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Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all the detection attacks;
thus when it is combined with the decoy-state method, the final key is unconditionally secure, even if a practical
weak coherent source is used by Alice and Bob. However, until now, the analysis of decoy-state MDI-QKD with
a weak coherent source is incomplete. In this paper, we derive, with only vacuum + weak decoy state, some tight
formulas to estimate the lower bound of yield and the upper bound of error rate for the fraction of signals in which
both Alice and Bob send a single-photon pulse to the untrusted third party Charlie. The numerical simulations
show that our method with only vacuum + weak decoy state can asymptotically approach the theoretical limit of
the infinite number of decoy states. Furthermore, the statistical fluctuation due to the finite length of date is also
considered based on the standard statistical analysis.
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I. INTRODUCTION

Quantum key distribution (QKD), such as the BB84
protocol [1], admits two remote parties, known as Alice
and Bob, to share an unconditional security key, which is
guaranteed by the quantum mechanics and has been proved
in theory [2–4]. However, the setups used in the practical
system are imperfect, which will leave some loopholes for
Eve to spy the secret key. In fact, some potential quantum
hacking strategies have been discovered by exploiting the
imperfection of practical setups, such as the passive Faraday
mirror attack [5], blinding attack [6], time-shift attack [7], and
so on [8–10]. Therefore, the legitimate parties must carefully
reexamine their practical system to close all the loopholes,
when they use this system in practical situations.

In order to close the gap between the theory and practice,
some approaches have been proposed. The first one is trying
to characterize the practical system fully and considered all
the side channels existing in the practical system. Although
some potential loopholes have been discovered and then
closed by using this approach, it cannot find all the loopholes
existing in the practical system, since, theoretically speaking,
the number of loopholes is infinite. The second approach is
trying to establish the full device-independent (DI-) QKD
system [11,12]. The DI-QKD can guarantee the unconditional
security of the practical system without knowing the detailed
information of the practical setups of Alice and Bob. However,
this approach is impractical within current technology, since
it requires that the legitimate parties have single-photon
detectors with near unit detection efficiency.

Instead of full DI-QKD, recently Lo et al. proposed a
scheme called measurement-device-independent (MDI-) QKD
[13], in which both Alice and Bob send a pulse to an untrusted
third party, called Charlie. Charlie performs the Bell state
measurement (BSM) and tells her results to Alice and Bob;
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then Alice and Bob can use this information to distill a secret
key. Since the detection party can be fully controlled by the
eavesdropper (Eve), this scheme is immune to all the detector
attacks. Thus the legitimate parties just need to ensure that the
source is secret; then the total QKD system is secret. In fact,
this condition can be satisfied in practical situations, since the
source is relatively simple and can be fully characterized.

Although the MDI-QKD has been demonstrated in exper-
iments [14,15], and some modified schemes for a fiber-based
system have been proposed [16,17], it is not completely device
independent. It requires that the source of Alice and Bob
is perfect; for example, the pulse sent by Alice and Bob
should be a single-photon state. However, within current
technology, the weak coherent state is often used due to
the lack of a feasible single-photon source, which will send
multiphoton pulses with nonzero probability and suffer from
the photon-number-splitting attack [18,19]. Luckily, the same
problem is also faced for the regular BB84 protocol with the
weak coherent state, and the decoy-state method [20–23] has
been proposed to efficiently estimate the contribution of a
single-photon pulse. Thus the decoy-state method can also
be introduced to the MDI-QKD to close the loophole of the
multiphoton pulses.

