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The Solovay-Kitaev algorithm is the standard method used for approximating arbitrary single-qubit gates for
fault-tolerant quantum computation. In this paper we introduce a technique called search space expansion, which
modifies the initial stage of the Solovay-Kitaev algorithm, increasing the length of the possible approximating
sequences but without requiring an exhaustive search over all possible sequences. This technique is combined with
an efficient space search method called geometric nearest-neighbor access trees, modified for the unitary matrix
lookup problem, in order to reduce significantly the algorithm run time. We show that, with low time cost, our
techniques output gate sequences that are almost an order of magnitude smaller for the same level of accuracy.
This therefore reduces the error correction requirements for quantum algorithms on encoded fault-tolerant
hardware.
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I. INTRODUCTION

The biggest challenge to building working quantum com-
puters is the problem of fault tolerance [1]. Unless a quantum
computer is specifically designed and built to withstand
the effects of errors from environmental decoherence and
inaccurate hardware operations, it will not be able to perform
computations of any significant size [2]. One prominent
way to control errors is to correct them when they arise
by encoding quantum data in many physical qubits. If the
underlying hardware is accurate to “threshold” value, then
these error correction codes can, in principle, keep an arbitrary
computation error free given enough physical resources [3–5].

One of the drawbacks to error correction codes, however,
is that only a very small number of logical gates are available
to the code. To implement a given algorithm, the gates in
the algorithm must be decomposed into the “library” gate set
available to the code. In general this cannot be performed
exactly: we must look for sequences of library gates that
approximate the gates we require [6].

When finding an approximation to an arbitrary gate, in the
general case, the longer the sequence of library gates (and
their inverses) is, the better the approximation to the gate
in question that can be found is. However, high-accuracy
exhaustive searches become untenable on current compu-
tational technology. The key problem in this issue is the
exponential increase of the size of the space over which it
is necessary to search in order to find a good approximation.
The Solovay-Kitaev approximation algorithm was introduced
to get around this difficulty [6,7]. This recursive algorithm
performs an exhaustive search only over the space of sequences
of length up to l0, finding the sequence with the smallest
distance (defined by the trace norm) from the gate we wish
to approximate. The residual difference between the actual
and approximate gates is then sent to the next level of the
algorithm, where it is further approximated. At each level
the length of the gate sequences grows by a factor of 5. The
algorithm terminates at a “good” approximation, where the
distance to the actual gate is less than a chosen constant ε.

While very powerful, the Solovay-Kitaev algorithm suffers
from a serious weakness. While it will always find a good
approximation for any value of ε, the search covers only a very

sparse region of the entire space of possible approximation
sequences. As a consequence, the output from the approxima-
tion is almost always far longer than it needs to be. This is an
extreme disadvantage for fault-tolerant computation, as this
greatly increases the logical depth of the computation, thus
increasing the amount of error correction required, which in
turn increases the physical size and run time of the algorithm.
Reducing these requirements as far as possible is key to
implementing realistic fault-tolerant quantum computation.

Currently, there are two well-known alternatives to the
original Solovay-Kitaev algorithm. The first is an exhaustive-
search algorithm that can give a very efficient library-gate
decomposition. Efficient sequences, however, are only achiev-
able in exceptional cases, when there is a short gate sequence
that is a very accurate approximation to the query gate,
or where there are specific mathematical properties of gate
sequences of which we can take advantage [8]. However, in
the general case the scaling is exponential (as in a standard
exhaustive search) and therefore limited by computational
ability. The second alternative to the standard algorithm is
the “phase-kickback” method originally given in [7]. This
can produce shorter gate sequences by using special ancilla
states but requires many more qubits for the ancilla and is also
restricted in the library gate set it can use.

