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SWAP test and Hong-Ou-Mandel effect are equivalent
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Universidad de Valladolid, Departamento Teorı́a de la Señal e Ingenierı́a Telemática, Paseo Belén No. 15, 47011 Valladolid, Spain

(Received 27 March 2013; published 29 May 2013)

We show that the Hong-Ou-Mandel effect from quantum optics is equivalent to the SWAP test, a quantum
information primitive which compares two arbitrary states. We first derive a destructive SWAP test that does not
need the ancillary qubit that appears in the usual quantum circuit. Then we study the Hong-Ou-Mandel effect for
two photons meeting at a beam splitter and prove it is, in fact, an optical implementation of the destructive SWAP

test. This result offers both an interesting simple realization of a powerful quantum information primitive and an
alternative way to understand and analyze the Hong-Ou-Mandel effect.
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I. INTRODUCTION

Quantum information has provided a new way to think
about quantum mechanics. Its formalism draws heavily from
quantum optics and many interesting results come from the
interplay between both disciplines. Bell inequalities and Bell
tests can be more clearly understood in a computational
framework [1]. Simple quantum information protocols, such as
quantum cryptography, are naturally realized with optical sys-
tems [2,3]. Many quantum algorithms are also directly inspired
by physical phenomena. For instance, Grover’s algorithm for
quantum search is based on Schrödinger’s equation [4].

In this paper, we show how quantum information has
“rediscovered” the Hong-Ou-Mandel effect of quantum optics
under the name of SWAP test. We show there is a deep
connection between these two concepts. On the way, we
propose a SWAP test circuit that does not need any ancillary
input and suggest practical realizations of this test using
photons, a beam splitter, and two detectors.

The paper has five main sections. In Sec. II, we describe
the SWAP test and its uses in state comparison. In Sec. III,
we review the Hong-Ou-Mandel effect for two photons and
give a formulation that highlights the role of the information
the photons carry. In Sec. IV, we derive a destructive SWAP test
circuit with no ancillas. Section V shows that the Hong-Ou-
Mandel effect corresponds to a destructive, simplified optical
SWAP test circuit. Finally, in Sec. VI, we outline the possible
applications of these results and propose experimental systems
that put these connections into practical use.

II. THE SWAP TEST

When working with quantum information, the question
often arises of whether two states |φ〉 and |ψ〉 are equal or not.
The SWAP test is a procedure from which we can determine with
certainty that two states are different. Equality can be inferred
with high probability if we have multiple copies of the states.
The quantum circuit used in the test, introduced in the context
of quantum fingerprinting [5], is shown in Fig. 1. The inputs
are two states |ψ〉 and |φ〉 of equal dimension and an ancillary
qubit in the |0〉 state. There are three gates, two Hadamard
gates, H , and a controlled SWAP gate, CSWAP. The Hadamard
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gates convert the |0〉 state into a superposition |0〉+|1〉√
2

and |1〉
into |0〉−|1〉√

2
. The controlled SWAP operation interchanges the

states |φ〉 and |ψ〉 if the ancillary qubit is in state |1〉. When
the ancillary qubit is |0〉, the other states keep their order. The
evolution through this circuit is

|0〉|φ〉|ψ〉 H→ |0〉 + |1〉√
2

|φ〉|ψ〉 CSWAP−→ |0〉|φ〉|ψ〉 + |1〉|ψ〉|φ〉√
2

H→ |0〉[|φ〉|ψ〉 + |ψ〉|φ〉] + |1〉[|φ〉|ψ〉 − |ψ〉|φ〉]
2

.

(1)

At the end of the circuit, the state of the ancillary qubit
is measured. We call outcome 0 the case where the |0〉
state is found and outcome 1 when |1〉 is measured. If the
states are equal, |φ〉 = |ψ〉, the outcome is 0 with probability
1. Swapping the positions has no effect and there is no
entanglement with the ancillary qubit. For different states
both outcomes are possible. Outcome 1 can only happen for
different states. In that case, we say the states “fail” the test.
If two states fail the test, we know with certainty they are
different. If the states “pass” the test (outcome 0), they are not
necessarily equal. From Eq. (1), we can find that the probability
of passing the test is

Pp = 1

4
(〈φ|〈ψ | + 〈ψ |〈φ|)(|φ〉|ψ〉 + |ψ〉|φ〉)

= 1 + |〈ψ |φ〉|2
2

. (2)

The probability of failure is the complementary Pf =
1−|〈ψ |φ〉|2

2 . The test is valid only as a comparison of independent
input states. If the inputs are entangled, the state must be taken
as a whole and it makes no sense to speak of a comparison.

The probability of passing the test depends on the overlap
|〈ψ |φ〉|2 of the input states. The overlap gives a good estimate
of how close two states are. For two orthogonal states,
|〈ψ |φ〉|2 = 0 and Pp = Pf = 1

2 . For nonorthogonal states, the
closer they are, the greater the probability of passing the test.
If we have n copies of the two input states, we can repeat the
test. The probability of passing the n rounds is

(
1 + |〈ψ |φ〉|2

2

)n

. (3)
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|0 H • H

|φ
SWAP|ψ

FIG. 1. Quantum circuit implementing the SWAP test.

