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Analysis of hyperspherical adiabatic curves of helium: A classical dynamics study
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The hyperspherical adiabatic curves (adiabatic eigenenergies as functions of the hyperradius R) of helium
for zero total angular momentum are analyzed by studying the underlying classical dynamics which in the
adiabatic treatment reduces to constrained two-electron motion on a hypersphere. This dynamics supports five
characteristic classical configurations which can be represented by five types of short periodic orbits: the frozen
planet (FP), the inverted frozen planet (IFP), the asymmetric stretch (AS), the asynchronous (ASC), and the
Langmuir periodic orbit (PO). These POs are considered as fundamental modes of the two-electron motion
on a hypersphere which, after quantization, give five families of so-called adiabatic lines (adiabatic energies
related to these POs as functions of R). It is found that multiplets, each of them consisting of adiabatic curves
which converge to the same ionization threshold, are at large values of R delimited from the bottom and from
the top by the adiabatic lines which are related to the IFP and stable AS POs and to the FP PO, respectively.
At smaller values of R, where the AS PO becomes unstable, the curves move to the area between the ASC
(bottom) and AS (top) lines by crossing the latter. Therefore, at different values of R the lower limiting line of
the multiplet is related to the three types of PO (IFP, AS, and ASC), which are all stable in the negative-energy
part of this line. As a consequence, the quantum states of helium in principle are not related individually to a
single classical configuration on the hypersphere. In addition, it is demonstrated that “unstable parts” of adiabatic
lines (the so-called diabatic curves) determine the positions and type of avoided and hidden crossings between
hyperspherical adiabatic curves. Two clearly visible classes of avoided crossings are related to the AS and ASC
POs. In addition, a number of avoided crossings of the adiabatic curves is observed at the positions where the
adiabatic lines that are related to different types of PO cross mutually. Finally, a class of hidden crossings which
is located near the saddle point of the potential is related to the Langmuir orbit. The large spacing between
adiabatic curves at the positions of these hidden crossings is explained by high instability of the Langmuir PO
compared to the AS and ASC POs.
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I. INTRODUCTION

In atomic and molecular physics the adiabatic approach has
been used to study a number of different problems including
(i) those related to bound and resonant states as well as (ii)
scattering and fragmentation processes (collisions). The adia-
batic treatment involves approximate separation of the “fast”
and “slow” components of motion of the atomic or molecular
system in such a way that the energy eigenvalues of the fast
subsystem emerge as effective potentials governing the motion
of the slow one. For molecular systems this approach arises
naturally due to the large difference between the frequencies of
electronic and nuclear motions. Here the internuclear distances
appear as the adiabatic (slow) variables whereas the effective
(adiabatic) potential is determined by the electronic motion
(the Born-Oppenheimer approximation). Then, as is well
known, the vibrational and rotational states and energy levels
of a molecular system can be obtained by solving the eigen-
value problem for nuclear motion in this effective potential.

Due to the different time scales of electronic and nuclear
motions the adiabatic approach (based on the Born-Fock
adiabatic theorem [1]) is also one of the most powerful methods
in the theory of slow atomic collisions. The main point in
this theory is that the inelastic transitions between electronic
adiabatic states occur at the place of the closest approach of
adiabatic potential curves—avoided crossings (anticrossings).

According to the von Neumann–Wigner theorem [2], the
exact crossing of two adiabatic potential curves of the same
symmetry is forbidden; however, every avoided crossing of
such curves reflects their exact crossing at a complex branch
point joining two sheets of the Riemann surface of the
(complex) adiabatic potential. Then the probability of inelastic
transition can be expressed through a contour integral of
the energy difference between two sheets corresponding to
the initial and final adiabatic states around the branch point
(see [3] and references therein). Initially, in the application
of the adiabatic approach the narrow avoided crossings of
adiabatic potential curves with the Landau-Zener type of
couplings [4,5] were used. These avoided crossings are
related to the under-barrier resonant interactions between
electronic states located in different regions of configuration
space, e.g., on different nuclei in ion-atom collisions. Later,
a different mechanism of nonadiabatic transitions via the
so-called “hidden crossings” was discovered [6]. It is shown
that such transitions are dominant in atomic collisions and
provide a complete description of inelastic processes. In the
case of hidden crossings the branch points lie deeper in the
complex plane and thus the adiabatic curves at the positions
of anticrossings are more separated than in the case of the
Landau-Zener couplings. For this reason, often they are not
manifested in the pattern of the potential curves at real values
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of the adiabatic parameter. Hidden crossings happen when an
electronic energy level touches the top of an effective potential
barrier. On the other hand, in the classical description, the
full-dimensional electronic trajectory at this place collapses
into an unstable periodic orbit (PO). On the basis of this
correspondence a semiclassical theory of hidden crossings was
developed [7]. Within this description the unstable periodic
orbits generate the hidden crossings of adiabatic energy levels.
The position of a hidden crossing occurs at the place where
a quantized trajectory approaches the corresponding unstable
PO, whereas the probability of inelastic transition via this
hidden crossing is determined by the Lyapunov exponent λ of
this PO. In detail, the theory is discussed in the review paper
presented in Ref. [8].

The adiabatic approach (of the Born-Fock type) is ap-
plicable also to an arbitrary Coulomb few-body system if
it is possible to find a set of coordinates which makes
the dynamics approximately separable. Hence, the so-called
hyperspherical adiabatic approach [9] is one of the most
successful methods for describing the singly and doubly
excited states of two-electron atoms. The success of this
approach lies in the capability of hyperspherical coordinates
to describe adequately the collective modes of two-electron
dynamics. The electrons radial coordinates r1 and r2 are
here replaced by the hyperradius R = (r2

1 + r2
2 )1/2 and the

hyperangle α = arctan(r2/r1) (0 � α � π/2) which measure
the size of the system and the radial correlation of the electrons,
respectively. The angular correlation can be described by the
mutual angle ϑ = � (r1,r2). The other three (Euler) angles
specify the orientation of the atom. The hyperspherical ap-
proach is based on the adiabatic expansion of the two-electron
wave function where the adiabatic (“channel”) functions are
obtained by solving the Schrödinger equation at fixed values
of the hyperradius R—the so-called hyperspherical adiabatic
eigenvalue problem. For a given symmetry (2S+1Lπ ) and a
given ionization threshold (determined by the quantum number
N of the “inner” electron) the channel index μ can be expressed
by the set of approximate quantum numbers (K,T )A [10,11].
Each channel is related to a hyperspherical adiabatic energy
(potential) curve which connects the eigenvalues of a given
channel index at different values of R. Although it is not
obvious that the adiabatic approximation should be valid in
atomic systems, the approximation has considerable validity,
apparently because of the slow variation of the Coulomb
interaction as the system expands.

Except for the helium atom the hyperspherical approach
has been successfully applied in treatments of bound states and
resonances of heliumlike ions and other Coulomb three-body
systems (see Ref. [12] for a review). Also, it should be
mentioned that the adiabatic treatment of Coulomb three-
body systems is not feasible in hyperspherical coordinates
exclusively. The so-called molecular approximation, where the
interelectronic distance is treated as an adiabatic variable, is an
even more direct generalization of the Born-Oppenheimer ap-
proximation to two-electron systems (see, e.g., Refs. [13,14]).
Both adiabatic approximations, however, reveal similar key
features of the two-electron and Coulomb three-body systems
generally.

Analogously to the hidden-crossing theory of slow atomic
collisions, the nonadiabatic transitions between hyperspherical

adiabatic states can be used for describing atomic collisions
with light particles. This method has been applied in studies
of ionization of hydrogen by electron impact [15,16] and
positronium formation in positron-hydrogen collisions [17]. A
classification of hidden crossings in the three-body Coulomb
problem has been studied within the hyperspherical adiabatic
approach as well as using the approximate separability of the
hyperspherical adiabatic eigenvalue problem in hyperspherical
elliptic coordinates. The results are illustrated by calculations
for the positronium negative ion (e−e+e−) for zero total
angular momentum where two classes of hidden crossings
are recognized and related to two types of short POs [18].

The main idea of this paper is to explain some basic
properties of the hyperspherical adiabatic curves (multiplet
structure, asymptotic behavior, avoided and hidden crossings,
etc.) of two-electron atomic systems, particularly for the
helium atom, using classical dynamics as a tool. Since the
hyperspherical adiabatic curves are determined by treating
the hyperradius R as a parameter, the underlying classical
dynamics is not defined in the full phase space, but for each
value of R we have to consider the constrained two-electron
motion lying on the hypersphere of this hyperradius (r2

1 + r2
2 =

R2). In this paper we restrict our analysis to the case when the
total angular momentum is zero. Then all three Euler angles are
fixed, the (full) system has three degrees of freedom (which can
be related to the R, α, and ϑ coordinates), and the configuration
space of the constrained motion (for a given R) is the two-
dimensional (2D) surface of the corresponding hypersphere.
In the next section we study classical configurations on a
hypersphere for the helium atom (for different values of the
parameter R) and analyze properties of the shortest POs. In
Sec. III we perform the quantization of these POs and obtain
the corresponding adiabatic energies which are in Sec. IV
used in the analysis of the hyperspherical adiabatic curves.
A summary and conclusions are presented in Sec. V. A brief
preliminary analysis is given in a recent review paper [19].

II. CLASSICAL DYNAMICS ON A HYPERSPHERE

A. The Hamiltonian function, scaling properties, and
symmetries

The Hamiltonian function of two-electron atoms in hy-
perspherical coordinates R, α, and ϑ , for the total angular
momentum L = 0, reads (in the approximation of an infinitely
heavy nucleus)

H (PR,Pα,Pϑ,R,α,θ )

= 1

2

(
P 2

R + P 2
α

R2
+ P 2

ϑ

R2 sin2α cos2α

)
+ C(α,ϑ)

R
, (1)

C(α,ϑ) = − Z

sin α
− Z

cos α
+ 1√

1 − sin 2α cos ϑ
, (2)

where PR , Pα , and Pϑ are the canonically conjugated momenta
and Z is the nuclear charge.