However, the analysis for the decoy-state MDI-QKD is
different from the regular decoy-state QKD for the regular
BB84 protocol [20–23]. Recently, the security of the decoy-
state MDI-QKD has been considered by many researchers
[13,16,24–26]. However, there still exists some disadvantages
for their results. In Ref. [13], Lo et al. analyze the security
of decoy-state MDI-QKD assuming infinitely long data and
infinitely many decoy states, which are impractical due to the
limited resource in practical situations. In Refs. [16,24,25],
the authors considered the effect of the finite-size data and
a finite number of decoy states, but their analysis has two
disadvantages: first, the authors estimate the contribution of
single-photon pulses by solving the nonlinear minimization
problem, but not giving general formulas liking the regular
decoy state QKD; second, four states (vacuum + two-weak
decoy state) are needed to close the asymptotic limit of
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infinitely decoy states. Furthermore, we will show that, in the
following, our method can perform better than the method of
Ma’s [24], and the key rate estimated by our method is larger
than that of Ma’s method. In Ref. [26], Wang presents general
formulas for the decoy state MDI-QKD with three intensity
states (vacuum + weak decoy state), but their formulas are
very relaxant, and no secret key can be generated when these
formulas are applied. Therefore, a more stringent security
bound and the general theory of decoy state MDI-QKD is
imperative.

In this paper, we discuss the decoy state MDI-QKD with
vacuum + weak decoy state, in which both Alice and Bob
use three kinds of states with different intensity (one signal
state, one decoy state, and one vacuum state). Then we derive
general formulas to estimate the yield Y11 and error rate e11

for the fraction of signals in which both Alice and Bob send
a single-photon pulse to Charlie. The numerical simulations
show that our formulas are very tight, and our vacuum + weak
decoy-state method asymptotically approaches the theoretical
limit of the infinite decoy-state method.

II. PROTOCOL

In this paper, we consider the following decoy state MDI-
QKD protocol [13,16,24].

(1) Alice randomly generates three kinds of pulses with
different intensity: the signal state with a intensity μ2, the
decoy state with a intensity μ1, and the vacuum state with a
intensity μ0 ≡ 0. Without loss of generality, we assume that
μ2 > μ1 > 0. For each pulse, Alice randomly chooses her
basis from {x,z} and bit from {0,1}. Then she modulates her
information on each pulse and sends it to Charlie, which can
be fully controlled by Eve. At the same time, Bob performs the
same processing as Alice, and the intensities of Bob’s pulse
are noted as ν2, ν1, and ν0 ≡ 0 (ν2 > ν1 > 0) for signal state,
decoy state, and vacuum state, respectively.

(2) Charlie performs BSM, and tells her measurement
results to Alice and Bob through a public channel. Then Alice
and Bob compare their basis for each pulse. If they use the
same basis and Charlie has a successional BSM event, they
keep this bit as a raw key.

(3) For each case that Alice’s intensity is μi , Bob’s intensity
is νj , and the basis is ω = x,z, Alice and Bob estimate the
parameters of channel, including the total gain Qω

μiνj
, the total

error rate Eω
μiνj

, and the yield (error rate) of both Alice and
Bob send a single-photon pulse, noted as Yω

11 (eω
11). With these

parameters, Alice and Bob can estimate the final key rate,
which is given by [13,24]

R � μ2ν2e
−μ2−ν2Y z

11

[
1 − H

(
ex

11

)] − Qz
μ2ν2

f H
(
Ez

μ2ν2

)
, (1)

where f is the error correction inefficiency and H (x) =
−x log2(x) − (1 − x) log2(1 − x) is the binary Shannon en-
tropy function. Note that Qz

μ2ν2
and Ez

μ2ν2
are directly measured

in experiment; thus Alice and Bob need to estimate the lower
bound of Y z

11 and upper bound of ex
11 to maximize her key rate.

The main contribution of this paper is that we give two tight
formulas to estimate Y z

11 and ex
11 with only vacuum + decoy

state. Here we assume that only the signal states of Alice and
Bob, μ2 and ν2, are used to distill the secret key. The decoy
states are used to estimate the parameters of channel.