If the state passes the test multiple times, we can infer with
high probability they are equal or, at least, have a large overlap.
We can estimate the number of tests we need to tell apart two
states which are arbitrarily close so that |〈ψ |φ〉|2 = 1 − ε,
with ε � 1. With this overlap, Pp = 2−ε

2 and the probability
of passing n tests is (1 − ε

2 )n ≈ 1 − nε
2 .

One important detail of the SWAP test is the output state
after measuring the ancillary qubit. For outcome 0, we
have an entangled state |0〉 |φ〉|ψ〉+|ψ〉|φ〉√

2
and for outcome 1,

|1〉 |φ〉|ψ〉−|ψ〉|φ〉√
2

. In both cases, it is impossible to completely
separate the input states again. If it were possible, the SWAP

test could be repeated as many times as desired. This would
make it possible to distinguish arbitrarily close states. It is easy
to see why this must be wrong. If the states could be recycled,
we could choose a set of states {|ψ1〉,|ψ2〉, . . . ,|ψN 〉} as large
as we want and, for an unknown state |ψi〉, we could try each
of them until we find an outcome 1. After a defined number
of tries, the index i of the chosen state could be deduced with
high probability. This method makes it possible to send an
arbitrarily large amount of information encoded in a state of a
finite dimension. This violates the Holevo bound, which gives
a limit of log2 d bits for a d-dimensional system [6,7].

Due to this confusion of states at the output, the protocols
that use the SWAP test do no further work on them. The
output can be measured without any effect on the protocol.
This motivates our search for a simpler test with no ancillary
qubit and where the output is measured destroying any
superposition. In Sec. IV, we describe an ancilla-free test
using standard quantum gates, but, first, we show a simple
optical system which already gives a destructive quantum state
comparison.

III. THE HONG-OU-MANDEL EFFECT

The Hong-Ou-Mandel (HOM) effect of quantum optics
offers a straightforward way to compare the state of two
photons. The phenomenon was originally proposed as a way
to find nanosecond time shifts between two photons [8], but,
in its full generality, it can help to detect any other difference,
like frequency shifts or other changes in the wave function.

We can describe the phenomenon by looking at the behavior
of photons when they cross a beam splitter. We imagine a
photon in state |1s〉 which can take two paths, up and down.
We use the notation |ns〉p to denote a photon number state |n〉
in mode sp. Mode sp describes a photon with a certain state |s〉
which can include polarization or frequency, while subindex p

is reserved to specify the path (spatial mode), which can be up
|1s〉U or down |1s〉D . The vacuum state (zero photon number)
is represented as |0〉U or |0〉D . All the modes s have the same
vacuum state (all empty modes are the same).

For a 50:50 beam splitter we have the evolution

|1s〉U |0〉D −→ |1s〉U |0〉D + |0〉U |1s〉D√
2

(4)

and

|0〉U |1s〉D −→ |1s〉U |0〉D − |0〉U |1s〉D√
2

. (5)

For single photons, this is the equivalent to an H gate
where we replace logic states |0〉 and |1〉 with |1s〉U |0〉D and
|0〉U |1s〉D , respectively. If we place two detectors D1 and D2,
one up and one down, each can “click” (find the photon) with
a probability 1

2 .
If we have two photons in orthogonal modes |1s〉 and |1t 〉,

with 〈1s |1t 〉 = 0, that enter the beam splitter one up and one
down, they evolve independently. The final click statistics in
the detectors can be deduced from those of the individual
photons. When D1 and D2 click at the same time, or, in
practice, in the same short time window, we say there is a
coincidence. An interesting phenomenon appears when the
input photon states have an overlap 〈1s |1t 〉 �= 0. Photons in
the same state bunch together at the output. The simplest case
occurs for two indistinguishable input photon states.

We can describe the general evolution inside a beam splitter
or any other linear optics element from its scattering matrix.
We use photon creation operators â

†
s,p such that

â†
s,p|ns〉p = √

n + 1|n + 1s〉p. (6)

A state |ns〉p can be written as [9]

|ns〉p = (â†
s,p)n√
n!

|0〉p. (7)

The creation operators of independent modes (orthogonal
photon states) commute. In the Heisenberg picture, we can
study the evolution of a quantum system from the evolution of
an operator acting on the same initial state. If the evolution is
defined by a unitary operator U and we have an input photon
in state |1s〉p = â

†
s,p|0〉p, the output after the beam splitter can

be written as (Uâ
†
s,pU †)|0〉p. We concentrate on the evolution

of the operator. From the scattering matrix of a 50:50 beam
splitter, it can be shown that the creation operators evolve
as [10]

Uâ
†
s,UU † −→ 1√

2
â
†
s,U + 1√

2
â
†
s,D, (8)

Uâ
†
s,DU † −→ 1√

2
â
†
s,U − 1√

2
â
†
s,D. (9)

For two equal photons giving an input state

|1s〉U |1s〉D = â
†
s,U â

†
s,D|0〉U |0〉D, (10)

we have at the output

Uâ
†
s,U â

†
s,DU †|0〉U |0〉D = (Uâ

†
s,UU †)(Uâ

†
s,DU †)|0〉U |0〉D

= 1
2 [(â†

s,U )2 − â
†
s,U â

†
s,D + â

†
s,Dâ

†
s,U

− (â†
s,D)2]|0〉U |0〉D. (11)
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For modes U and D the creation operators commute and the
output state is

(â†
s,U )2 − (â†

s,D)2

2
|0〉U |0〉D, (12)

which, from (6), is

|2s〉U |0〉D − |0〉U |2s〉D√
2

. (13)

Due to interference, both photons leave the beam splitter
through the same port. Both detectors have an equal proba-
bility of clicking, but the number of coincidences becomes
zero.