If the hyperradius is fixed (R = const), then PR = 0 and
the Hamiltonian function (1) reduces to

HR(Pα,Pϑ,α,θ ) = 1

2R2

(
P 2

α + P 2
ϑ

sin2α cos2α

)
+ C(α,ϑ)

R
.

(3)
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The motion determined by this Hamiltonian function is con-
strained to lie on the hypersphere of hyperradius R. Formally,
this system belongs to the class of holonomic mechanical
systems, because it obeys the constraint r2

1 + r2
2 − R2 = 0.

Using atomic physics vocabulary, the motion determined by
the Hamiltonian function (3) is always bound, in contrast to
the real dynamics determined by the Hamiltonian function
(1). However, although the number of degrees of freedom for
the constrained system is reduced to 2, due to the coupling
between the α and ϑ variables by the potential C(α,ϑ)/R, this
system is still nonintegrable and the corresponding classical
dynamics is mixed (both regular and chaotic).

Due to the scaling properties of Coulomb systems, it
is sufficient to calculate the trajectories and all classical
quantities for one fixed value of the hyperradius. If ε, τ ,
and s are the values for the energy, time, and action, respec-
tively, at R = 1, the corresponding values for an arbitrary R

are

E = ε/R, t = R3/2τ, S =
√

R s. (4)

Then, the scaled potential is C(α,ϑ) and the scaled Hamilto-
nian function h = RHR has the form

h(pα,pϑ,α,θ ) = 1

2

(
p2

α + p2
ϑ

sin2α cos2α

)
+ C(α,ϑ), (5)

where pα = Pα/
√

R and pϑ = Pϑ/
√

R are the scaled mo-
menta.

The potential C(α,ϑ) [and thus C(α,ϑ)/R for any fixed
value of R] is characterized by three symmetry axes:
(i) α = π/4, (ii) ϑ = 0, and (iii) ϑ = π . These axes are
essentially one-dimensional (1D) invariant subspaces of the 2D
configuration space {α,ϑ}, because the constrained electronic
motion which initially lies in one of them will remain there
for all times. [This definition is analogous to that for the
symmetry planes in the three-dimensional configuration space
for unconstrained motion [20].] The first (i) symmetry axis
corresponds to symmetric motion of the electrons where
r1 = r2 (the so-called Wannier ridge). The other two axes cor-
respond to collinear configurations with the electrons moving:
(ii) on the same side of the nucleus (the Zee configuration) and
(iii) on different sides of the nucleus (the eZe configuration).
The position of the crossing of axes (i) and (iii) (α = π/4,
ϑ = π ) is the saddle point of the potential C(α,ϑ), which
at this point takes the value εsp = C(π/4,π ) = (1 − 4Z)/

√
2.

For Z = 2 one has εsp = −7/
√

2 ≈ −4.949 75 (see Fig. 1).
The classical trajectories are calculated numerically by inte-

grating the corresponding equations of motion. We emphasize
that the original equations [Hamilton’s equations associated
with the Hamiltonian function (3) or (5)] before integrating
must be regularized in order to remove the singularities of
the potential (see the Appendix). Although classical dynamics
does not account automatically for the Pauli principle (the
correspondence between classical trajectories and quantum
states of different symmetries is considered in Sec. III), the par-
ticle exchange symmetry of the Hamiltonian function reduces
the accessible configuration space to the fundamental domain
α ∈ [0,π/4], i.e., to the desymmetrized region of configuration
space with r1 > r2. Except for the semiclassical quantization,
this reduction is particularly suitable in the regularization
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FIG. 1. (Color online) The potential C(α,ϑ) for the helium atom
(Z = 2) and examples for short periodic orbits at fixed hyperradius:
the frozen planet (FP, black line), inverted frozen planet (IFP, blue
line), asymmetric stretch (AS, red line), asynchronous (ASC, green
line), and Langmuir (L, orange line) POs. The yellow cross denotes
the position of the saddle point.

procedure (see the Appendix). However, for convenience, the
classical trajectories in this section will be given in the full
(2D) configuration space for the constrained motion.

B. Phase-space structure and short periodic orbits

The phase-space structure is examined using the Poincaré
surfaces-of-section technique. For Hamiltonian systems with
two degrees of freedom (four-dimensional phase space) the
classical motion is confined to the energy shell which is
three-dimensional and the Poincaré surface of section is a two-
dimensional cut of this shell (see, e.g., [21]). As is well known
each periodic orbit generates fixed points in the section. If the
orbit is, however, quasiperiodic it generates an invariant curve
instead of fixed points. The type of fixed point is determined by
the behavior of the invariant curves in its vicinity. Elliptic fixed
points (i.e., the fixed points surrounded by elliptic invariant
curves) are linearly stable, since an arbitrary point in its
vicinity stays there after arbitrary iterations. On the other hand,
if the invariant curves are hyperbolic, we have hyperbolic
fixed points, which are unstable. Chaotic orbits densely fill
a finite volume on the three-dimensional energy shell and
appear rather as areas in the Poincaré section. Due to their
unstable character, these chaotic regions usually appear around
hyperbolic fixed points.

In our case it is convenient to construct the surfaces of
section as cuts of the energy shell h(pα,pϑ,α,ϑ) = ε along
the potential symmetry lines. In Fig. 2 we show the cut (α,pα)
of the ε shell at ϑ = π , i.e., the surface of section

{(α,pα)| ∃ pϑ : h(pα,pϑ,α,π ) = ε} (6)

for several scaled energies. The condition h(pα,pϑ,α,π ) = ε

determines the energy-allowed area of section. Using Eq. (5),
it takes the explicit form p2

α � 2[ε − C(α,π )], where the
equality sign corresponds to the case pϑ = 0 and this equation
defines the boundary lines of the area (shown in the sections
in Fig. 2). The sections of this type are particularly convenient
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N. S. SIMONOVIĆ AND E. A. SOLOV’EV PHYSICAL REVIEW A 87, 052503 (2013)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(c)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(d)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(e)

α
-8

-4

0

4

8

p α
π/4 π/20 π/8 3π/8

(f)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(g)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(h)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(i)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(a)

α
-8

-4

0

4

8

p α

π/4 π/20 π/8 3π/8

(b)

FIG. 2. (Color online) The Poincaré sections (6) (the cuts at ϑ = π ) for Z = 2 at the scaled energies (a) ε = −7, (b) ε = −6,
(c) ε = εsp = −4.949 75, (d) ε = −4, (e) ε = −3, (f) ε = −2, (g) ε = −1, (h) ε = 0, and (i) ε = 1. The vertical lines α = 0 and π/2
correspond to the FP PO. The boundary lines of the energy-allowed area for ε < εsp (blue lines) and for ε > εsp (red lines) correspond to the
IFP PO and to the AS PO, respectively. The central fixed point (α,pα) = (π/4,0) is related to the L PO [stable only in a narrow interval of the
scaled energies around ε = −2; see the orange dot in the section (f)]. The elliptic fixed points in the sections (e)–(h), located symmetrically
below and above the central one, correspond to the ASC PO (green dots).

for localization of off-collinear orbits. On the other hand, the
cut (ϑ,pϑ ) of the ε shell at α = π/4, i.e., the section

{(ϑ,pϑ )| ∃ pα : h(pα,pϑ,π/4,ϑ) = ε}, (7)

shown in Fig. 3 for different ε, is more useful to visualize
the out-of-phase motion (both collinear and off collinear). The
energy-allowed area of this section is determined by the con-
dition p2

ϑ � 1
2 [ε − C(π/4,ϑ)]. The equality sign corresponds
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FIG. 3. (Color online) The Poincaré sections (7) (the cuts at α = π/4) for Z = 2 at the scaled energies (a) ε = −4, (b) ε = −3.5,
(c) ε = −3.3, and (d) ε = −3. The central fixed point (red), which is for ε < −3.487 stable [elliptic fixed point; see sections (a) and (b)] and
for ε > −3.487 unstable [hyperbolic fixed point; see sections (c) and (d)], corresponds to the AS PO. The elliptic fixed points in the sections (c)
and (d), located symmetrically below and above the central one (green), correspond to the ASC PO. The boundary line of the energy-allowed
area (orange) corresponds to the L PO.

to the case pα = 0, which determines the boundary lines of
the energy-allowed area (Fig. 3).

Examinations of the Poincaré sections indicate that five
characteristic types of classical configurations exist, which are
related to five types of short periodic orbits (POs); see Fig. 1.
There are two frozen-planet-type POs—the frozen planet (FP)
PO and the inverted frozen planet (IFP) PO, two out-of-phase
POs—the asymmetric stretch (AS) PO and the asynchronous
(ASC) PO, and an oscillatory Langmuir-type (L) PO. Two
of them are off collinear (ASC and L) and the others are
collinear (ϑ = 0,π and Pϑ = 0). Note that these POs, except
the IFP PO, have counterparts (of the same names) in the full
(unconstrained) two-electron dynamics (see, e.g., [22–25] and
also overviews in Refs. [14,20,26]). Some properties of these
POs are given in Table I.

TABLE I. Properties of the fundamental (short) periodic orbits
of the constrained two-electron system (R = const) with Z = 2
(helium). Here εsp = −4.950 and εbif = −3.487.