In this paper we describe an alternative gate decomposition
algorithm that modifies the original Solovay-Kitaev method
and allows a much denser search of the space of sequences.
The key to improving the algorithm is to concentrate on the
initial approximation, and we dramatically increase the search
space by combining two sequences out of the database of initial
sequences. This expansion technique can be implemented
recursively, creating an even better initial approximation.
To make this search step computationally tractable, we
have applied a geometric nearest-neighbor access tree search
procedure (GNAT) [9]. Two other data structures, R trees [10]
and k-d trees [11], were also tried but were found to be
ineffective for this problem. The GNAT-based procedure is
a fully general method for any gate and any library gate set
and with high probability produces approximations that are
significantly shorter than those given by the original algorithm
for the same precision.
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This paper is structured as follows. Section II reviews the
Solovay-Kitaev theorem, along with the original implementing
algorithm proposed in [6,7]. In Sec. III we introduce the
search space expansion technique (SSE) that we will use to
supplement the original algorithm. We show that by splitting
each candidate sequence and then searching points near the
subsequences, we can generate candidate sequences that with
high probability are a better approximation but are shorter
than those at the next level of recursion. One potential issue
with this approach is an added classical search requirement
over the sampled sequences, and in Sec. IV we describe a
way of efficiently searching these sequences to reduce the
time required compared with a standard exhaustive search. In
Sec. V we compare the original Solovay-Kitaev algorithm with
our modified algorithm for a set of 25 single-qubit unitaries
chosen from a uniform distribution of the specifying vector.
On average, the length of the candidate sequence reduces by a
factor of 7, and for some sequences it can reduce by an order of
magnitude. The number of levels of recursion in the algorithm
is also greatly reduced, with generally only two or at most
three levels being needed even for very high accuracies.

II. THE SOLOVAY-KITAEV APPROXIMATION

The Solovay-Kitaev theorem tells us we can always
approximate a single-qubit gate G to arbitrary accuracy ε with
a finite sequence of gates from a universal “library set” of
gates {L1,L2, . . . ,LN } and their adjoints. The Solovay-Kitaev
algorithm gives a method of finding what these sequences are
for a given G, ε, and {Li}.

The Solovay-Kitaev theorem is invoked as part of the
compilation process for fault-tolerant quantum computing.
The library set on a fault-tolerant computer is, in general,
very limited, with only a handful of gates able to operate
within the code space. For example, in the surface code we
have access only to a small library: {CNOT,X,Z,H,S,S†,T ,T †}
(where S is the phase gate and T is a Z rotation of π/4) [12].
In general, a library contains a two-qubit entangling gate such
as controlled NOT (CNOT) or controlled phase and some single-
qubit gates. Any multiqubit gate can be decomposed exactly
into a combination of a two-qubit maximally entangling gate
plus arbitrary single-qubit rotations [13], so this becomes the
first stage of compilation for an algorithm. The next stage is
then the further task of decomposing these arbitrary single
qubit gates into the single qubit gates of the error correction
code library. For our purposes in this paper, we ignore the X

and Z gates, which are easily compensated for classically or
built using H and S.

The Solovay-Kitaev theorem states that, for a given gate
G, accuracy ε, and library gate set {Li}, there always exists a
sequence of library gates (�l

j=1Aj | Aj ∈ {Li}{L†
i }) such that

||G − �lAl|| � ε (1)

using the standard operator trace norm distance

||M − N || = Tr
√

(M − N )†(M − N ). (2)

All gates are represented here by unitary operators in SU(n),
where n is the dimensionality of the gate. The theorem further
states that the length of the sequences l varies with the required
accuracy ε as l = O( logc

10(1/ε)).

Exactly what the constant c is depends on the particular
implementation of the decomposition. It is known that the best
possible scaling is c = 1, but with a nonconstructive proof [14].
The standard algorithm gives a scaling of sequence size with
accuracy of c ≈ 4 [15].

The most straightforward procedure for performing such
a decomposition is to search over all sequences, beginning
with the shortest first, until one is found within the required
ε of the gate G being decomposed. Unfortunately, such an
exhaustive search becomes untenable very quickly. For a
library of n fundamental gates, the number of sequences of
length l comprising these library gates and their adjoints is
2nl . For example, if we have a library of five single-qubit
gates (as, for example, in the surface code: H,S,S†,T ,T †),
then a modern server with 64 GB of memory could hold only
up to sequences of length l ≈ 13. Searching over this size of
database is also a significant classical processing task. The
longer the sequences are, the higher the chance of finding a
sequence within ε of G is; without the ability to search longer
sequences, the correct accuracy may be unobtainable.