Note that, when the phase of pulse sent by Alice and
Bob is totally randomized, the quantum channel can be
considered as a photon-number channel model [21,24], and
the state of Alice and Bob is ρμ = ∑∞

n=0
μn

n! e
−μ|n〉〈n|, where

μ = {μi,νj |i,j = 0,1,2}. Thus the total gain and error rate of
Alice’s intensity μi and Bob’s intensity νj can be written as
[24]

Qω
μiνj

=
∞∑

n,m=0

μn
i ν

m
j

n!m!
e−μi−νj Y ω

nm,

(2)

Eω
μiνj

Qω
μiνj

=
∞∑

n,m=0

μn
i ν

m
j

n!m!
e−μi−νj Y ω

nmeω
nm,

where Yω
nm (eω

nm) is the yield (error rate) when Alice sends
n-photon pulse, Bob sends m-photon pulse, and the basis ω

is used by them. Obviously, according to Eq. (2), if infinite
decoy states are used, Alice and Bob can exactly obtain
Y z

11 and ex
11. However, the resource is finite in practical

situations; thus only a finite decoy state can be used by
the legitimate parties. In the following, we give two tight
formulas to bound these parameters, which are the main
contributions of this paper. The numerical simulations show
that our formulas with only vacuum + weak decoy state can
asymptotically approach the theoretical limit of infinite decoy
states.

III. LOWER BOUND OF Yω
11

Note that the expression of Eq. (2) is independent on ω;
thus when there is no ambiguity, we neglect the superscript ω

in the following of this paper. Then the total gain Qμiνj
can be

written as

eμi+νj Qμiνj
=

∞∑
n,m=0

μn
i ν

m
j

n!m!
Ynm

=
∞∑

m=0

νm
j

m!
Y0m+μi

(
Y10 + νjY11 +

∞∑
m=2

νm
j

m!
Y1m

)

+
∞∑

n=2

μn
i

n!

(
Yn0 + νjYn1 +

∞∑
m=2

νm
j

m!
Ynm

)

= eνj Q0νj
+ eμi Qμi0 − Q00 + μiνjY11

+ h(μi,νj ), (3)

where

h(μi,νj ) =
∞∑

m=2

μiν
m
j

m!
Y1m +

∞∑
n=2

μn
i νj

n!
Yn1 +

∞∑
n,m=2

μn
i ν

m
j

n!m!
Ynm.

(4)

Thus we will have

eμ2+ν2Qμ2ν2 − eμ1+ν1Qμ1ν1

= g1 + (μ2ν2 − μ1ν1)Y11 +
∞∑

m=2

μ2ν
m
2 − μ1ν

m
1

m!
Y1m

+
∞∑

n=2

μn
2ν2 − μn

1ν1

n!
Yn1 +

∞∑
n,m=2

μn
2ν

m
2 − μn

1ν
m
1

n!m!
Ynm
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� g1 + (μ2ν2 − μ1ν1)Y11 + a

∞∑
m=2

μ2ν
m
1 + μ1ν

m
2

m!
Y1m

+ b

∞∑
n=2

μn
2ν1 + μn

1ν2

n!
Yn1 + c

∞∑
n,m=2

μn
2ν

m
1 + μn

1ν
m
2

n!m!
Ynm

� g1 + (μ2ν2 − μ1ν1)Y11 + α[h(μ2,ν1) + h(μ1,ν2)]

= g1 + g2 + g3 − (μ1ν1 − μ2ν2 + αμ2ν1 + αμ1ν2)Y11,

(5)

where we use the fact that for any n,m � 2, the following
inequalities always hold, which are given by

μ2ν
m
2 − μ1ν

m
1

μ2ν
m
1 + μ1ν

m
2

� μ2ν
2
2 − μ1ν

2
1

μ2ν
2
1 + μ1ν

2
2

≡ a � 0,

μn
2ν2 − μn

1ν1

μn
2ν1 + μn

1ν2
� μ2

2ν2 − μ2
1ν1

μ2
2ν1 + μ2

1ν2
≡ b � 0, (6)

μn
2ν

m
2 − μn

1ν
m
1

μn
2ν

m
1 + μn

1ν
m
2

� μ2
2ν

2
2 − μ2

1ν
2
1

μ2
2ν

2
1 + μ2

1ν
2
2

≡ c � 0,

and α = min{a,b,c}. Here g1, g2, and g3 are defined as

g1 = eν2Q0ν2 + eμ2Qμ20 − eν1Q0ν1 − eμ1Qμ10,

g2 = α
(
eμ2+ν1Qμ2ν1 − eν1Q0ν1 − eμ2Qμ20 + Q00

)
, (7)

g3 = α
(
eμ1+ν2Qμ1ν2 − eν2Q0ν2 − eμ1Qμ10 + Q00

)
.