Periodic orbit (PO) ε domain Interval of stability

Frozen planet (FP) ∀ ε −6.283 < ε < −2.972
Inverted frozen planet (IFP) ε < εsp Always stable
Asymmetric stretch (AS) ε > εsp εsp < ε < εbif

Asynchronous (ASC) ε > εbif εbif < ε < 0.261
Langmuir (L) ε > εsp −2.072 < ε < −1.969

In the sections of type (6) shown in Fig. 2 the frozen planet
PO, which exists for all scaled energies, is represented by
the vertical lines α = 0 and π/2. The inverted frozen planet
and the asymmetric stretch POs, which, however, exist for
ε < εsp and ε > εsp, respectively (they transform from one to
the other at the saddle point), are related to the boundary lines
of energy-allowed areas in the corresponding sections. The
Langmuir PO (existing also for ε > εsp) is located at the centers
of sections (α,pα) = (π/4,0), and, finally, the asynchronous
PO, which occurs as a new PO after a bifurcation of the AS PO
(ε > −3.487 for Z = 2), is represented by two elliptic fixed
points located symmetrically below and above the central fixed
point (L PO).

The Poincaré sections (7), on the other hand, can be
constructed only if ε > εsp (see Fig. 3). In these sections,
therefore, there is no fixed point related to the IFP PO, but
also since none of them intersects the α = π/4 surface, there
is also no fixed point related to the FP PO. The AS PO is here
represented by the central fixed point (ϑ,pϑ ) = (π,0), which
is stable (an elliptic fixed point) for lower scaled energies.
The bifurcation, which for Z = 2 occurs around ε = −3.487,
changes the character of the central fixed point, which becomes
hyperbolic (unstable) and two new elliptic fixed points arise.
The new fixed points are located symmetrically below and
above the central (AS PO) fixed point and correspond to the
ASC PO. Finally, the L PO is in these sections represented by
the boundary line of the energy-allowed area.
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FIG. 4. (Color online) The phase trajectories for Z = 2 and different scaled energies (ε = −20,−18, . . . ,20) belonging to (a) the Zee
collinear configuration and (b) the eZe collinear configuration. The infinite potential barrier at α = π/4 separates the collinear Zee motion (the
FP orbits) confined in the region 0 < α < π/4 from that in the region π/4 < α < π/2. The eZe orbit with ε = εsp (black lines) is the separatrix
dividing the IFP orbits (ε < εsp, blue lines) from the AS orbits (ε > εsp, red lines). The phase trajectories with arrows showing the phase flow
are those corresponding to the scaled energies ε = −6 (gray, blue), ε = εsp (separatrix), and ε = −4 (black, red).

One can see that at low scaled energies (ε < εsp) the
classical dynamics on the hypersphere is near regular; see
Figs. 2(a)–2(c). This is a consequence of the reduction of α

motion in this case to small regions around potential wells
at α = 0 and π/2, where the individual motions of two
electrons are less correlated. In the range εsp < ε < 0.261
the two-electron dynamics is mixed and the Poincaré sections
show the typical structure with regular islands embedded into
chaotic areas [Figs. 2(d)–2(h)]. With increase in the scaled
energy the motion becomes more chaotic and, for positive
energies, it becomes essentially ergodic [Fig. 2(i)].

C. The collinear configurations

For collinear configurations the mutual angle between the
electrons is either ϑ = 0 or ϑ = π with pϑ = 0 (in both
cases). In the first case the electrons reside on the same side
of the nucleus (the Zee configuration), whereas in the second
case they are on opposite sides (the eZe configuration). Since
we consider constrained dynamics with fixed hyperradius
(the motion on the hypersphere), both configurations have
only one degree of freedom, along the α coordinate, and the
corresponding 1D Hamiltonian function reads

h(pα,α) = 1
2p2

α + C(α), (8)

where

C(α) = − Z

cos α
− Z

sin α
+ 1

|cos α ± sin α| . (9)

The signs “−” and “+” correspond to the cases ϑ = 0 and
π , respectively. This Hamiltonian function describes in fact
the constrained (R = const) two-electron dynamics in the 1D
invariant subspaces (ii) and (iii) (see Sec. II A).

For a given scaled energy, each configuration (Zee or eZe) in
the corresponding 1D configuration space reduces to a single
PO. For the Zee configuration this is the frozen planet PO,
whereas for the eZe configuration the corresponding orbit is the

inverted frozen planet PO if ε < εsp and the asymmetric stretch
PO if ε > εsp (see Fig. 1). The corresponding phase trajectories
pα(α) = ±√

2[ε − C(α)] for different scaled energies are
shown in Fig. 4. Examples of these POs in real space for two
values of the scaled energy (ε < εsp and ε > εsp) are shown in
Fig. 5.

Information about the stability of the POs can be obtained
by analyzing the fixed points in Poincaré sections or by calcu-
lating the corresponding Lyapunov exponents [27]. Figure 6
shows the Lyapunov exponents λ for the short POs for Z = 2
as functions of the scaled energy. It can be seen that the FP
orbit is stable (λ = 0) in the interval −6.283 < ε < −2.972.
By inspecting the Poincaré sections (6) at different scaled
energies, we find that the stable FP PO bifurcates at the
ends of this interval. Except for the change of stability of
the FP orbit, the bifurcations result in the appearance of new
POs represented by elliptic fixed points located near the fixed
points related to the FP PO (see Fig. 2). These new orbits are
essentially off collinear (planetary orbits). In contrast to the
FP orbit, the IFP orbit is always stable (λ = 0 for all ε < εsp;
see Fig. 6). This is not true for the other type of PO belonging
to the eZe configuration, i.e., for the AS PO. Examinations of
the Poincaré sections (7) show that the AS orbit is stable for
ε ∈ (εsp,εbif), where εbif = −3.487 (for Z = 2). At the scaled
energy ε = εbif the orbit bifurcates to an unstable AS and a
stable ASC orbit [these two orbits at ε = −3.3 are shown in
Figs. 7(a) and 7(b), respectively].

Recall that the stability of a trajectory is defined with respect
to small deviations in directions which are perpendicular to
the motion along the trajectory. Since the system we study
has two degrees of freedom and the corresponding collinear
configurations have only one, along the α coordinate, stability
of a collinear PO essentially means that this orbit is stable
with respect to deviations in the ϑ direction. Consequently,
a stable collinear PO is surrounded by an island of stability
in phase space containing off-collinear orbits with the same
kinematics in the α direction as in the collinear orbit. Thus,
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FIG. 5. (Color online) The collinear Zee (left) and eZe (right) POs for R = 1 and two values of the scaled energy, ε = −6 (top) and ε = −4
(bottom), shown in real space (straight colored lines show the electron paths): (a) the FP PO, (b) the IFP PO, (c) the FP PO, and (d) the AS PO;
as well as off-collinear orbits (black lines) in their vicinities. The nucleus (Z = 2) is located at the origin of the coordinate system. Note that
the collinear orbits shown here correspond to the phase trajectories drawn with arrows in Fig. 4.

the definition of collinear configuration can be extended to
the set of all stable trajectories (including the off-collinear
ones) surrounding the fundamental collinear PO. Examples of
such off-collinear orbits belonging to the extended Zee and
eZe configurations are shown in Fig. 5. Note that the orbits
in the neighborhood of stable FP POs are very similar to the
related orbits for the unconstrained two-electron system [23].
The orbits belonging to the constrained and the unconstrained
dynamics, however, may be very different in stability. As we
can see from Fig. 6, for the motion on the hypersphere the
stability of POs depends on the scaled energy, whereas in the
full phase space the FP PO is always stable and the AS PO is
always unstable [20,26]. The IFP configuration [Fig. 5(b)], as
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FIG. 6. (Color online) The Lyapunov exponents as functions of
the scaled energy for the FP (black), IFP (blue), AS (red), ASC
(green), and L (orange) POs (Z = 2) at fixed hyperradius.

we have mentioned above, does not exist in the case of the full
dynamics.

D. The asynchronous configuration

Out-of-phase planar models for the helium atom (in the
full configuration space) were analyzed several times in the
last century in order to describe semiclassically the ground
or symmetrically exited states with L = 0 [24,28,29] (see
also Figs. 3 and 4 and the related text in Ref. [14]). In the
simplest of such models [24] two electrons move around
the nucleus asynchronously (with a phase shift of half a
period), one clockwise and the other counterclockwise (when
L = 0), on two equivalent perturbed Kepler ellipses with
major axes oriented in opposite directions. Thus, when one
electron passes through the perihelion, the second is at its
aphelion. A subsequent analysis of the model [29], however,
has revealed that such a simple (short) PO does not exist for
fully correlated electrons (except in the collinear limit—the
AS PO). In fact, due to the mutual electron interaction and
the out-of-phase kinematics, the asynchronous configuration
has an additional degree of freedom—slow oscillations of the
angle 	 between the major axes of single electron orbits
(bending vibrations around the equilibrium value 	 = π )
[19,28].