The standard Solovay-Kitaev algorithm uses such an
exhaustive search technique at its base layer but then builds
on that recursively. We can describe the algorithm in iterative
fashion as follows. The base-level approximation comprises a
search over the space of all sequences of length up to l0. The
closest approximation to G is found:

ζ (0) = �
l0
j=1Aj | Aj ∈ {Li} ∪ {L†

i }. (3)

We can then decompose the gate as G = U (δ)ζ (0). The
operator U (δ) is the “residual” of the approximation: how
far away from G the operator sequence ζ (0) still is.

If ||G − ζ (0)|| � ε, then the algorithm terminates here and
returns ζ (0) as the appropriate gate sequence. If the residual
U (δ) is too great, however, the algorithm proceeds to the next
level. A further exhaustive search of the space of sequences of
length up to l0 is performed, this time in order to find the best
approximation to U (δ). A subtlety at this step in the algorithm
is that we do not have a closed form for U (δ), so we need
to find an approximation for Gζ †(0) instead. The algorithm
performs this by decomposing further into V WV †W † =
Gζ †(0), where V and W are the unitary gates that are then
searched for. The sequence V WV †W † that is closest to U (δ)
is then returned by the search, so the first-level approximation
becomes

ζ (1) = V WV †W † ζ (0). (4)

Note that V,W,ζ (0) are all sequences of length up to l0; the
sequence ζ (1) is therefore of length up to 5l0.

If ||G − ζ (1)|| � ε, then the algorithm terminates and
returns ζ (1). If not, the previous step is repeated to
find a decomposition of the residual U (δ1) = Gζ †(1). This
is repeated until a sequence of the desired accuracy is
found.

As we can see from Eq. (4), in the standard Solovay-Kitaev
algorithm, the length of the approximating sequence grows
by a factor of 5 at each level of recursion. As a result, the
algorithm can only produce the approximating sequences of
the length in the set ζl = {l0,5l0,25l0,125l0, . . .}, where l0
is the length of the approximating sequence for the basic
stage of the decomposition algorithm. Therefore the vast
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majority of possible approximating sequences, which are
not in ζl , cannot be generated by the algorithm. Further-
more, the best strategy for finding a short gate sequence
is to make the initial approximation length l0 as large as
possible; however, this then means that at every step in the
algorithm the length of the approximating sequence grows
dramatically. Because of this, the most efficient approximating
sequences are likely to be missed, leading to much longer
sequences than are necessary to reach the desired accuracy of
approximation.

III. SEARCH SPACE EXPANSION

The technique we will use is to expand the search space
at the first level of the standard algorithm so that sequences
that are longer than l0 are also covered. We assume that l0
is the longest possible sequence space that our computational
resources can exhaustively search. By improving the accuracy
of this initial approximation ε0, we reduce the residual to
be approximated at the next level of the algorithm. It is
then intuitively reasonable that this will reduce the number
of recursion levels implemented to find a sequence accurate
to a given ε. This is important, as the standard Solovay-
Kitaev algorithm increases both the output sequence length
and the processing time exponentially over the recursion
levels. Formally, the residual error at recursion level n is
given by

εn = 1

c2
approx

(
ε0c

2
approx

)( 3
2 )n

, (5)

where capprox is a (small) constant that gives the error of the
initial level of recursion, ε0 < c−2

approx [15]. We can therefore
conclude that the more we reduce ε0, the smaller εn will be,
and therefore the sooner the algorithm will find a sequence
εn � ε.