It is easy to check that for any α, μ1ν1 − μ2ν2 + αμ2ν1 +
αμ1ν2 > 0 always holds. Also, note that the expressions of
equations from (3) to (7) are the same for both the z basis and
x basis. Thus the lower bound of Yω

11 is given by

Yω
11 � Yω

11 ≡ gω
1 + gω

2 + gω
3 − eμ2+ν2Qω

μ2ν2
+ eμ1+ν1Qω

μ1ν1

μ1ν1 − μ2ν2 + αμ2ν1 + αμ1ν2
.

(8)

where ω = z,x.

IV. UPPER BOUND OF eω
11

According to Eqs. (2) and (3), we have

eμ1+ν1Qμ1ν1Eμ1ν1 = g4 + μ1ν1Y11e11 + h′(μ1,ν1), (9)

where

g4 = eν1Q0ν1E0ν1 + eμ1Qμ10Eμ10 − Q00E00,

h′(μ1,ν1) =
∞∑

m=2

μ1ν
m
1

m!
Y1me1m +

∞∑
n=2

μn
1ν1

n!
Yn1en1

+
∞∑

n,m=2

μn
1ν

m
1

n!m!
Ynmenm. (10)

Obviously, h′(μ1,ν1) � 0; thus the upper bound of eω
11 can be

written as

eω
11 � eω

11 ≡ eμ1+ν1Qω
μ1ν1

Eω
μ1ν1

− gω
4

μ1ν1Y
ω
11

, (11)

where ω = z,x, and Yω
11 and g4 are given by Eqs. (8) and (10),

respectively.

V. NUMERICAL SIMULATION

Note that, when Eve is absent, the total gains and error
rates of Alice’s intensity μi and Bob’s intensity νj are given
by [16,24]

Qx
μiνj

= 2y2[1 + 2y2 − 4yI0(s) + I0(2s)],

Qx
μiνj

Ex
μiνj

= e0Q
x
μiνj

− 2(e0 − ed )y2[I0(2s) − 1],
(12)

Qz
μiνj

= QC + QE,

Qz
μiνj

Ez
μiνj

= edQC + (1 − ed )QE,

where

QC = 2(1 − Pd )2e−μ′/2[1 − (1 − Pd )e−ηaμi/2]

× [1 − (1 − Pd )e−ηbνj /2],

QE = 2Pd (1 − Pd )2e−μ′/2[I0(2s) − (1 − Pd )e−μ′/2], (13)

I0(s) is the modified Bessel function of the first kind, ed is the
misalignment-error probability, e0 = 1/2 is the error rate of
background, Pd is the dark count of a single-photon detector,
ηa (ηb) is the transmission of Alice (Bob), and μ′ = ηaμi +
ηbνj , s = √

ηaμiηbνj /2, and y = (1 − Pd )eμ′/4.
Submitting Eq. (12) into Eqs. (8) and (11), we can estimate

the lower bound of yield Y z
11 and upper bound of error

rate ex
11 when both Alice and Bob send a single-photon

state. The estimated parameters of Y11 and e11 are shown in
Figs. 1(b) and 1(c), respectively, which clearly shows that
our vacuum + weak decoy-state method is very close to the
asymptotic limit of the infinite decoy-state method. Then,
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FIG. 1. (Color online) Key rate of decoy-state MDI-QKD. The
solid line is obtained for the infinite decoy-state method, in which
the exact Y z

11 and ex
11 are known. The dot-dashed line is obtained for

our vacuum + weak decoy-state method, in which the lower bond
of Y z

11 and the upper bound of ex
11 are given by Eqs. (8) and (11),

respectively. The key rate is maximized by optimizing the intensity
of pulse, which is shown in Fig. 2. The same parameters as Ref. [24]
are used in our simulations, which are ed = 1.5%, Pd = 3 × 10−6,
and f = 1.16.
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FIG. 2. (Color online) Optimal intensity for signal state and decoy
state to maximize the key rate. The optimal intensity is obtained by
researching the intensity of signal state (μ2 and ν2) and decoy state
(μ1 and ν1) from 0.01 to 0.6 with a step 0.01. In the simulations, we
assume that ηa = ηb, μ2 = ν2, and μ1 = ν1. Other parameters are the
same as Fig. 1.