In contrast to the full (unconstrained) two-electron dynam-
ics, the asynchronous periodic orbit (the ASC PO), which is
kinematically equivalent to the model proposed in Ref. [24]
(	 = π all the time), is dynamically allowed in the case of
motion on the hypersphere for ε > εbif ; see Figs. 7(a) and
7(b). This fundamental PO is in the Poincaré sections in
Figs. 2(e)–2(h), 3(c), and 3(d) represented by elliptic fixed
points (green dots), which are located symmetrically below
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FIG. 7. (Color online) (a) The asynchronous (ASC) PO for ε = −3. The full circles mark the positions of two electrons while they pass
from the same side of the nucleus (cross) through the collinear arrangement. The open circles mark their positions after half a period. (b) The
ASC POs for ε = −3.48,−3,−2, 0, and 25. (c) and (d) Trajectories in the neighborhood of the ASC PO for ε = −3 with different amplitudes
of the perpendicular component of motion. The first one (c), with smaller amplitude, is stable. The second one (d) approaches asymptotically
the (unstable) AS collinear configuration (red line). To show this process transparently a part of the trajectory is drawn in a lighter color.

and above the centers of sections. For scaled energies just
above the bifurcation point the orbit is very close to the AS
PO, but for higher values of ε it becomes essentially off
collinear [see Fig. 7(b)]. One can see from Fig. 6 that the
ASC PO is stable in the interval εbif < ε < 0.261. Actually,
at higher scaled energies the only stable configuration is just
the asynchronous one and the latest stable orbit which survives
before the system becomes ergodic is the ASC PO (see Fig. 2).
The increasing instability of the ASC PO with the scaled
energy can be explained by the decreasing distance between
electrons (and thus the increasing Coulomb repulsion) at the
points of their closest approach, which occurs at ϑ = 0 [see
the “double-heart” orbit in Fig. 7(b)].

The trajectories surrounding the ASC PO (represented by
closed curves around the green dots in the Poincaré sections
in Figs. 2 and 3) have, in addition to the fundamental asyn-
chronous mode, also a perpendicular component of motion
leading to slow oscillations of the angle 	 (bending vibra-
tions). Examples of such trajectories for ε = −3, with different
amplitudes of the perpendicular component, are shown in
Figs. 7(c) and 7(d). The first one (c) has smaller amplitude
and it is stable. In the second case (d) the amplitude is so large
that the trajectory, which is initially close to the asynchronous
configuration, approaches asymptotically the AS collinear
configuration (red line). This trajectory corresponds to the
separatrix shown in the Poincaré section in Fig. 3(d) (red
curve). The hyperbolic fixed point in this separatrix is related to
the AS PO which is for ε = −3 unstable. Thus, the trajectory in
Fig. 7(d) can be obtained also from the AS PO by introducing
a very small perpendicular deviation. The trajectories with
amplitudes of the perpendicular component which are larger
than that for the trajectory in Fig. 7(d) are located outside the

phase-space area restricted by the separatrix, but this motion
can still be stable (see Fig. 3).

E. The Langmuir configuration

As we have seen in Sec. II A, the constrained motion
(R = const) of two electrons on the Wannier ridge (r1 = r2)
belongs to a 1D invariant subspace [marked by (i)] of the 2D
configuration space. The only degree of freedom here can be
described by the angle ϑ . Moreover, due to the electrostatic
repulsion between electrons, this motion reduces to pure
bending vibrations around the equilibrium value ϑ = π . The
corresponding trajectory is essentially the counterpart of the
Langmuir oscillatory PO for the unconstrained system [25].
These motions are, however, different in many features, for
example, in the amplitude of the bending vibrations, which in
the constrained case depends on the scaled energy. Further,
in this case the electron paths lie on the common circle
r1 = r2 = R/

√
2 [see Fig. 8(a)], which is not the case for

the unconstrained motion.
The motion in the 1D invariant subspace (i) can be described

by the Hamiltonian function (5) if we put α = π/4 and pα =
0, i.e., by h(pϑ,ϑ) = 2p2

ϑ − 2
√

2 Z + 1/
√

2 sin(ϑ/2). It is
convenient here to introduce the new variable χ = (π − ϑ)/2.
The appropriate Hamiltonian function then has the form

h(pχ,χ ) = p2
χ

2
+ sec χ − 4Z√

2
. (10)

The minimal value of the scaled energy ε for which the
configuration exists is εsp. Then χ = 0 and pχ = 0 (ϑ = π and
pϑ = 0), i.e., the electrons are at rest at the opposite sides of
the nucleus [see Fig. 8(a)]. By increasing the scaled energy the
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FIG. 8. (Color online) (a) The Langmuir PO (R = 1) for Z = 2 at
ε = −2 (orange lines), ε = −4 (thick gray lines), and ε = εsp (black
circles). (b) A stable trajectory in the vicinity of the Langmuir PO for
ε = −2.

amplitude of bending vibrations χ0 increases. Its value follows
from the condition pχ = 0 which determines the positions of
the vibration turning points ±χ0. Using Eq. (10) one obtains

χ0 = arccos(
√

2 ε + 4Z)−1. (11)

As mentioned above, the Langmuir PO is in Poincaré
section (6) represented by the fixed point located at (α,pα) =
(π/4,0). For Z = 2 and for the scaled energy ε = −2 this point
is the elliptic fixed point [see Fig. 2(f)]. By calculating the
Lyapunov exponent for this orbit at different scaled energies
(see Fig. 6) it is found that for Z = 2 the orbit is stable only in
the narrow interval ε ∈ (−2.072,−1.969). A stable trajectory
in the vicinity of the Langmuir PO for ε = −2 is shown in
Fig. 8(b).

III. ADIABATIC LINES RELATED TO FUNDAMENTAL
PERIODIC ORBITS

A. Quantization procedure

Just as the hyperspherical adiabatic energies are determined
by solving the hyperspherical adiabatic eigenvalue problem
(the Schrödinger equation for fixed values of the hyperradius
R), in principle one can obtain semiclassical adiabatic energies
by quantizing the classical two-electron motion on the hyper-
sphere. A semiclassical calculation of adiabatic (electronic)
energies has been done successfully for the two-Coulomb-
center problem (the H2

+ system) [30] which is separable in
ellipsoidal coordinates. In the case of two-electron atomic
systems, however, the (2D) motion on the hypersphere is
neither fully regular nor chaotic but mixed and, for this reason,
the calculation of semiclassical adiabatic energies is not a
trivial task. On the other hand, the main idea of this paper
is to analyze some properties of the quantum-mechanically
determined adiabatic curves using classical dynamics as a
tool. For this analysis it may be sufficient to consider the
most important classical configurations studied in the previous
section. We have seen that these configurations, except the
asynchronous one, are related to 1D invariant subspaces of the
2D configuration space. The corresponding 1D motions can
be simply quantized by the use of WKB rules. Semiclassical
adiabatic curves obtained in this way are essentially related to
short (fundamental) POs which represent these configurations.
Within this framework short POs are treated as fundamental
modes of the two-electron motion on the hypersphere and

the quantization is performed by taking into account only the
degree of freedom along the corresponding trajectory. The
calculation of adiabatic curves associated with fundamental
modes then can be extended to the configurations which are not
necessarily related to 1D invariant subspaces, for example to
the asynchronous configuration. In order to make a difference
between the adiabatic curves which are solutions of the full
(2D) hyperspherical adiabatic eigenvalue problem and those
which are related to a given PO (which are essentially solutions
of the 1D eigenvalue problem for the corresponding mode), the
latter will be referred to as the adiabatic lines related to a PO
or simply the “PO lines.”

The first step in determining these lines is to calculate the
scaled actions along the (five) fundamental POs as functions
of the scaled energy. Before we turn to the calculation, recall
that the symmetry of the Hamiltonian function under the
exchange of electronic coordinates allows the reduction of the
configuration space to the fundamental domain α ∈ [0,π/4],
i.e., to the desymmetrized region with r1 � r2. Formally, it can
be constructed by introducing an elastically reflecting wall at
the Wannier ridge (r1 = r2). Since all information about the
motion, either classical or quantum mechanical, is contained
in the fundamental domain, the scaled actions we shall use to
quantize the classical motion will be given by the integral

s =
∮

PO∗
(pα dα + pϑ dϑ), (12)

where PO∗ denotes the path of a given PO in the fundamental
domain. In order to get the function s(ε) for this PO, the integral
(12) must be calculated along the paths PO∗ at different scaled
energies ε. These functions for the five fundamental POs in an
interval of scaled energies around εsp are shown in Fig. 9.

When the function s(ε) for a given PO is determined,
one can obtain the corresponding semiclassical energies using
scaling relations and the WKB quantization condition

S = 2πn + φ, n = 0,1,2, . . . , (13)

where n is the nodal quantum number along the path PO∗

(here we use atomic units where h̄ = 1). The phase shift φ

depends on the number and type of turning points along the
path PO∗, as well as on the symmetry of the corresponding
quantum state. The latter is a consequence of the reduction of
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FIG. 9. (Color online) Scaled actions for the five fundamental
POs as functions of the scaled energy.
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the configuration space to the fundamental domain. Namely, in
the full configuration space the symmetric two-electron wave
functions (singlet states) have an antinode at the Wannier ridge
(α = π/4), whereas the antisymmetric ones (triplet states)
have a node there. In the fundamental domain, however, the
value of the wave function at α = π/4 is treated as a boundary
condition and, in the case of triplet states, the node at the
Wannier ridge is not included in the quantization condition
(13). For the POs which cross the Wannier ridge this fact leads
to a phase loss of π when the quantization is performed in
the fundamental domain, which must be compensated by an
additional phase shift of π (for triplet states) in the total shift
φ. The values of φ for particular POs will be estimated below.