The initial stage of the algorithm gives us the first approx-
imation gate sequence ζ (0), Eq. (3). The residual distance ε0

from the exact gate G is

||G − ζ (0)|| � ε0. (6)

We now start our space expansion technique. For simplicity,
we partition the sequence ζ (0) into two equal halves (in fact,
the procedure can be performed by splitting the sequence
into any number of parts, which may be unequal). Each
of these subsequences ζ (1)(0),ζ (2)(0) is of length l0/2. For
example, for a sequence ζ (0) = HT †S†T , we would have
ζ (1)(0) = HT †, ζ (2)(0) = S†T .

We now search once again over the space of sequences of
length l0 [16] to find approximations {Z(1)

i (0)} and {Z(2)
j (0)}

within ε̄0 of ζ (1)(0) and ζ (2)(0):

∀ i
∣∣∣∣ζ (1)(0) − Z

(1)
i (0)

∣∣∣∣ � ε̄0,
(7)

∀ j
∣∣∣∣ζ (2)(0) − Z

(2)
j (0)

∣∣∣∣ � ε̄0,

where we define the search regions by

ε̄0 = 0.5ε0. (8)

Figure 1 shows this procedure schematically.

Algorithm 1: Space Expansion
Input: G ∈ SU(2): Target of approximation
Input: ζ: Universal set of gates
Input: ζ0: Stored set of sequences of gates from ζ of length l0
Input: ζ1: Stored set of sequences of gates from ζ of length l1
Input: 0: Accuracy of initial approximation
Input: 0̄: Accuracy of loop-internal approximation
Input: k: The desired cardinality of the set to be returned.

k = 1 when Space Expansion is used as a stand-alone
algorithm, k > 1 when Space Expansion is used as a
component of Recursive Space Expansion.

Output: k approximating sequences for G of length 2l1

1 Space Expansion (G, ζ, ζ0, ζ1 0, 0̄, k)
2 R ← {r ∈ ζ0| distance(r, G) ≤ 0};
3 foreach r ∈ R do

4 Split r into two subsequences of the same length
l0
2

,
called rpre and rsuf;

5 R1 ← {r1 ∈ ζ1| distance(r1, rpre) ≤ 0̄};
6 R2 ← {r2 ∈ ζ1| distance(r2, rsuf) ≤ 0̄};
7 Join R1 and R2 to have the following set:
8 R3 ← {r1r2| r1 ∈ R1 and r2 ∈ R2};
9 end

10 R4 ← k best approximations for G ∈ R3;
11 return R4

We now form the set of sequences
{
Zij (0) = Z

(1)
i (0)Z(2)

j (0)
}
. (9)

These sequences are of length 2l1 and are derived from ζ (0).
We then search the sequences Zij (0) to find the one, Z(0), with
minimal distance to the actual gate G,

||G − Z(0)|| = ε̄min. (10)

We now wish to show that, in general,

ε̄min < ε̄(0) + ε̄(0) = ε(0), (11)

that is, that we have found a sequence Z(0) of length 2l1 that is
a closer approximation to G than the sequence ζ (0) of length
l0, given by the original Solovay-Kitaev algorithm. To do this,
consider any four gate sequences U1,2, V1,2. Given that

||U1 − V1|| � ε1, ||U2 − V2|| � ε2, (12)

FIG. 1. (Color online) Expanding the search space. Sequence ζ (0)
(a good first approximation to gate G) is split into two halves, ζ (0) =
ζ (1)(0)ζ (2)(0). Points in regions of distance ε̄0 (shaded) away from
ζ (1)(0),ζ (2)(0) are recombined, and the one closest to G, Z(0), is
chosen. With high probability, ||G − ζ (0)|| > ||G − Z(0)||.
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we have that

||U1U2 − V1V2|| � ||U1U2 − V1U2|| + ||V1U2 − V1V2||;
(13)

therefore

||U1U2 − V1U2|| + ||V1U2 − V1V2||
= ||U1 − V1|| + ||U2 − V2||
� ε1 + ε2. (14)

We can therefore conclude that

||U1U2 − V1V2|| � ε1 + ε2. (15)