For photons with continuous wave-packet amplitude func-
tions ξ1(t) and ξ2(t) at the input of a 50:50 beam splitter, the
probability of finding a coincidence is known to be [9]

1 − |∫ ξ1(t)∗ξ2(t) dt |2
2

. (14)

The term |∫ ξ1(t)∗ξ2(t) dt | is the overlap of the two photon
states. The photons are found in the same output port with the
same probability,

1 + |∫ ξ1(t)∗ξ2(t) dt |2
4

, (15)

for each detector. The photons have the same behavior as the
input states in the SWAP test. In the following section, we
derive the same results for discrete systems which correspond
naturally to the qubit or qudit case. Later, we discuss the
equivalence of the discrete case to the general expression with
the wave-packet amplitude functions. We study the system
from the point of view of discrete photon creation operators.
An alternative general proof with density matrices which
includes mixed states can be found in [11].

A. Discrete systems: HOM for d-dimensional systems

We want to consider now single-photon states,

|φ〉 =
d−1∑
i=0

αi |i〉 and |ψ〉 =
d−1∑
j=0

βj |j 〉, (16)

with

d−1∑
i=0

|αi |2 = 1 and
d−1∑
i=0

|βi |2 = 1. (17)

States |i〉 from {|0〉,|1〉, . . . ,|d − 1〉} are orthogonal and can
correspond to photons with different frequencies, orbital
angular momentum values [12], or wave functions in different
time windows like in time-bin encoding [13]. We can also
add different polarizations to double the number of possible
orthogonal states or combine any of the mentioned degrees of
freedom.

We have now creation operators â
†
i,p, as we still allow each

of these photon states to be in the upper and lower ports. The

evolution through a 50:50 beam splitter is

|φ〉U |ψ〉D =
d−1∑

i

d−1∑
j

αiβj â
†
i,U â

†
j,D|0〉U |0〉D

→ U

⎛
⎝∑

i

∑
j

αiβj â
†
i,U â

†
j,D

⎞
⎠ U †|0〉U |0〉D

=
∑

i

∑
j

αiβj (Uâ
†
i,UU †)(Uâ

†
j,DU †)|0〉U |0〉D

=
∑

i

∑
j

αiβj

2
(â†

i,U â
†
j,U − â

†
i,U â

†
j,D

+ â
†
i,Dâ

†
j,U − â

†
i,Dâ

†
j,D)|0〉U |0〉D. (18)

There are two parts with different behavior
∑

i

αiβi

|2i〉U |0〉D − |0〉U |2i〉D√
2

+
∑

i

∑
j �=i

αiβj

2
[|1i ,1j 〉U |0〉D

− |1i〉U |1j 〉D + |1j 〉U |1i〉D − |0〉U |1i ,1j 〉D]. (19)

We use |1i ,1j 〉p to denote two photons that coexist in the same
path but are in different states i and j .

We can consider the setting as a test. The photons pass
the test if only one detector fires. A coincidence is detected
as a failure. The probabilities of each event are related to the
overlap of the two input states, with 〈ψ |φ〉 = ∑

i αiβ
∗
i and

|〈ψ |φ〉|2 = 〈ψ |φ〉〈ψ |φ〉∗ =
∑

i

∑
j

αiα
∗
j β

∗
i βj . (20)

The part of the superposition in (19) which corresponds to
a coincidence is∑

i

∑
j �=i

αiβj

2
[−|1i〉U |1j 〉D + |1j 〉U |1i〉D]. (21)

The terms can be rearranged taking into account the interfer-
ence between indistinguishable photon states to give

−
∑

i

∑
j

1

2
(αiβj − αjβi)|1i〉U |1j 〉D. (22)

The probability of finding a coincidence and failing the test
is ∑

i

∑
j

1

4
(αiβj − αjβi)(αiβj − αjβi)

∗

=
∑

i

∑
j

1

4
(|αi |2|βj |2 + |αj |2|βi |2

−αiα
∗
j β

∗
i βj − α∗

i αjβiβ
∗
j ). (23)

We can group the terms and see the failure probability is

Pf =
∑

i

∑
j |αi |2|βj |2 − ∑

i

∑
j αiα

∗
j β

∗
i βj

2

= 1 − |〈φ|ψ〉|2
2

, (24)

where we use Eqs. (17) and (20).
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The probability of passing the test is, as it should be,
1+|〈φ|ψ〉|2

2 for any pair of input states |φ〉 and |ψ〉. This shows
the HOM circuit performs a SWAP test. The formal equivalence
permits an optical implementation in many applications where
the SWAP test is used (see Sec. VI).

IV. DESTRUCTIVE SWAP TESTS

The HOM effect proves no ancillary photon is needed to
perform a SWAP test. In this section, we present a destructive
SWAP test with no ancillas.