Using the first and the third of relations (4), the semiclassi-
cal adiabatic energy as a function of the hyperradius, i.e., the
adiabatic line En(R), can be given in the parametric form

R(ε) =
(

S

s

)2

=
[

2πn + φ

s(ε)

]2

, En(ε) = ε

R(ε)
. (14)

Note that, since s(ε) is an increasing function for all five funda-
mental POs (see Fig. 9), high values of the scaled energies in an
adiabatic line correspond to small values of R. Alternatively,
if the inverse function ε(s) can be evaluated, using the same
scaling properties and the quantization condition (13), one has
explicitly

En(R) = 1

R
ε[(2πn + φ)/

√
R]. (15)

One can see from expression (15) that En(R), like the adi-
abatic energies in quantum-mechanical calculations, diverge
when R → 0. Thus, at small values of the hyperradius it is
more convenient, instead of En(R), to consider the so-called
adiabatic potentials

Un(R) = −2R2En(R), (16)

which take finite values for R → 0.
In the other limit when R → ∞ one has s → 0 [see Eq. (4)]

and ε → −∞ (see Fig. 9). In this case there are only two
fundamental POs, the FP and the IFP POs. Generally, the
two-electron motion in this limit is localized around one of
the singularities of the potential (2), i.e., around α = 0 or α =
π/2, and the Hamiltonian function (3) can be approximated
by HR = [ 1

2 (P 2
α + P 2

ϑ /α2) − ZR/α]/R2. The expression in
the square brackets is equivalent to the Hamiltonian of a
one-electron atom with the eigenenergies −(ZR)2/2N2 (N =
1,2,3, . . .). Thus in the limit R → ∞ it is E(R) → −Z2/2N2,
i.e., the adiabatic energies related to FP and IFP POs, as
well as those which are solutions of the full (2D) adiabatic
eigenvalue problem, converge to the well-known ionization
thresholds of two-electron atoms determined by the principal
quantum number N of the inner electron. For this reason in the
range E(R) < 0 (large R) it is convenient to plot the adiabatic
energies as effective quantum numbers

Neff(R) = Z/
√

−2E(R), (17)

which in the limit R → ∞ converge to the corresponding
values of the quantum number N .

Since the adiabatic energy lines En(R) related to the FP
and IFP POs converge to the ionization threshold with N =
n + 1, the nodal quantum number n and the principal quantum

number N are in this way directly related. Moreover, this
relation can be extended to the AS and ASC adiabatic lines,
because they are continuously connected with the IFP line
with the same n. These facts are essentially consequences of
the analogous relationship between the corresponding scaled
actions (see Fig. 9).

B. Collinear configurations

For the collinear configurations, both the eZe and the
Zee, we have pϑ = 0 and pα = ±√

2[ε − C(α)] [from the
Hamiltonian function (8)], where C(α) is given by Eq. (9).
Then the scaled action (12) reduces to

s =
∮

PO∗
pα dα = 2

∫ α0

0
|pα| dα = 2

√
2

∫ α0

0

√
ε − C(α) dα,

(18)

where

α0 =
{

αtp if ε < C(π/4),

π/4 if ε � C(π/4).
(19)

The position of the turning point αtp can be determined from
the condition pα = 0, i.e., it is the solution of the equation
C(α) = ε within the interval (0,π/4). Note that for the Zee
configuration C(π/4) → +∞ and in this case (i.e., for the FP
POs) α0 = αtp for all ε. For the eZe configuration, however,
C(π/4) = εsp and α0 = αtp for the IFP POs whereas α0 = π/4
for the AS POs. The actions s(ε) for the fundamental POs
belonging to the collinear configurations (the FP, IFP, and AS
POs) in an interval of scaled energies around εsp are shown in
Fig. 9.

Another quantity necessary for determining the adiabatic
energies corresponding to a given PO is the phase shift φ. It
includes the contributions of two (generalized) turning points
which are in the case of collinear configurations located at
α = 0 and α = α0 [see Figs. 10(a) and 10(b)], The first turning
point is in fact the Coulomb singularity and the corresponding
phase shift is φ1 = 3π/2. The second one is for the FP and
IFP orbits located at α = αtp where the potential has a finite
slope (regular turning point) and the phase shift is φ2 = π/2.
For the AS PO, however, the second turning point is on the
Wannier ridge, which in the fundamental domain behaves as
an elastically reflecting wall, and the corresponding phase
shift is zero (φ2 = 0). The total phase shift (φ = φ1 + φ2)
is therefore φ = 2π for the FP and IFP POs and φ = 3π/2
for the AS PO. For very high scaled energies (ε → +∞),
however, the Coulomb singularities behave as rigid walls and
the corresponding phase shifts are φ = π (φ1 = π , φ2 = 0)
for the eZe configuration and φ = 2π (φ1 = φ2 = π ) for the
Zee configuration [see Figs. 10(a) and 10(b)]. The estimated
values of φ for the AS PO are, however, correct only for
the spatially symmetric (singlet) two-electron states. Namely,
since this PO crosses the Wannier ridge, the total phase shift
φ for antisymmetric (triplet) states must be increased by π

[see the discussion below Eq. (13)]. On the other hand, the FP
and IFP POs do not cross the Wannier ridge and there is no
additional phase shift for triplet states.

The adiabatic energies En(R) for symmetric states with
n = 1, 2, and 3 of helium (Z = 2) which correspond to the FP,
IFP, and AS POs are shown in Fig. 11(a) (thick colored lines)
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FIG. 10. (Color online) (a) Characteristic trajectories of the
collinear eZe configuration shown in the fundamental domain: the
IFP PO (ε = −7, blue line), separatrix (ε = εsp, black line), and AS
PO (ε = −3, red line). (b) An example of a trajectory belonging to
the collinear Zee configuration (the FP PO) shown in the fundamental
domain (ε = −7, black line). The turning points (i = 1,2) for each
orbit are labeled by the related phase shift φi . (c) The AS PO (red line)
and several ASC POs (ε = −3.48,−3,−2,0,25, green lines) shown
in the fundamental domain of (α,ϑ) space. The turning points for
the AS and the ASC POs with ε = −3.48 and 25 are labeled by the
related phase shifts.

together with the quantum-mechanically calculated energies
E

(qm)
n (R) for the collinear (Zee and eZe) configurations (thick

gray lines). The energies E
(qm)
n (R) are the eigenvalues of the

1D Hamiltonian

ĤR = − 1

2R2

d2

dα2
+ C(α)

R
, (20)

which corresponds to the Hamiltonian function (3) when
Pϑ = 0 and ϑ = 0 or π . Emphasize that the eigenenergies
E

(qm)
n (R) differ by the term 1/8R2 from the adiabatic energies

En(R), introduced in the quantum mechanical treatment of
the collinear helium atom in hyperspherical coordinates [31],
due to the same difference in the corresponding Hamiltonians
[compare Eq. (6) in Ref. [31] and Eq. (20)]. The behavior
at small values of the hyperradius, which are related to high
values of (scaled) energies, are better visible if we consider the
adiabatic potentials (16) [see Fig. 11(b)]. A difference between
the quantum-mechanical and the semiclassical adiabatic lines
is a consequence of the approximate character of the values
introduced above for the phase shift φ when these values are

used in a wide range of scaled energies. In addition, if we use
different values of φ in different intervals of the scaled energy,
as in the case of the eZe configuration, then the semiclassical
lines become discontinuous at the interval edges. Such a
behavior is typical when the energy becomes equal to the
potential barrier maximum (ε = εsp for the eZe configuration).
The exact phase shift, therefore, should be a smooth function
of the scaled energy ε (or the hyperradius R). The WKB
quantization using such a parameter-dependent phase shift,
instead of one (or several) fixed value(s), is known as the
uniform semiclassical quantization (for H2

+ see Ref. [30])
The exact phase shift can be determined by comparing the
semiclassical and the corresponding quantum-mechanical so-
lutions, for example by fitting the semiclassical wave function
to the exact quantum-mechanical one in the range which is
far from turning points (see, e.g., Ref. [32]). Alternatively,
this shift (for given n and R) can be extracted from the
condition (13) if we calculate the action integral S(E) at the
corresponding (previously determined) quantum-mechanical
energies E

(qm)
n (R), i.e., φn(R) = S(E(qm)

n (R)) − 2πn. Note
that in this case E(WKB)

n (R) ≡ E
(qm)
n (R). Then, instead of

performing a uniform semiclassical quantization in order to
get the exact adiabatic energies related to a given PO, we can
simply use the eigenenergies of the Hamiltonian (20) in the
corresponding invariant subspace.

C. The asynchronous configuration

The action along the ASC PO, in contrast to the collinear
POs, cannot be calculated before computing the orbit itself.
When the orbit is determined, i.e., when we know how the
phase point (α,ϑ,Pα,Pϑ ) evolves in time, the action along the
orbit in the fundamental domain can be calculated as

S = 1

2R2

∫ T

0

(
P 2

α + P 2
ϑ

sin2 α cos2 α

)
dt, (21)

where T is the period of the full orbit. In order to get the
function s(ε) a series of the ASC orbits for R = 1 and different
values of the scaled energy ε [then s(ε) = S(E)] is calculated
using the monodromy method [27]. A part of this function (for
lower scaled energies) is shown in Fig. 9.

Since the AS PO and the ASC PO coincide at ε = εbif (the
bifurcation point), for the WKB quantization of the latest orbit
at lower energies (ε < 0) we shall use the same phase shift as
for the AS PO, i.e., for singlet states φ = 3π/2 [φ1 = 3π/2,
φ2 = 0; see Fig. 10(c)]. At higher energies, however, two new
turning points appear [see the double-heart configuration in
Figs. 7 and 10(c)] and the total phase shift is φ = ∑4

i=1 φi .
At very high scaled energies the first turning point becomes
very close to the Coulomb singularity at (α,ϑ) = (π/4,0),
which behaves as a rigid wall. Thus, in the limit ε → +∞
one has φ = 2π (φ1 = π , φ2 = 0, φ3 = φ4 = π/2) and we
shall use this value for small R. For triplet states the phase
shift must be additionally increased by π . Unfortunately, for
the ASC configuration it is not possible to find easily the
quantum-mechanical eigenenergies and perform a uniform
semiclassical quantization. For this reason in the forthcoming
analysis we shall consider the semiclassical adiabatic energies
and potentials obtained using the phase shifts for the limiting
cases [see Fig. 11(b)].
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FIG. 11. (Color online) The adiabatic lines for symmetric states (with L = 0) of helium (Z = 2) related to fundamental POs calculated
semiclassically (FP, black lines; IFP, blue lines; AS, red lines; ASC, green lines; and L, orange lines) and quantum-mechanically (thick gray
lines): (a) adiabatic energies En(R) (n = 1,2,3) related to the FP, IFP, AS, and ASC POs; (b) adiabatic potentials Un(R) related to the FP, IFP,
AS, and ASC POs; and (c) adiabatic potentials Un(R) related to the L PO. The saddle and bifurcation point energies (potentials) are drawn by
dashed and dotted lines, respectively. The areas bounded by the adiabatic lines related to the collinear (eZe and Zee) configurations, converging
for each area to the same (N th) ionization threshold, are highlighted (yellow). For comparison the adiabatic energies Eμ(R) [μ = (K,T )AN ]
which are solutions of the full (2D) quantum-mechanical problem (adiabatic curves) are shown in (a) (thin gray lines). The red circles mark
the positions of anticrossings of the adiabatic curves.