Since ε1 and ε2 are relatively small (U1 is a close approximation
for V1 and U2 is a close approximation for V2), it is possible to
say that a sequence U1U2 is a relatively close approximation for
V1V2. If each U ∈ SU(2) is presented by the specified vector
u ∈ R3 or equivalently specified point in three-dimensional
space (see below for further details of this mapping), U1U2 is
in the sphere of center V1V2 and radius ε1 + ε2. With a large
number of sequences U1 and U2 and their combinations U1U2,
the probability of having a very close approximation for V1V2

is relatively high.
We therefore conclude that

ε̄min < ε(0) (16)

for our new approximating sequence Z(0); that is, we have
strictly reduced the error in approximation by doubling the
length of the approximating sequences but not going on to the
next level of recursion of the standard algorithm, which would
increase it by a factor of 5.

We call this technique as it stands search space expansion
(SSE). At the initial stage of the Solovay-Kitaev algorithm the
search space is expanded once, which significantly reduces
the residual and hence the number of subsequent levels of
recursion needed. Algorithmically, it can be written in the
pseudocode form given in Algorithm 1.

We can, however, also apply SSE itself recursively at this
initial stage to get an even better ζ (0) approximation. Rather
than performing a standard search over sequences of length l1
to find our approximations for ζ (1)(0) and ζ (2)(0) [Eq. (7)], we
use SSE itself to find better approximations. So we use ζ (1)(0)
and ζ (2)(0) as query gates for two SSE procedures treating the
remainder of the search space as in standard SSE.

The final approximation for ζ (0) is therefore a sequence
Z′(0) of length 4l1, where

Z′(0) = Z(1)
a (0)Z(1)

b (0)Z(2)
a (0)Z(2)

b (0). (17)

We call this technique recursive search space expansion
(recursive SSE), given in pseudocode form in Algorithm 2.
We have now expanded the lookup space much further than
was possible with the original Solovay-Kitaev algorithm,
allowing for a much denser search of the space of possible
approximating sequences. The structure of the algorithm
remains unchanged and, as a consequence, so does the scaling
of the accuracy of the approximation with the length of the
sequences. The length l of a sequence for accuracy ε is still
given by

l = O( logc
10(1/ε)), (18)

with c ≈ 3.97, as in [15]. However, this technique should
significantly reduce the prefactor in scaling. We also note that
these techniques, SSE and recursive SSE, can be used with
any modification of the original Solovay-Kitaev algorithm that
requires lookup in a database of library sequences.

Algorithm 2: Recursive Space Expansion
Input: G ∈ SU(2): Target of approximation
Input: ζ: Universal set of instructions
Input: ζ0: Stored set of instruction sequences of gates from

ζ of length l0
Input: ζ1: Stored set of instruction sequences of gates from

ζ of length l1
Input: 0: Accuracy of initial approximation
Input: 1: Parameter for Space Expansion function, indicates

the accuracy of initial approximation for the called
Space Expansion function

Input: 1̄: Parameter for Space Expansion function, indicates
the accuracy of loop-internal approximation for the called
Space Expansion function

Input: k: Cardinality of the set of sequences that will be
requested from Space Expansion k > 1

Output: Approximating sequence for G of length 4l1

1 Recursive Space Expansion (G, ζ, ζ0, ζ1 0, 0̄, k)
2 R ← {r ∈ ζ0| distance(r, G) ≤ 0};
3 foreach r ∈ R do

4 Split r into two subsequences of the same length
l0
2

,
called rpre and rsuf;

5 R1 ← {r1 ∈ Space Expansion(rpre, ζ, ζ0, ζ1 1, 1̄, k)};
6 R2 ← {r2 ∈ Space Expansion(rsuf, ζ, ζ0, ζ1 1, 1̄, k)};
7 Join R1 and R2 to have the following set:
8 R3 ← {r1r2| r1 ∈ R1 and r2 ∈ R2};
9 end

10 r3 ← The best approximation for G in R3;
11 return r3

IV. INCREASING LOOKUP EFFICIENCY USING
GEOMETRIC SEARCH

The technique we have just described is very powerful in
extending the set of searched sequences without requiring an
exhaustive search over all possible approximations. However,
there is an additional search cost for these methods that is not
present in the Solovay-Kitaev algorithm as commonly used.