The gates in our quantum circuits are best described by
their effects on the states |0〉 and |1〉. They form what is
usually called the computational basis. Operations on states
|x〉 with x = 0 and x = 1 can be explained in terms of
simple primitives. The generalization to arbitrary quantum
states is simple. Any arbitrary qubit state |ψ〉 = α|0〉 + β|1〉
is a superposition of states from the computational basis.
The output after a gate presents the same superposition of
the transformed |0〉 and |1〉 inputs. α and β are the complex
probability amplitudes associated to |0〉 and |1〉, respectively,
and, as such, |α|2 + |β|2 = 1.

We can derive a destructive SWAP test circuit from an
implementation of the SWAP gate which only uses CNOT

and Toffoli gates. Both are based on the binary exclusive
OR function (XOR). The XOR of two binary values is only
true if one, and only one, of them is true. In particular, we
use that x ⊕ x = 0 and x ⊕ 0 = x for any input. The XOR

function can be seen as both a modulo 2 addition and a
modulo 2 complement. In higher dimensions these operations
correspond to separate functions.

The basic gate, the NOT or X gate, takes |0〉 into |1〉 and |1〉
into |0〉. In terms of the XOR operation

X|x〉 = NOT|x〉 = |x ⊕ 1〉. (25)

In the CNOT and Toffoli gates, we define target and control
qubits represented by the XOR symbol (⊕) and a black dot,
respectively. The CNOT gate is a controlled NOT operation that
flips the target value if the control is in state |1〉. We have

CNOT|x〉|y〉 = |x〉|x ⊕ y〉. (26)

The Toffoli gate is a controlled-controlled-NOT. The target is
only flipped if both control qubits are |1〉, with evolution

CCNOT|x〉|y〉|z〉 = |x〉|y〉|(x · y) ⊕ z〉, (27)

where x · y is the binary AND of x and y. From the properties of
the XOR function, we can see both gates are their own inverses.
They cancel if applied twice in a row.

A. Comparison of one-qubit states

We start with a CSWAP circuit inspired by classical XOR

swapping. When we have two registers, we can switch their
contents without any additional memory bits with the circuit
of Fig. 2.

|φ |ψ
|ψ |φ

FIG. 2. XOR swapping circuit.

The step-by-step evolution is

|x〉|y〉 CNOT(2,1)−→ |x ⊕ y〉|y〉 CNOT(1,2)−→ |x ⊕ y〉|y ⊕ x ⊕ y〉
= |x ⊕ y〉|x〉 CNOT(2,1)−→ |x ⊕ y ⊕ x〉|x〉 = |y〉|x〉.

(28)

We call CNOT(i,j ) the CNOT gate with control qubit i and target
qubit j . We have described the classical setting, but the results
can also be generalized to arbitrary quantum superpositions.

We can introduce an additional control in the middle gate
of the SWAP circuit of Fig. 2 to build a CSWAP gate. Figure 3
shows the corresponding SWAP test circuit. If the ancillary
control qubit is |0〉, the middle gate has no effect and the first
and last CNOT cancel. If the ancillary qubit is |1〉, we recover
the SWAP operation.

We are going to find equivalent circuits that show the
ancillary qubit can be replaced by measurement on the tested
states. We need to introduce two additional gates. The first is
the Z gate, which performs the conditional sign shift

Z|x〉 = (−1)x |x〉. (29)

The second is its controlled version

CZ|x〉|y〉 = (−1)x·y |x〉|y〉. (30)

The only input state |x〉|y〉 from the computational basis for
which the CZ gate introduces a sign shift is |1〉|1〉.

In our proof, we are going to use the circuit equivalences
shown in Fig. 4. The basic step is the decomposition of the
X gate into the sequence HZH . For a state |x〉 from the
computational basis

H |x〉 = |0〉 + (−1)x |1〉√
2

. (31)

The effect of the gate sequence HZH on an input |x〉 is

|x〉 H−→ |0〉 + (−1)x |1〉√
2

Z−→ |0〉 + (−1)x+1|1〉√
2

H−→ |x ⊕ 1〉,
(32)

which is also the result of the operation X|x〉.
If we replace the Z gate with a CZ gate, the resulting circuit

acts as a CNOT gate. If the control qubit is |1〉, we have the
operation sequence HZH = X on the target. If it is |0〉, we

|0 H • H

|φ •
|ψ • •

FIG. 3. SWAP test circuit for qubit states with CNOT, Toffoli, and
H gates. The measured qubit is taken into a superposition |0〉+|1〉√

2
,

which controls the Toffoli gate in the middle. Only the parts of the
superposition corresponding to control qubit state |1〉 are swapped.
The final state is the same as in the circuit of Fig. 1.
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• ≡ •
H Z H

X ≡ H Z H

FIG. 4. Equivalent circuits for the X and Z gates and their
controlled versions.

have two H gates, which cancel. We can similarly define a
controlled-controlled-Z gate, CCZ, with

CCZ|x〉|y〉|z〉 = (−1)x·y·z|x〉|y〉|z〉. (33)

With these equivalences, we can proceed to simplify the SWAP

test circuit.
Figure 5 shows our starting circuit. We have taken the SWAP

test circuit of Fig. 3 and replaced the Toffoli gate in the center
with a CCZ gate that has two H gates around the target qubit.
The combination of these gates produces the CCNOT operation
of the Toffoli gate, with an evolution similar to that described
in Eq. (32). In Fig. 5 we have also included a measurement
on all qubits at the end of the test. The tested qubits have no
use after the comparison. We can suppose they are measured
at the end of the protocol.