D. The Langmuir configuration

As we have seen in Sec. II, the constrained (R = const)
two-electron motion on the Wannier ridge (α = π/4) when
L = 0 reduces to oscillations of the angle ϑ (or χ ), which we
call, in analogy with the unconstrained motion, the Langmuir
orbits, and can be described by the Hamiltonian function (10).
Then, for a given scaled energy ε, one has pχ = ±21/4[

√
2 ε +

4Z − sec χ ]1/2 and the action integral along the corresponding
orbit is

s =
∮

pχ dχ = 4
∫ χ0

0
|pχ | dχ

= 29/4
∫ χ0

0

√
sec χ0 − sec χ dχ, (22)

where ±χ0 are the turning points given by Eq. (11).
At lower energies (ε ∼ εsp) the potential in the Hamiltonian

function (10) is nearly parabolic and the phase shifts at ±χ0

are φ1 = φ2 = π/2. For high energies (ε → +∞), however,
the turning points are close to the ends of the χ domain
(−π/2,π/2), where the potential behaves like a rigid wall,
and φ1 = φ2 = π . Therefore, the phase shift in the WKB
quantization condition (13) will be φ = π for small energies
(large R) and φ = 2π for high energies (small R). Since the
Langmuir PO does not have a component of motion in the α

direction, in this case there is no difference in the phase shift
between singlet and triplet states. The corresponding potential
lines Un(R) are shown in Fig. 11(c) (orange lines) together
with those obtained quantum mechanically (gray lines).

In the quantum-mechanical treatment the adiabatic energies
related to the Langmuir PO are the eigenvalues of the 1D
Hamiltonian

ĤR = − 1

2R2

d2

dχ2
+ sec χ − 4Z√

2R
. (23)

We have solved the corresponding Schrödinger equation
ĤRψn(χ ; R) = En(R)ψn(χ ; R) numerically using methods
similar to those described in Ref. [31]. This equation, however,
in the limit R → 0 reduces to d2ψn/dχ2 = Un(0)ψn, which
can be solved analytically. Namely, if we formally treat
−Un(0)/2 as eigenenergies, the latter equation is equivalent to
the Schrödinger equation for a particle in a one-dimensional
infinite square well of width π , whose eigenenergies are
(n + 1)2/2. Therefore, we have

Un(0) = −(n + 1)2. (24)

IV. ANALYSIS OF THE ADIABATIC CURVES

A. Localization of multiplets of adiabatic curves

In a recent quantum-mechanical analysis [31] it has been
shown that a set of 1Se (singlet, L = 0) adiabatic curves of
helium which converge to the same ionization threshold (the
curves with the same N but different K—the N th multiplet)
is, for sufficiently large R, confined in the area limited from
the bottom and from the top by the adiabatic lines related to
the collinear (eZe and Zee) configurations which also converge
to this (N th) ionization threshold. These (eZe,Zee) areas for
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N = 2, 3, and 4 are shown in Fig. 11(a) as yellow zones
delimited by thick gray lines (eZe and Zee lines). The
thin gray lines in the same figure are the adiabatic curves
Eμ(R) [μ = (K,0)+N ; K = −N + 1, − N + 3, . . . ,N − 1;
N = 2,3,4]. The curves of a given (N th) multiplet which are
the closest to the eZe (Zee) (limiting) lines are those which
correspond to the minimal (maximal) bending excitations
(K = N − 1 and K = −N + 1), respectively. These features
are confirmed by the present semiclassical analysis—the
multiplets are delimited from the bottom and from the top
by the adiabatic lines related to the IFP or AS and FP POs
[blue or red and black lines in Fig. 11(a)], respectively. Here
the lower limiting line of a given multiplet is related to the
IFP PO in the range E(R) < Esp(R) and to the AS PO in
the range Esp(R) < E(R) < Ebif(R) = −3.487/R [the area
between the dashed and the red dotted lines in Fig. 11(a)]
where the AS orbit is stable.

At smaller values of R, however, the adiabatic curves of a
given multiplet cross the lower (eZe) limiting line and leave the
corresponding yellow area. One can see from Fig. 11(a) that
these crossings occur in the domain E(R) > Ebif(R) [above
the bifurcation (red dotted) line] where the AS PO is unstable.
With further decrease in R, the lowest-energy curve (K =
N − 1) of a given (N th) multiplet approaches the adiabatic line
related to the ASC PO (green line with n = N − 1), whereas
the highest one (K = −N + 1) approaches the corresponding
AS line (red line with n = N − 1). In other words, the N th
multiplet, which is at large values of the hyperradius localized
in the (eZe,Zee) area [which can also be called the (IFP-AS,FP)
area] with n = N − 1, at small R moves to the (ASC,AS)
area characterized by the same n (see Fig. 12). Finally, in
the limit R → 0 the adiabatic energies diverge but the corre-
sponding adiabatic potentials [thin black lines in Fig. 13(a)]
converge to the 1D square-well values given by Eq. (11) in
Ref. [31].
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FIG. 12. (Color online) The adiabatic curves of helium (Z = 2)
with L = 0 (thin black lines) which converge to the third ionization
threshold (N = 3) and the corresponding (quantum-mechanically
calculated) adiabatic lines (n = 2) related to FP (black lines), IFP
(blue lines), AS (red lines), and ASC (green lines) POs. The parts of
adiabatic lines which are related to stable (unstable) POs are drawn by
full (dashed) lines. The red dots mark the positions of anticrossings
between the curves which are located along the adiabatic lines related
to the AS PO.

Note that, since the IFP PO is always [i.e., for E(R) <

Esp(R)] stable and since the AS and the ASC POs are stable in
the ranges Esp(R) < E(R) < Ebif(R) and Ebif(R) < E(R) <

0.261/R, respectively, the lower limiting line of each multiplet
in the domain of negative energies is completely related to
stable POs (see Fig. 12). We will see below that for this
reason the nonadiabatic transitions between adiabatic states
with different values of quantum number N (i.e., if 
N �= 0)
at negative energies are not related to these (IFP, AS, and ASC)
classical configurations.

B. Anticrossings of adiabatic curves

The transitions of adiabatic curves of a given multiplet
from the (IFP-AS,FP) area, where they are confined at large
R, to the associated (ASC,AS) area are realized through
a series of avoided crossings (anticrossings) between these
curves. These anticrossings are located along the borderline
between these two areas, i.e., along the part of the AS line
where the AS orbit is unstable [31]. As can be seen from
Fig. 11(a), on decreasing R the (1,0)+ curve leaves the
(IFP-AS,FP) area with N = 2, but the nearby (−1,0)+ curve
after that starts approaching the borderline (red). Essentially,
due to the anticrossing between these two curves, it is the
(−1,0)+ curve which is at small R closer to the AS collinear
configuration. The anticrossing positions (open red circles) are
better visible in Fig. 13(a) where instead of adiabatic energies
the corresponding adiabatic potentials are shown. A similar
situation appears at the borderline (AS) for N = 3 where,
due to anticrossings between the curves (2,0)+, (0,0)+, and
(−2,0)+, the first curve is closer to the AS configuration for
large R and the third one at small R [see Figs. 12 and 13(a)].
This behavior is repeated in the vicinity of the AS adiabatic
lines for each N , leading to N − 1 successive anticrossings.
However, the number of anticrossings along a given (N th) AS
line is in principle larger than N − 1 because anticrossings
between the adiabatic curves of different N also occur
there.

A further inspection of Fig. 13(a) shows that another class
of avoided crossings appears at positive adiabatic energies (i.e.,
at negative values of the adiabatic potential U ). The positions
of these antiscrossings (open green squares) indicate that they
should be related to the ASC PO which becomes unstable for
E(R) > 0.261/R [i.e., for U (R) < −0.522R—the area below
the green dotted line in Fig. 13(a)]. Note that some of these
anticrossings coincide with the anticrossings of the previous
(AS) class. In fact a number of anticrossings of adiabatic
curves occur just at the positions where the adiabatic lines
related to different types of POs cross mutually. One can see
in Fig. 13(a) that such anticrossings occur at the positions
where the ASC lines (their “unstable” parts) cross the AS as
well as the FP lines. An ordered class of anticrossings related
to the FP PO (FP type of hidden crossings), however, is not
observed. This may be explained by the fact that the Lyapunov
exponent for this PO after the value ε = −2.972 rapidly grows
with the scaled energy (see Fig. 6) and the classical dynamics
in its neighborhood is highly chaotic (see Fig. 2). In this
situation the corresponding branch points should lie deeply
in the complex plane at very different distances from the real
axis.
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N. S. SIMONOVIĆ AND E. A. SOLOV’EV PHYSICAL REVIEW A 87, 052503 (2013)

0 1 2 3 4 5 6
0

1

2

3

4
(b)

N=4

N=3

N=2

N=1

n=5

n=3

n=1

N
ef

f

R1/2 (a.u.)
0 5 10 15 20

-150

-100

-50

0

50

100

150

200

un
st

ab
le

 A
S

un
st

ab
le

 A
S

C

(a)

 N=5

N=6

N=1

N=4

N=2 N=3

U
 (

a.
u.