First, each time SSE is invoked (either on its own or as part
of a recursive SSE step), the space of sequences of length l0
needs to be searched to find the regions of sequences that are
distance ε̄0 away from the subsequences ζ (1,2)(0). Each time
SSE is used, an additional two searches are required to find the
desired regions. Second, whenever sequences are combined
to form a longer approximation to G, the list of combined
sequences needs to be searched to find the one that is closest
to G. This happens once per use of SSE or recursive SSE.

The first of these is by far the largest cost in our technique,
as it can occur many times in a given use of the decomposition
algorithm. The second is only incurred once per level of
recursion in the standard algorithm. We can keep the second
cost tolerable by not increasing the number of times SSE is
used recursively on itself: for this reason, we describe recursive
SSE as only splitting the sequence twice; for any more times,
the search cost to find the best Z(0) [Eq. (17)] would be
prohibitive. Without this restriction, we could use recursive
SSE many times on itself to find sequences of arbitrary
length and have no need for the structure of the original
Solovay-Kitaev algorithm. However, given the exponentially

052332-4



OPTIMIZATION OF THE SOLOVAY-KITAEV ALGORITHM PHYSICAL REVIEW A 87, 052332 (2013)

increasing cost of this search, we chose instead to restrict
recursive SSE to two applications of SSE and to then proceed
to the next level of Solovay-Kitaev recursion if further accuracy
in the decomposition is required.

In order for our techniques to be useful in feasible compu-
tational time, we need to find a way of performing the region-
finding search in SSE efficiently. The most straightforward
way is to search over the entire space of sequences up to
length l0 and pick out those within distance ε̄0. Such a linear
search is, however, very inefficient: in general, the search
time will be exponential in l0. However, we are searching
a very structured space and should be able to make use of this
structure in order to increase the efficiency of this search step.
We will show now how to convert our matrix search problem
into a three-dimensional (3D) geometric search problem and
how we can then use the existing technique of GNATs to
solve the search problem much more efficiently. We can
use such a geometric technique in the original Dawson and
Nielsen algorithm for the decomposition as well, and in the
next section we will use it instead of a linear search when
comparing our SSE techniques with the original algorithm.
More sophisticated search techniques at this step are beginning
to be developed, including the database searches of [17,18]. A
further alternative use of geometric search techniques for the
Dawson-Nielsen algorithm has been examined simultaneously
and came to our attention after our work was completed [19].

We can convert any matrix SU(2) into a unique vector in a
ball in a 3D real vector space of radius 2π and centered on the
origin ([20], chapter 5). We can uniquely write any U ∈ SU(2)
as

U = e
−i
2 v·σ −→ u(v), (19)

where v ∈ R3 and σ is formed of the Pauli matrices,

σ =
⎛
⎝

σx

σy

σz

⎞
⎠ . (20)

We therefore can fully and uniquely specify the matrix U by
specifying the vector v. The distance function that we are using
to search is now no longer the trace norm between two matrices
U1,U2, but rather the norm between the two specifying vectors
given by the Euclidean distance function.

We therefore have a 3D geometric search problem of finding
vectors within the ball of radius 2πε̄0 centered on the vector
corresponding to the matrix ζ (1,2)(0). Such geometric searches
in real space have been extensively studied, and we can
therefore pick from the existing techniques the one that best
suits our purposes.

A. GNAT search

The standard method for increasing the efficiency of a
real-space search is to use a tree-based approach. By dividing
the search space into clusters, tree-based searches are capable
of reducing the computational complexity of a search over
n entries from O(n) in the case of the straightforward linear
search to O( log10(n)), at least in the best or average case.
The increasing efficiency comes from the ability of the search
algorithms to skip entire clusters that are evidently not going to
contain a correct answer. Among the most popular approaches
are those of R trees and k-d trees [10,11]. These approaches

FIG. 2. (Color online) Schematic diagram of a simple GNAT with
clusters (see text for explanation).

divide the search space into clusters specified by coordinates
in the space. These approaches were tried and did not yield
considerably improved search results. Instead, we can use
the approach of geometric nearest-neighbor access trees. The
region-based cluster methods of GNAT seem more applicable
to the space of unitary operators than those which use a simple,
global, Euclidean metric to partition the space.