We can reduce the number of gates if we notice that the
ancillary qubit which carries the answer to the test is not
affected by operations on the tested qubits after the CCZ gate.
We are not interested in the outcomes of the measurements on
the qubits under test. We can just as well get rid of the last H

and CNOT gates and measure directly after the CCZ gate with
no effect on the ancillary qubit and the result of the SWAP test.

We can also move the target in the CCZ operation. All the
qubits can be equally said to be a control or a target. The sign
shift takes place only when the three qubits are |1〉. The result
of advancing the measurement and reinterpreting the roles of
target and control in the CCZ gate is the circuit of Fig. 6.

After this rearrangement, we use the equivalences in Fig. 4
to rewrite the circuit as in Fig. 7 and make the ancillary qubit
the target of a CCNOT gate.

The test will fail if, after the CCNOT gate, the original
ancillary |0〉 qubit has become |1〉. That happens only when
both control qubits are |1〉. We get the same measurement
statistics if we just measure the qubits under test and then
perform an X gate on the ancillary qubit only if we find two
1 outcomes. This fact is sometimes called the principle of
deferred measurement [14]. We can just ignore the ancillary
qubit and perform a SWAP test with the circuit in Fig. 8.

The order of the input states is not relevant. The SWAP test
should return the same results for |φ〉|ψ〉 and for |ψ〉|φ〉, giving
us two equivalent circuits. The result of the SWAP test is the
NAND function of the outcomes, NAND(O1,O2). Only if both
outcomes are 1, O1 · O2 = 1, we get a failure.

|0 H • H

|φ •

|ψ • H Z H •

FIG. 5. SWAP test circuit with a CCZ gate. The Toffoli gate which
controls the SWAP gate can be decomposed into a CCZ gate with two
H gates around the target qubit.

|0 H Z H

|φ

|ψ H

FIG. 6. SWAP test advancing the measurement. We can ignore the
gates that are not relevant to the state comparison test and measure
just after the CCZ gate. The CCZ operation changes only the |1〉|1〉|1〉
state. Because of this symmetry, we can interchange the roles of target
and control qubits.

For the rest of the paper, we work with the last circuit in
Fig. 8. This circuit is, in fact, a measurement in the Bell basis.
The gates take inputs from the Bell basis

{ |00〉 + |11〉√
2

,
|01〉 + |10〉√

2
,
|00〉 − |11〉√

2
,
|01〉 − |10〉√

2

}
(34)

into the computational basis for two qubits
{|00〉,|01〉,|10〉,|11〉}. This is quite relevant, as both the
SWAP test and the HOM effect have a peculiar behavior
when the inputs are entangled. Take state |01〉+|10〉√

2
. After

the change of basis, it becomes |01〉 and passes the test.
This is correct because the entangled input state is the
right level of description, but runs against our intuition that
it should fail because the first and the second qubit are
always different. State comparison is valid only for an input
|φ〉|ψ〉 = |φ〉 ⊗ |ψ〉, where ⊗ is a tensor product.

We can do a quick check to find the test is still valid after all
the simplifications. For two arbitrary single qubit input states
|φ〉 = α|0〉 + β|1〉 and |ψ〉 = γ |0〉 + δ|1〉, the input state goes
from

αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉 (35)

to

αγ |00〉 + αδ|01〉 + βγ |11〉 + βδ|10〉 (36)

after the CNOT. After the H gate and before measurement we
have

1√
2

[αγ |00〉 + αγ |10〉 + αδ|01〉 + αδ|11〉
+ βγ |01〉 − βγ |11〉 + βδ|00〉 − βδ|10〉]. (37)

The probability of failure,

Pf = |αδ − βγ |2
2

= (αδ − βγ )(αδ − βγ )∗

2
, (38)

|0

|φ O1

|ψ H O2

FIG. 7. SWAP test where the ancillary qubit is the target of a CCNOT

gate.
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|φ O1 |φ O1

≡
|ψ H O2 |ψ O2

|φ O1 |φ H O1

≡
|ψ O2 |ψ O2

FIG. 8. Quantum circuits for a destructive SWAP test.

comes from considering the probability of measuring the |11〉
state. The complementary probability of success is

Pp = 2 − |α|2|δ|2 − |β|2|γ |2 + αβ∗γ ∗δ + α∗βγ δ∗

2
. (39)

Taking into account that the probability amplitudes in the input
qubits obey |α|2 + |β|2 = 1 and |γ |2 + |δ|2 = 1, we obtain

Pp = 1 + |α|2|γ |2 + |β|2|δ|2 + αβ∗γ ∗δ + α∗βγ δ∗

2
. (40)

The overlap of the input states is |〈ψ |φ〉|2 =
(αγ ∗ + βδ∗)(α∗γ + β∗δ) = |α|2|γ |2 + |β|2|δ|2 + αβ∗γ ∗δ +
α∗βγ δ∗. We can see the probability of success of the SWAP test
Pp = 1+|〈ψ |φ〉|2

2 from Eq. (2) corresponds to that in Eq. (40).