)

R (a.u.)

FIG. 13. (Color online) (a) The potential curves Uμ(R) related to symmetric adiabatic states of helium (Z = 2) with L = 0 (thin black lines)
and the adiabatic potential lines Un(R) (for the same system) related to FP (black lines), IFP (blue lines), AS (red lines), and ASC (green lines)
POs. The yellow areas are defined analogously as in Fig. 11(a). The black dashed line, the red dotted line, and the green dotted line correspond
to the saddle point, to the AS-ASC bifurcation point, and to the stable-unstable separation point for the ASC PO, respectively. The open red
circles mark the positions of anticrossings related to the AS PO [some of them are shown in Fig. 11(a)], whereas the open green squares mark
those which are related to the ASC PO. (b) The adiabatic curves (thin black lines) and the adiabatic lines related to the Langmuir PO (orange
lines) for the same system as in (a), shown as effective quantum numbers Neff (R). The orange dots mark the positions of anticrossings between
the curves with 
N = 
K = 1, which are located along the adiabatic lines related to the Langmuir PO (here n = N − K).

A special class of anticrossings, which is best visible if
we plot the adiabatic energies as effective quantum numbers,
is that between the adiabatic curves belonging to nearby
multiplets (
N = 1) and located near the saddle-point line
[see Fig. 13(b)]. Since in this area all of the considered
fundamental POs are stable except the Langmuir one (see
Fig. 6), without a deeper analysis one can predict that this
class of anticrossings should be related to the motion on
the Wannier ridge. This expectation is in agreement with
the explanation for these anticrossings given in Ref. [14]
(Sec. III.B.3.a.). The saddle-point energy, which is in Fig. 13(b)
represented by the straight dashed line, in fact locates this
class of anticrossings only approximately. The positions of
these anticrossings are more precisely determined by the
adiabatic lines related to the Langmuir PO, where the bending
excitations above the saddle-point energy (labeled by the
quantum number n) are taken into account. One can see in
Fig. 13(b) that the L lines marked by odd values of the quantum
number n are related to anticrossings between the curves
with 
N = 
K = 1, whereby the anticrossings between the
curves with n = N − K are located along the nth line. Since
the adiabatic curves belonging to nearby multiplets (
N = 1)
at the positions of their anticrossings are more separated than
the curves from the same manifold (
N = 0), which may
also be related to the high instability of the Langmuir PO
comparing to the AS and ASC POs, we can talk here about the
L type of hidden crossings. This type of anticrossing can be
related to the T type of hidden crossings which appears in the
two-Coulomb-center problem (see, e.g., Ref. [8]), but which

is also expected in the general case of Coulomb three-body
systems [18].

V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed properties of the hyperspher-
ical adiabatic curves of helium for the total angular momentum
equal to zero using classical dynamics as a tool. Since in
the hyperspherical adiabatic approach the hyperradius R is an
adiabatic variable, for each value of R the underlying classical
dynamics reduces to the constrained two-electron motion lying
on the hypersphere of this hyperradius. Then, for a given
R, the 2D surface of the hypersphere is the corresponding
configuration space {α,ϑ}. In a classical analysis, however,
due to the scaling properties of Coulomb systems, it is more
convenient to use the scaled energy ε = RE as the adiabatic
parameter (instead of R).

The phase-space structure of the constrained two-electron
motion at different values of ε is examined using the Poincaré
surfaces-of-section technique. It is shown that five characteris-
tic types of classical configurations exist, which are related to
five types of short (fundamental) periodic orbits: the frozen
planet PO, the inverted frozen planet PO, the asymmetric
stretch PO, the asynchronous PO, and the Langmuir PO. All
of these POs, except the IFP PO, have counterparts in the full
(unconstrained) two-electron dynamics. The orbits belonging
to the constrained and the unconstrained dynamics, however,
can be very different in stability. In the case of motion on the
hypersphere the stability of the POs depends on the scaled
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energy, but in the full phase space of the helium atom the FP
and Langmuir POs are always stable and the AS and ASC
POs are always unstable. It is found that for ε < εsp, where
εsp = −4.950 is the saddle point of the scaled potential barrier
(Wannier ridge), the classical dynamics on a hypersphere
is nearly regular. At these scaled energies only the FP and
IFP fundamental POs exist. In the range εsp < ε < 0.261 the
FP, AS, and L POs change stability and the dynamics is
mixed (regular, chaotic), whereas for positive energies (more
precisely for ε > 0.261) it practically becomes ergodic. An
important value of the scaled energy is also εbif = −3.487
when the stable AS PO (for ε < εbif) bifurcates to the unstable
AS PO and the stable ASC PO. At higher scaled energies the
ASC PO is the latest stable orbit which survives before the
system becomes ergodic.

In order to study the correspondence between hyper-
spherical adiabatic curves and classical configurations on a
hypersphere, the considered short POs (all five types) are
quantized, giving as a result five families of so-called adiabatic
lines (the energies of quantized POs as functions of R). The
quantization is performed by taking into account only the
degree of freedom along the corresponding trajectory, because
these five types of POs are considered as fundamental modes
of the two-electron motion on the hypersphere. The adiabatic
lines obtained in this way are in many aspects similar to exact
adiabatic curves, and a parallel analysis of these entities is
useful for better understanding some features of the latter.

One of these features is the arrangement of adiabatic curves
at large values of the hyperradius in multiplets characterized
by the quantum number N . The N th multiplet consists of
the curves which for R → ∞ converge to the N th ionization
threshold. The presented analysis has shown that each multi-
plet of 1Se (singlet, L = 0) adiabatic curves is, for sufficiently
large R, delimited from the bottom and from the top by the
adiabatic lines related to the IFP- AS and FP POs, respectively.
These lines converge to the same ionization threshold as do
the adiabatic curves of the corresponding multiplet. The parts
of the IFP-AS line which are related to the IFP PO and to
the stable AS PO are located below the saddle-point energy
Esp(R) ≡ εsp/R (large values of R) and in the area between
Esp(R) and the bifurcation energy Ebif(R) ≡ εbif/R (medium
range), respectively. The part of this line which is located above
Ebif(R) (small values of R) corresponds to the unstable AS PO.
In this interval the adiabatic curves of a given multiplet cross
the AS line and move to the area between the ASC and AS
lines. Finally, since the ASC PO is stable at negative energies,
it follows that the lower (IFP-AS-ASC) limiting line of each
multiplet in the domain of negative energies is completely
related to stable POs.

Recall here that the stable POs are always surrounded by
stable phase-space areas (stability islands). Thus, some prop-
erties of the lower limiting line of the multiplet extrapolate to
nearby adiabatic curves—they are in the domain of negative
energies at different values of R related to different stable
classical configurations. As a consequence, the quantum states
of helium, which can be roughly determined by quantizing the
R motion for each adiabatic curve [the quasiseparable ap-
proximation, which neglects the couplings between adiabatic
curves (channels); see, e.g., Ref. [33]], in principle do not
correspond to individual trajectories. From the semiclassical

point of view, each quantum state contains contributions of
classical configurations on hyperspheres with different values
of the hyperradius R, taken from the interval of R between
the turning points of R motion, which is determined by the
corresponding adiabatic potential and the eigenenergy of this
state. Such a correspondence between quantum states and
classical trajectories is not new in the semiclassical approach.
Gutzwiller has shown in his PO theory [34] that each quantum
state of a chaotic system includes contributions of all POs of
the system (for application to the helium atom, see Ref. [26]).
However, the R mode, which is in the full dynamics of the
helium atom the origin of instability (through the so-called
triple collisions), in the adiabatic approach is stabilized (at
least within the quasiseparable approximation), but, because
R is not fixed, here different classical configurations contribute
to each quantum state through intervals of different values of R.

Another feature of the adiabatic curves, which is analyzed
in terms of classical configurations, is their avoided crossings
(anticrossings). First, it is observed that the transitions of
adiabatic curves of a given multiplet from the (IFP-AS,FP)
area, where they are confined at large R, to the associated
(ASC,AS) area (with a common AS line) are realized through a
series of anticrossings between those curves which are located
along the part of the AS line where the AS orbit is unstable.
From the stability analysis it follows that the energy area
where this type of anticrossing occurs is the area above the
bifurcation energy −3.487/R, which is in agreement with the
estimation E(R) > −3.5/R given in Ref. [31]. Another class
of anticrossings appears at positive adiabatic energies. They are
related to the ASC PO which is unstable for E(R) > 0.261/R.
These two classes of anticrossings may be compared to narrow
avoided crossings, appearing mostly between curves of the
same multiplet, which are typical for Coulomb three-body
systems having comparable masses of charged particles [18].
In the case of helium, however, these anticrossings are not
so narrow and they are organized in series. Thus, in these
properties they are closer to hidden crossings. In addition, a
number of avoided crossings of the adiabatic curves occurs
at the positions where the adiabatic lines, which are related
to different types of POs, cross mutually (e.g., ASC-AS and
ASC-FP). An ordered class of anticrossings related to the FP
PO (FP type of hidden crossings), however, is not observed,
probably due to the rapid growth of its Lyapunov exponent
with the scaled energy in the area where this orbit is unstable
(ε > −2.972).

