [14]
using the all-order approach. Only the magic wavelengths
with λ > 600 nm were listed. In this work, we present
several other magic wavelengths for these D1,D2 transitions
above 500 nm.

The frequency-dependent polarizabilities of the 4s and
4p3/2 states for λ = 500–800 nm are plotted in Fig. 1. The
magic wavelengths are marked with circles. The approximate
positions of the 4p3/2-nl resonances are indicated by vertical
lines with small arrows on top of the graph, together with the
corresponding nl. For example, the arrow labeled 7s indicates
the position of the 4p3/2-7s resonance. The corresponding
magic wavelengths are listed in Table III. The results are
compared with Ref. [28] where available. We note that the
4p3/2-5s resonance wavelength is outside of the plot region
at λ = 1253 nm. While there are eight magic wavelengths for
the 4s-4p3/2|mj | = 1/2 transition in the wavelength region
shown on the plot, there are only four magic wavelengths
for the 4s-4p3/2|mj | = 3/2 transition since there are no
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TABLE III. Magic wavelengths for the 4s-npj transitions in
K. The 500–1227 nm and 1050–1130 wavelength ranges were
considered for the 4s-4pj and 4s-5pj transitions, respectively. The
corresponding polarizabilities are given in a.u. The resonances near
the magic wavelengths are listed in the first column. The results are
compared with Ref. [28].

Resonances λmagic α Ref.

4s-4p1/2 transition
4p1/2-9s 508.11(1) −214(1)
4p1/2-7d3/2 509.46(1) −216(1)
4p1/2-8s 531.79(1) −255(1)
4p1/2-6d3/2 533.99(2) −259(1)
4p1/2-7s 577.35(2) −363(1)
4p1/2-5d3/2 581.04(1) −374(1)
4p1/2-6s 690.16(1) −1189(2)

690.12(2) −1190(3) [28]
4p1/2-4s 768.413(3) 21039(59)

768.412(3) 21072(45) [28]
4p1/2-5s,3d3/2 1227.67(13) 473(1)

1227.2(2) 474(2) [28]
4s-4p3/2, |mj | = 1/2 transition

4p3/2-9s 509.36(1) −216(1)
4p3/2-7d5/2 511.04(1) −218(1)
4p3/2-8s 533.05(1) −257(1)
4p3/2-6d5/2 535.72(1) −262(1)
4p3/2-7s 578.69(2) −367(1)
4p3/2-5d5/2 583.07(1) −380(1)
4p3/2-6s 692.33(1) −1229(2)

692.26(3) −1230(3) [28]
4p3/2-4s 769.432(2) −27237(60)

769.43(2) −27267(63) [28]
4p3/2-5s,3dj 1227.65(14) 473(1)

1227.8(2) 474(2) [28]
4s − 4p3/2, |mj | = 3/2 Transition

4p3/2-7d5/2 510.74(3) −218(1)
4p3/2-6d5/2 535.37(3) −261(1)
4p3/2-5d5/2 582.79(2) −379(1)
4s − 4pj 768.980(2) −348(3)

768.98(2) −336.52(6) [28]
4s-5p1/2 transition

5p1/2-14s 1050.24(1) 617(1)
5p1/2-12d3/2 1051.53(3) 615(1)
5p1/2-13s 1067.33(1) 595(1)
5p1/2-11d3/2 1069.02(3) 593(1)
5p1/2-12s 1090.79(1) 570(1)
5p1/2-10d3/2 1093.06(5) 567(1)
5p1/2-11s 1124.42(1) 539(1)
5p1/2-9d3/2 1127.56(2) 536(1)

4s-5p3/2, |mj | = 1/2 transition
5p3/2-14s 1052.45(1) 614(1)
5p3/2-12d3/2 1053.66(3) 612(1)
5p3/2-13s 1069.67(1) 593(1)
5p3/2-11d3/2 1071.23(4) 591(1)
5p3/2-12s 1093.32(2) 567(1)
5p3/2-10d3/2 1095.40(6) 565(1)
5p3/2-11s 1127.29(2) 536(1)
5p3/2-9d3/2 1130.10(2) 534(1)

4s-5p3/2, |mj | = 3/2 transition
5p3/2-12d3/2 1053.59(2) 612(1)
5p3/2-11d3/2 1071.15(3) 591(1)
5p3/2-10d3/2 1095.28(4) 565(1)
5p3/2-9d3/2 1129.91(1) 534(1)

FIG. 3. (Color online) The frequency-dependent polarizabilities
of the K 4s and 5p1/2 states. The magic wavelengths are marked
with circles. The approximate positions of the 5p1/2-nl resonances
are indicated by vertical lines with small arrows on top of the graph,
together with the corresponding nl.

corresponding crossings near the 4p3/2-ns resonances as in
the case of |mj | = 1/2. The 769 nm magic wavelength for the
|mj | = 1/2 is not shown on the plot since the corresponding
polarizability (−27237 a.u.) is outside of the plot y-axis range.
There is only one magic wavelength above 800 nm for the
4s-4p3/2|mj | = 1/2 transition due to 4p3/2-5s resonance and
none for the |mj | = 3/2 case. The magic wavelengths for the
4s-4p1/2 transition are very close to those for 4s-4p3/2|mj | =
1/2. They are also given in Table III.

The magic wavelengths for the UV 4s-5pj transitions are
completely different than those for the D1,D2 lines owing to
completely different sets of resonances. The K case is also
significantly different from that of Li [36] due to differences
in the resonant transition wavelengths. We list the magic
wavelengths for the 4s-5p1/2 and 4s-5p3/2 transitions in the
range of 1050–1130 nm, which is of particular experimental

FIG. 4. (Color online) The frequency-dependent polarizabilities
of the K 4s and 5p3/2 states. The magic wavelengths are marked
with circles. The approximate positions of the 5p3/2-nl resonances
are indicated by vertical lines with small arrows on top of the graph,
together with the corresponding nl.
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interest in Table III. We find 20 magic wavelengths in the
technical interest region of 1050–1130 nm accessible by
a number of widely used lasers. The magic wavelengths
for the 4s-5p3/2 transition near 1053 nm wavelength are
illustrated in Fig. 2. As in the case of the 4s-4p3/2 transition,
there is no magic wavelength for the |mj | = 1/2 case near
the ns resonance. All magic wavelengths for the 4s-5p1/2

and 4s-5p3/2 transitions in the range of 1050–1140 nm are
illustrated in Figs. 3 and 4. The same designations are used
as in the previous graphs. Comparing these figures with the
similar plots for Li (see Figs. 3 and 4 of Ref. [36]) shows
that K magic wavelengths near 1050–1130 nm originate from
crossings near much higher resonances (n = 9–14 vs n = 6–7
for Li) making the calculation for K more complicated due
to the very large cavity size required to accommodate such
highly excited orbitals.

IV. CONCLUSION

We have calculated the ground 4s, 4p, and 5p state ac polar-
izabilities in K using the relativistic linearized coupled-cluster
method and evaluated the uncertainties of these values. We
have used our calculations to identify the magic wavelengths
for the 4s-4p and 4s-5p transitions. The magic wavelengths for
the ultraviolet resonance lines are of particular interest for laser
cooling of ultracold gases with high phase-space densities.
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