B. Generalization to n qubits

The destructive SWAP test can be extended to any number of
qubits with little additional effort. We take two n-qubit states
|φ〉 and |ψ〉 so that |φ〉|ψ〉 = |φ〉 ⊗ |ψ〉. The qubits that form
each input state can be entangled.

If we swap the qubits of |φ〉 and |ψ〉 one by one, we have
an n-qubit SWAP gate. Figure 9 shows the corresponding SWAP

test circuit where all the qubits are explicitly shown.
We can repeat the steps of the one-qubit states example

and get the circuit of Fig. 10. The ancillary qubit sees n CCZ

gates. The total phase shift can be perfectly determined from
the outcomes of the measurements O1

1 , . . . ,O1
n,O

2
1 , . . . ,O2

n .
O1

i is the result of the measurement on the ith qubit of the first
tested state. O2

i is the corresponding result for the second state.
The total phase shift is π

∑n
i=1 O1

i · O2
i . The qubit output is 1

(failed test) only if we have an odd number of sign shifts.
We can ignore the ancillary qubit altogether and obtain the

same answer from the measurement outcomes (Fig. 11). If we
call O1 and O2 to the bit strings with all the measurements

|0 H • • · · · • H

• · · ·

|φ
• · · ·

...
...

· · · •

• • · · ·

|ψ
• • · · ·

...
...

· · · • •

FIG. 9. SWAP test for n-qubit states.

|0 H · · · Z Z · · · Z H

· · · • O1
1

|φ
· · · • O1

2

...
...

· · · • O1
n

• H · · · • O2
1

|ψ
• H · · · • O2

2

...
...

· · · • H • O2
n

FIG. 10. SWAP test for n-qubit states advancing the measurement.

corresponding to all the O1
i and O2

i , the test succeeds if the
bitwise AND of O1 and O2 has an even parity.

We wish to point out that, while for quantum systems
with a dimension that is a power of two there is a natural
destructive circuit, the decomposition of the SWAP test circuit
for general d-dimensional states |φ〉 and |ψ〉 (qudits) poses
certain challenges. Complements to d and modulo d are not
the same operation as in the d = 2 case.

V. AN OPTICAL SWAP CIRCUIT

We can also check that the optical circuit of the HOM
effect not only performs the same operation as the SWAP test,
but is also completely equivalent to the destructive SWAP test
of Sec. IV.

A. Optical SWAP test

The optical setup of the HOM effect is just a destructive
version of the complete optical implementation of the SWAP

test. To prove it, we start with the controlled optical SWAP gate
in Fig. 12. The system is a modified interferometer.

The gate has two 50:50 beam splitters and a π phase
shifter. We add a control bit b that activates the phase shifter
when its value is 1. Physically, it can correspond to a Pockels
cell, a typical element to manipulate single photons in optical
quantum computation [15]. Pockels cells introduce a π phase
shift between the upper and lower arms of the interferometer.

• H · · · O

|φ
• H · · · O

...
...

· · · • H O

· · · O

|ψ
· · · O

...
...

· · · O

≡

· · · O

|φ
· · · O

...
...

· · · O

• H · · · O

|ψ
• H · · · O

...
...

· · · • H O

FIG. 11. SWAP test for n-qubit states. We can, as in the single-
qubit SWAP test, change the input state order to obtain the last
equivalence.
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b

|φ

|ψ
b = 0 → |φ ψ
b = 1 → |ψ φ

π

FIG. 12. Optical SWAP gate with a classical control bit, b. The
system could correspond to a Mach-Zehnder interferometer with a
settable phase in the lower arm.

When b = 0, we have two beam splitters which cancel each
other (they apply two H operations in a row). For independent,
orthogonal photons, at the second beam splitter, there is a
constructive interference in the up or down port the photon
came in and a destructive interference in the other port. Taking
equations (8) and (9), we can also see that indistinguishable
photons are separated again after the second beam splitter. The
total evolution is

|1s〉U |1s〉D BS1−→ |2s〉U |0〉D − |0〉U |2s〉D√
2

BS2−→ |1s〉U |1s〉D.

(41)

Both equal and different components have the same behavior.
We can establish that the two beam splitters perform an identity
operation.

When there is a π phase shift (b = 1), we have a typical
interferometric setup where the port with the constructive and
destructive interference change. For orthogonal photons, we
can see from each individual photon’s evolution that

|1s〉U |0〉D BS1−→ |1s〉U |0〉D + |0〉U |1s〉D√
2

π−→ |1s〉U |0〉D − |0〉U |1s〉D√
2

BS2−→ |0〉U |1s〉D (42)

and

|0〉U |1s〉D BS1−→ |1s〉U |0〉D − |0〉U |1s〉D√
2

π−→ |1s〉U |0〉D + |0〉U |1s〉D√
2

BS2−→ |1s〉U |0〉D. (43)

For photons in the same state, we always have 0 or 2 photons
going through the phase shifter. This makes a total phase
shift of 0 or 2π for the joint system, which does not alter
the global state. Equation (41) is still valid. Either way, for
indistinguishable photons, the output can be equally said to be
the same or swapped.

We can now add an ancillary photon to perform a full SWAP

test (Fig. 13). This setup is an optical implementation of the
circuit in Fig. 1.