In a GNAT search, the space is partitioned into clusters
around a number of fixed points called splitting points [9].
How best to choose these splitting points is an open research
question; we use the common approach of picking them at
random. At the initial stage of processing, each vector in the
space is then analyzed in turn to find its closest splitting point
and the distance from that point. The set of vectors that are
closest to a given splitting point is the cluster associated with
that point. The cluster size can be defined by the greatest and
least distances from all vectors in the cluster to the splitting
point. Each cluster, if desired, can in turn be partitioned using
splitting points to produce subclusters. This procedure can be
applied recursively as many times as desired, until the size of
each cluster is small enough that a linear search within the
cluster is feasible.

Figure 2 shows in two-dimensional (2D) space a simple
GNAT with clusters. Each cluster is represented by an
ellipse with its inside points given by a circle. Each cluster
is equivalent to a branch in GNAT. The set of all points is
implicitly equivalent to the GNAT root cluster. Each cluster is
derived from its specific splitting point, which is represented
by a circle from which there is an arrow pointing to its border.
As is evident from Fig. 2, the splitting point is inside the
cluster it generates.

Calculating and storing the data associated with each point
(which cluster it belongs to and how far away it is from the
splitting point) and each cluster (maximum and minimum
distance between splitting point and all data points in the
cluster) are the most computationally expensive step in the
search procedure. However, when we use this procedure in our
modified Solovay-Kitaev algorithm, we only need to perform
this step a single time for each set of library gates. This can
be performed offline before the algorithm begins, and the
structured data can be reused for any decomposition problem
using that library set.

The search proceeds as follows. Suppose we are searching
for all the nearest neighbors {p} that are within distance ε of a
given query point x, i.e., D(p,x) � ε, where D is our distance
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FIG. 3. (Color online) GNAT vs linear search time for stored
sequence databases with l0 = 16,17,18,19. The program is imple-
mented in JAVA and run on an UBUNTU 11.10 32 byte type operating
system (OS), Core i7-2670QM 2.20 GHz Intel processor, with 2.9 GB
of memory. The apparent asymmetry in the error bars is due to the
logarithmic vertical scale.

function. We start by looking at the top-level clusters, with
splitting points si . The distance between the splitting point
and the query point is D(si,x) = di . By then applying the
triangle inequality, we can see that the points {p} can only
belong to clusters where the distance between the point p and
its splitting point satisfies

di − ε � D(p,si) � di + ε. (21)

All other clusters can be rejected, and the search at the next
level can be concentrated on those that remain.

We can see how GNAT significantly improves the search
time over a linear search. Figure 3 shows the average time
in milliseconds to find the ε region around a query point for
data sets with different volumes. These data are the average
over 120 runs for each search space size, choosing different
query points each time. Note in particular that the time axis
is on a log scale: GNAT clearly outperforms linear search by
two orders of magnitude. Figure 3 may look curious as the
time cost of GNAT search appears to vary nonmonotonically.
This comes from the fact that the efficiency of a GNAT search
varies given how good the splitting points turn out to be for a
given data space. Relatively distant splitting points result in a
more balanced search tree and better performance. A random
distribution of splitting points was used here; an alternative
method of empirically choosing the points also exists [9].

V. COMPARISON WITH THE ORIGINAL ALGORITHM

In order to test the modifications to the Solovay-Kitaev
algorithm, we implemented the original, original + SSE, and
original + recursive SSE algorithms to find the length of gate
sequences generated for a given gate and level of accuracy.
A set of 25 different randomly generated matrices in SU(2)
was generated, and then approximations were found for each
matrix using the three different algorithms. The library gate
set used was the minimal set {H,T ,T †}, and the stored
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FIG. 4. (Color online) Approximation accuracy vs the length of
the best approximating gate sequence found (number of T gates).

sequences were of length up to l0 = 18. For each gate the best
approximation at each of the first four levels of Solovay-Kitaev
recursion was recorded. In all cases, GNAT search was used
to find ε regions in the space of sequences of length up to l0.