A third class of anticrossings observed here, which can be
related to an unstable PO, is that between the adiabatic curves
belonging to nearby multiplets (
N = 1). These anticrossings
are located near the saddle point and can be related to the
Langmuir PO (L type of hidden crossings). The fact that
the adiabatic curves at the positions of these anticrossings
are more separated (hidden crossings) than in the case of
anticrossings of curves from the same manifold may be related
to high instability of the Langmuir PO compared to the AS and
ASC POs. On the other hand, the Lyapunov exponent for the
Langmuir PO does not grow so rapidly with the scaled energy
(in contrast to the FP PO) and the corresponding family of
hidden crossings has a regular pattern.

The presented study clearly demonstrated the correspon-
dence between several classes of avoided and hidden crossings
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between the hyperspherical adiabatic curves of helium and
unstable POs on a hypersphere, predicted in previous analyses
of adiabatic curves of three-body Coulomb systems [18,19]
and based on the semiclassical theory of hidden crossings [8].
In this paper most of the attention is given to the analysis
of classical configurations on the hypersphere, allowing
accurate determination of the corresponding adiabatic lines.
The “unstable” parts of these lines can be identified as
diabatic curves (potentials) [18], each of them connecting
a series of avoided (hidden) crossings (characterized by the
same quantum number n of the line) of a given class. The
determination of diabatic curves can be especially helpful
for finding and classifying hidden crossings of two-electron
systems which are important for studying inelastic electron-
atom collision processes.
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APPENDDIX: REGULARIZATION OF TWO-ELECTRON
DYNAMICS ON A HYPERSPHERE

The Lagrangian which describes the constrained dynamics
of a two-electron system on a hypersphere (R = const) in the
case when L = 0 reads

L = T − V = R2

2
(α̇2 + sin2α cos2α ϑ̇2) − C(α,ϑ)

R
, (A1)

where the function C(α,ϑ) is given by Eq. (2). The associated
Hamiltonian function has the form HR = T + V , where the
derivatives of coordinates α and ϑ in the kinetic energy term
T must be replaced by the canonically conjugated momenta
Pα = ∂L/∂α̇ = R2α̇ and Pϑ = ∂L/∂ϑ̇ = R2 sin2α cos2α ϑ̇ ;
see Eq. (3) in Sec. II A. The potential V , however, has
negative singularities at α = 0 and π/2, and a direct numerical
integration of the corresponding equations of motion fails for
trajectories passing near these singularities. In addition, the
potential has a positive singularity at (α,ϑ) = (π/4,0), but here
the infinite barrier (Coulomb repulsion) prevents the electrons
from approaching each other sufficiently closely and the latter
singularity in principle does not produce difficulties.

Since the Hamiltonian function (3) is invariant under the
transformation α → π/2 − α (α = π/4 is a symmetry axis;
see Sec. II A), it is sufficient to calculate the trajectories in
the fundamental domain α ∈ [0,π/4]. In this case only the
singularity at α = 0 is one that should be regularized. In order
to eliminate this singularity we introduce the variables

x = r cos ϑ, y = r sin ϑ, r = tan α (A2)

and then express them in terms of semiparabolic coordinates
u and v,

x = u2 − v2, y = 2uv. (A3)

From Eqs. (A2) and (A3) it follows that

r = (x2 + y2)1/2 = u2 + v2 (A4)

and

α = arctan(u2 + v2),
(A5)

ϑ = arctan
2uv

u2 − v2
≡ 2 arctan

v

u
.

The inverse transformations are

u = √
tan α cos ϑ/2, v = √

tan α sin ϑ/2. (A6)

In the fundamental domain the variable r takes values from
the interval [0,1]. Then u2 + v2 � 1 and, consequently, the
fundamental domain in the (u,v) plane is the area limited by
the unit circle.

Using relations (A5) we obtain expressions for the kinetic
and potential energies [and thus for the Lagrangian (A1)] in
semiparabolic coordinates,

T = 2R2r

(1 + r2)2
(u̇2 + v̇2), (A7)

V = −Z

R

√
1 + r2

(
1 + 1

r

)
+ 1

R
√

1 − 2x/(1 + r2)
, (A8)

where x and r are the above-given functions of u and v. In
the Hamiltonian function HR = T + V , however, the kinetic
energy term (A7) must be expressed in terms of the canonically
conjugated momenta

Pu = ∂L
∂u̇

= ∂T

∂u̇
= 4R2r

(1 + r2)2
u̇, (A9)

Pv = ∂L
∂v̇

= ∂T

∂v̇
= 4R2r

(1 + r2)2
v̇. (A10)

Using these expressions one obtains

T = (1 + r2)2

8R2r

(
P 2

u + P 2
v

)
. (A11)

Note, however, that singularities are not removed simply by
introducing new variables. In order to eliminate the singularity
at α = 0 (r = 0) we introduce the new time variable t̃ , defined
as

dt = rdt̃, (A12)

and the new (regularized) Hamiltonian function

H̃ = r(HR − E) ≡ 0. (A13)

The latter quantity is a constant of motion (with the so-
called pseudoenergy equal to zero), which ensures that the
corresponding equations of motion preserve the canonical
form. It can be written as the sum H̃ = T̃ + Ṽ , where

T̃ = rT = 2R2

(1 + r2)2

[(
du

dt̃

)2

+
(

dv

dt̃

)2]
, (A14)

Ṽ = r(V − E)

= −Z

R

√
1 + r2 (1 + r) + r

R
√

1 − 2x/(1 + r2)
− rE.

(A15)
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The kinetic energy term T̃ in the new Hamiltonian function,
however, must be given in the canonical form. For this reason
we construct the Lagrangian L̃ = T̃ − Ṽ and introduce the
appropriate canonical momenta as P̃u = ∂L̃/∂(du/dt̃) and
P̃v = ∂L̃/∂(dv/dt̃). It follows, however, that these coincide
with the former momenta,

P̃u = 4R2

(1 + r2)2

du

dt̃
= 4R2r

(1 + r2)2

du

dt
= Pu, (A16)

P̃v = 4R2

(1 + r2)2

dv

dt̃
= 4R2r

(1 + r2)2

dv

dt
= Pv. (A17)

Using these relations the kinetic energy T̃ is transformed to
the form

T̃ = (1 + r2)2

8R2

(
P 2

u + P 2
v

)
. (A18)

Finally, the new Hamiltonian function is

H̃ (Pu,Pv,u,v) = T̃ + Ṽ , (A19)

where T̃ and Ṽ are given by Eqs. (A18) and (A15), respec-
tively.

The Hamilton equations obtained using the Hamiltonian
function (A19) and the new time variable t̃ read

du

dt̃
= ∂H̃

∂Pu

≡ (1 + r2)2

4R2
Pu, (A20)

dv

dt̃
= ∂H̃

∂Pv

≡ (1 + r2)2

4R2
Pv, (A21)

dPu

dt̃
= −∂H̃

∂u
≡ − r(1 + r2) u

R2

(
P 2

u + P 2
v

) − ∂Ṽ

∂u
, (A22)

dPv

dt̃
= −∂H̃

∂v
≡ − r(1 + r2) v

R2

(
P 2

u + P 2
v

) − ∂Ṽ

∂v
. (A23)

In order to get the trajectories that are solutions of these
equations of motion, but in real time t , Eq. (A12) must
be integrated simultaneously with Eqs. (A20)–(A23). Then
the trajectories in hyperspherical coordinates can be obtained
using transformations (A5) and

Pα = 1 + r2

2r
(uPu + vPv), (A24)

Pϑ = 1

2
(uPv − vPu). (A25)

The inverse transformations are

Pu = 2

(
uPα

1 + r2
− vPθ

r

)
, (A26)

Pv = 2

(
vPα

1 + r2
+ uPθ

r

)
. (A27)

If a trajectory which starts inside the fundamental domain
is approaching the borderline (symmetry axis) α = π/4 (i.e.,
if r → 1) with a nonvanishing momentum Pα , in order to keep
the trajectory inside the domain we have to change the sign of
Pα at α = π/4 (reflection at the symmetry axis). Otherwise, the
trajectory would leave the fundamental domain and eventually
approach the singularity at α = π/2. The trajectory in the
full domain (0 � α � π/2), however, can be obtained easily
from the trajectory in the fundamental domain by applying the
transformations α → π/2 − α, Pα → −Pα to all segments of
the latter which are between an odd and the succeeding (even)
reflection.

If we want to show the two-electron trajectories in Cartesian
coordinates after integrating Eqs. (A20)–(A23), we need to de-
termine the azimuthal angles ϑ1 and ϑ2 for individual electrons
(then xi = ri cos ϑi , yi = ri sin ϑi , where r1 = R cos α, r2 =
R sin α) instead of the mutual angle ϑ = ϑ1 − ϑ2. From the
condition cos2 α ϑ̇1 + sin2 α ϑ̇2 = 0, which holds for L = 0
(L = r2

1 ϑ̇1 + r2
2 ϑ̇2), and the relation ϑ̇ = ϑ̇1 − ϑ̇2 one obtains

ϑ̇1 = sin2 α ϑ̇ and ϑ̇2 = − cos2 α ϑ̇ . In order to solve these
equations, their right-hand sides should be expressed in terms
of semiparabolic coordinates. From the expression for ϑ given
in Eq. (A5) and relations (A9) and (A10) we have

ϑ̇ = 2

r
(uv̇ − vu̇) = (1 + r2)2

2R2r2
(uPv − vPu). (A28)

Finally, using the new time variable the equations for ϑ1 and
ϑ2 become

dϑ1

dt̃
= r(1 + r2)

2R2
(uPv − vPu), (A29)

dϑ2

dt̃
= −1 + r2

2R2r
(uPv − vPu). (A30)

Then the angles ϑ1 and ϑ2 can be obtained by integrating one
of these equations simultaneously with Eqs. (A20)–(A23).
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