We put a photon in any state we want in the upper port
of an interferometer with two 50:50 beam splitters in the
place of the H gates. The most complicated part is the
control of the SWAP gate. The logical |1〉 state, the |0〉U |1s〉D
term after the first beam splitter, must activate the π phase
shift that triggers the SWAP operation. This is a CZ operation
for photons, which, given that we can build H gates with
beam splitters, is also a photonic CNOT gate. There have been
many proposals in that direction, like using the nonlinearities

|φ

|ψ

|0

|1s
U

π

D2

D1

FIG. 13. Optical SWAP test with an interferometric setup and an
optical CZ gate.

inside Kerr media, or making the photons interact with atomic
systems or introducing measurement-assisted systems [16].
Photonic interaction at the quantum level is challenging
and it still remains a major roadblock for scalable optical
quantum computation. However, we only need the gate as an
intermediate step in our proof. We assume it is possible to
build one and do not really worry about its efficiency.

Now that we have all the elements in place, we can proceed
in the same way we did in Sec. IV. The input photons pass
the SWAP test if detector D1 in Fig. 13 clicks. The two-photon
state at the output of the lower interferometer is not used. We
could just as well take out the last beam splitter and the SWAP

test would be unaffected. We can also add two detectors D3

and D4 (Fig. 14).
As we commented in Sec. IV, in a CZ gate the roles of the

control and the target states can be reversed. We can suppose
the optical CZ gate is controlled by the existence of photons in
the lower arm of the lower interferometer. The input photons
under comparison fail the test only if there is a π phase shift in
the lower path of the ancillary photon. Imagine D4 could count
photons. For 0 or 2 photons there has been no change in the
ancillary photon’s phase and we know the SWAP test has been
successful. For one photon the input states fail the test. The
output state up in the ancillary interferometer is then correlated
to the measurement outcomes from detectors D3 and D4.

The optical CZ gate does not change the number of photons.
We can perform the measurement before the gate and get
the same measurement statistics (Fig. 15). We do not really
need to be able to count photons. The total photon number is
conserved in the passive, lossless, linear optics beam splitter
we are assuming. For two input photons, we have two output
photons. The only way to have one photon in D4 is if we get
a coincidence count. If only D3 fires, we have two photons
up. If only D4 fires, both photons are down. The AND of the
outcomes of both detectors, being 0 no click and 1 a click, gives

|φ

|ψ

|0

|1s
U

D2

D1

π

D3

D4

FIG. 14. Simplified optical SWAP test.
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AND

|φ

|ψ

|0

|1s
U

D2

D1

π

FIG. 15. Optical SWAP test without the CZ gate.

the control bit for the SWAP gate in the upper interferometer.
The output of the SWAP test is the NAND of the outcomes. The
test fails (outcome 0) only if there is a coincidence count.

That means we can just ignore the ancillary photon and
work directly with the detectors’ outcomes. The usual HOM
setup (Fig. 16) with simple binary photodetectors that click or
not, such as avalanche photodiodes, is enough to perform a
SWAP test. All the steps in the proof are valid regardless of the
dimension of the photon states |φ〉 and |ψ〉. A beam splitter
and two photodetectors is all we need to perform a SWAP test
on any two photon states.

VI. APPLICATIONS AND FUTURE LINES

We have shown the HOM effect and the SWAP test are
formally equivalent. The proof offers simpler implementations
of the SWAP test which can be interesting in quantum
information protocols.

Equation (14) captures how photons can be used in a
SWAP test in quantum information. We only need to find
orthogonal wave functions. The most obvious examples are
frequency and time-bin qudits. The wave functions of photons
of different frequencies can be thought of as orthogonal
sine functions. Time-bin qudits are just wave functions
with separate, nonoverlapping supports. There are also wave
functions which are orthogonal in space like, for instance,
optical vortices carrying orbital angular momentum (OAM).

There is a caveat in this last case. Reflection from the beam
splitter performs a left-to-right inversion. If we want to pre-
serve proper interference, the reflection must be compensated.
Imagine we have single-photon input states |1�〉 which carry
an orbital angular momentum of �h̄. In a 50:50 beam splitter
the evolution is

|1�〉U |0〉D −→ |1−�〉U |0〉D + |0〉U |1�〉D√
2

, (44)

|0〉U |1�〉D −→ |1�〉U |0〉D − |0〉U |1−�〉D√
2

. (45)

|φ

|ψ

D1

D2

FIG. 16. Destructive SWAP test with a HOM configuration.

Due to the symmetry of the OAM wave fronts, reflection from
a mirror results in a change of the sign of the winding number �.
A simple mirror in the lower port can compensate for that. An
input |1�〉U |1−�〉D becomes, at the output of the beam splitter,
the entangled state

|2−�〉U |0〉D − |0〉U |2�〉D√
2

, (46)

where the interference in the HOM effect is still present and
the photons in the upper output port are in the reflected state.
A similar analysis can be made for any spatially modulated
photon.

One possible application is quantum fingerprinting. Two
users, Alice with a string x and Bob with a string y,
both n qubits long, want to know whether x and y are
equal or different. Alice could send her string to Bob, who
would answer if they are equal or not. The cost would be
communicating n + 1 classical bits. Alternatively, they could
send shorter strings, called fingerprints, which are a function
of x and y and, with high probability, are only equal when
x = y. In the simultaneous message passing model, if Alice
and Bob do not have any previously shared information,
they need fingerprints of a size proportional to

√
n bits [17].