The largest quantum cost in fault-tolerantly implementing
a sequence approximating the desired gate is, in general,
in implementing the T gates (as these require magic state
injection). We therefore take as the appropriate measure of
length for an approximating sequence the number of T gates
in the sequence. Figure 4 shows the length (number of T

gates) vs the accuracy of the approximation for the best
approximating sequence found by each algorithm for each
of the 25 randomly generated unitary matrices. The steplike
behavior in all three cases is caused by the recursion levels
of the original algorithm. Both SSE and recursive SSE are
significant improvements over the original algorithm, with
recursive SSE clearly the better of the two. In both cases
the length of sequences for a given approximation accuracy
is reduced; for example, when the accuracy required is around
10−4, then SSE alone reduces the length of the best sequence
by a factor of 3, and recursive SSE reduces it by a factor of 7.
The number of levels of Solovay-Kitaev recursion also reduces
significantly, from n = 4 using the original algorithm to n = 3
with SSE and to n = 2 with recursive SSE.

Recursive SSE is therefore clearly better than the standard
Solovay-Kitaev algorithm at producing gate sequences that
cost less to implement in terms of quantum resources on a
quantum computer. However, this is not the only consideration:
we must also take into account the classical processing time
needed to find the best approximating sequence in each of
the cases. Figure 5 shows this classical preprocessing time
vs the accuracy of the resulting approximating sequence. As
the two plots are of the same data set, they may be directly
compared through their x axes. As we would expect, the more
computationally intensive recursive SSE algorithm takes a
much longer time to run. However, note the log scale on the
time axis; the curve for recursive SSE is, in fact, subexponential
in its scaling.

We can therefore conclude that there is a straightforward
trade-off between reducing the quantum cost of implementing
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FIG. 5. (Color online) Approximation accuracy vs classical com-
pilation time to find the best approximating gate sequence. The
program is implemented in JAVA and run on an UBUNTU 11.10 32 byte
type OS, Core i7-2670QM 2.20 GHz Intel processor, with 2.9 GB of
memory.

a given single-qubit unitary and the classical preprocessing
time to find the sequence. In general, given the relative state
of the two technologies, we would prioritize decreasing the
quantum cost at the expense of classical processing. It is also
important to bear in mind that sequence finding can be run
offline, before the algorithm starts, whereas implementing
the approximating sequence in terms of quantum gates is
by definition online. We therefore have an algorithm that
gives us a shorter approximating sequence, using classical
processing that scales less strongly than in [8]. This is
therefore a middle ground between such a flat, linear search
and the structured, sparse search of the standard recursive
Solovay-Kitaev algorithm.

VI. CONCLUSION

We have given a modified version of the Solovay-Kitaev
algorithm that greatly reduces the length of the sequences
used to approximate a unitary single-qubit gate. Our technique
also reduces the number of levels of recursion required
by the algorithm to reach a given level of accuracy. By
reducing the depth of the quantum circuit used to approximate
a given gate, we are then able to reduce the amount of
error correction needed for fault-tolerant implementations of
quantum algorithms. The cost for this is an increase in the
classical processing needed to find these shorter and less
costly quantum sequences, but the use of structured GNAT
searches enables this to be performed in time that scales
subexponentially (and can also be performed offline before
the quantum algorithm starts). By increasing the space that
is searched at the initial level of recursion in the original
algorithm, we are able to use the powerful method of the
recursive steps without leaving so much of the search space
unexplored between levels of recursion.

Note added. Recently, we became aware of [21,22] that
show new methods for effective compilation using the 〈H,T 〉
basis set. The techniques presented in this paper, however, re-
main valuable extensions to the core search algorithm and will
be especially valuable for compilation using other basis sets.
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