Quantum fingerprints of size of the order of log2(n) qubits
are enough for the same task [5]. This exponential reduction
in communication complexity is based on the comparison of
quantum fingerprint states. For a string x, the fingerprint is a
superposition of m = cn states of the form

|hx〉 = 1√
m

m∑
i=1

(−1)Ei (x)|i〉, (47)

where E(x) is the code word corresponding to x in a binary
error correcting code and Ei(x) the ith bit of that code word.
c is a constant related to the chosen code. For certain error-
correcting codes, like Justesen codes [18], we can guarantee
〈hx |hy〉 � δ for a δ > 0. Repetitions of the SWAP test make it
possible to detect different strings with high probability. In the
limit of large n, the total communication complexity is of the
order of log2(n) qubits.

We can perform the test with a HOM setup. In fact, the
equivalence of the SWAP test and the HOM effect has already
been noticed in the single-qubit case and has been put to use in
a quantum fingerprinting scheme with one-qubit fingerprints,
which still has some advantages with respect to any classical
method [19]. The equivalence can be extended to arbitrary
mixed single-photon input states with density matrices ρA

and ρB . For them, the HOM effect provides a SWAP test that

succeeds with probability Pp = 1+Tr(ρAρB )
2 [11].

Our circuits also show that the results can be extended to
qudits as long as we can still use a single photon for each
fingerprint. The fingerprint can be encoded in a single photon
with a method similar to the single-photon fingerprinting
scheme of Massar [20]. Imagine we take a photon source with
a long coherence time. A photon wave function of length T

s can be divided into m parts of duration T
m

. We can number
the portions from 1 to m and define states |i〉 corresponding
to a photon found in the ith segment. The fingerprint state of
Eq. (47) can be generated with a phase shifter which selectively
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introduces a π shift in the portions for which Ei(x) is 1. Bob
can do the same to produce a state |hy〉.

While m is of the order of n, the photon state can
only convey log2 c + log2 n bits. The Holevo bound makes
it impossible to recover more bits [6]. We can reach the
bound if we determine the time segment in which the photon
arrives. This gives us one number from 1 to m (about log2 n

bits). This kind of test would prove the principle of quantum
fingerprinting.

However, there are two details that make the system
impractical. First, we could use the T s to send x directly
with classical light using a phase modulation encoding where
0 corresponds to a null phase shift and 1 to a phase π .
The number of bits is greater, but we avoid dealing with
single photons and the total transmission time is still T . In
a practical system, there is no real advantage in using the
quantum scheme. Second, in order to obtain a small probability
of error the fingerprints have to be sent multiple times. If we
want to outperform the communication complexity of classical
methods, proportional to

√
n, we would need strings with

a large number of bits. While asymptotically the quantum
system is exponentially better, it will work more efficiently
only for long strings of around 1010 ≈ 233 bits [20], which
poses experimental challenges.

The first problem can be solved using better encodings.
Hyperentangled photons are a good example [21]. We could
use a combination of polarization, OAM, and temporal degrees
of freedom. For two polarization states, M OAM states and
B time bins, we have 2MB orthogonal states. A complete
decoding would be difficult, but it is not needed for a SWAP

test. Single photon fingerprints in such an encoding would take
only B time segments. If B and M are of the same order, close
to

√
n
2 , we can compete with the classical scheme in terms of

the transmission time.
In that sense, we advocate for spatial encoding schemes.

Let us take a spatial light modulator, SLM, with N × N

transmissive pixels which either do nothing or introduce a
π phase shift. This SLM can produce up to 2N2

different wave
fronts for a single photon. We can search for a subset of those
wave functions which have a bounded overlap 〈hx |hy〉 � δ

for any x and y. This is a generalization of what is done
to produce OAM states with SLMs [22]. Similarly, d states
can be encoded in the transverse spatial profile of a single
photon [23]. If a good family of codes is found, it would make
it possible to send single photon fingerprints in a reasonable
time. Spatial precision needs not to be so good as in a classical
spatial encoding method. We just need a binary equal or not-
equal measurement from the coincidence count. The quantum
fingerprinting system is practical as long as we can make the
photons interfere (arrange the times of arrival and correct for
the effects of reflection in the wave front). This kind of system
would permit many interesting experiments with the SWAP test,
not only as used in quantum fingerprinting, but also as used in
other applications such as entanglement detection [24].

Photons seem an ideal support with many accessible time
and spatial modes. Photonic technology is mature. We can
prepare two photons in the same time and spatial mode and
compare them with a HOM SWAP test. Nevertheless, the photon
interference we have described for a beam splitter is valid
also for any boson. Similar schemes could be implemented
with bosonic atoms or Bose-Einstein condensates. The HOM
effect also appears in these cases, with a small probability
of collision, which can be reduced if we have long wave
packets [25].

We have shown that the HOM effect permits us to compare
photon states and provides an optical implementation of
the SWAP test for simple quantum communication protocols.
Reciprocally, the formal equivalence of the SWAP test and the
HOM effect gives us a computational point of view to analyze
and understand interference in quantum optics. We have used
this equivalence to show that the usual SWAP test circuit can be
simplified if we allow for a destructive test. This simplification
can be extended to other implementations of the SWAP test
outside quantum optics.
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