with these parameters, we can estimate the key rate, which is
shown in Fig. 1(a). It clearly shows that the key rate with our
method is also very close to the asymptotic limit of the infinite
decoy-state method. Note that the key rate is maximized by
optimizing the intensity of the signal state and the decoy state.
The optimal intensity for our method and infinite decoy-state
method are shown in Fig. 2. It shows clearly that the optimal
signal intensity is the order of O(1), which is the same as the
regular decoy state.

Furthermore, our method can perform better than the
method proposed by Ma et al. [24], which estimated the
contribution of the single-photon state, Y z

11 and ex
11, by solving

the nonlinear minimization problem. The results are listed in
Table I. It clearly shows that the key rate estimated by our
method is larger than that of Ma’s method.

VI. STATISTICAL FLUCTUATION

In practical situations, the length of the raw key is also finite,
which will induce statistical fluctuation for the parameter
estimation. In this section, we considered the effect of finite
length of the raw key based on the standard statistical analysis
[23,24], in which the lower bound and upper bound of

TABLE I. Comparison between our method and Ma’s method.
We assume that ηa = ηb = 0.1. Here we directly take the results of
Ma’s method from Ref. [24].

Ma’s method with
Our method vacuum + weak

Parameters (μ2 = ν2 = 0.36) (μ2 = ν2 = 0.5)

Y z
11 4.1967 × 10−3 4.6043 × 10−3

ex
11 2.7241% 10.2126%

R 1.3548 × 10−4 6.8877 × 10−5

experimental results, Qω
μiνj

and Eω
μiνj

, are given by

Qω
μiνj

� Qω
μiνj

� Qω
μiνj

,

(14)
Qω

μiνj
Eω

μiνj
� Qω

μiνj
Eω

μiνj
� Qω

μiνj
Eω

μiνj
,

where Qω
μiνj

= Qω
μiνj

(1 − βq),Qω
μiνj

= Qω
μiνj

(1 + βq),

Qω
μiνj

Eω
μiνj

= Qω
μiνj

Eω
μiνj

(1 − βeq), Qω
μiνj

Eω
μiνj

=
Qω

μiνj
Eω

μiνj
(1 + βeq), and βq = nα/

√
Nω

μiνj
Qω

μiνj
,

βeq = nα/
√

Nω
μiνj

Qω
μiνj

Eω
μiνj

. Here Nω
μiνj

is the length
of pulse of Alice’s intensity μi , Bob’s intensity νj , and ω

basis. nα is the standard deviation, which is related to the
failure probability of the security analysis. For example, if
nα = 5, the failure probability is 5.73 × 10−7 [24]. Thus the
lower bound of Yω

11 and upper bound of eω
11, which are given

by Eqs. (8) and (11), should be rewritten as

Yω
11 � Yω

11 ≡
gω

1 + gω
2 + gω

3 − eμ2+ν2Qω
μ2ν2

+ eμ1+ν1Qω
μ1ν1

μ1ν1 − μ2ν2 + αμ2ν1 + αμ1ν2
,

eω
11 � eω

11 ≡
eμ1+ν1Qω

μ1ν1
Eω

μ1ν1
− gω

4

μ1ν1Y
ω
11

, (15)

where gω
k (k = 1,2,3) and gω

4 are given by Eqs. (7) and (10).
Submitting the equations above into Eq. (1), we can

estimate the secret key rate with a finite length of data, which
is shown in Fig. 3. It clearly shows that the finite length of the
raw key will obviously compromise the secret key rate. In the
simulations, we assume the standard deviation is nα = 5 and
the length of data is the same for each pair of intensities of
Alice and Bob.
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FIG. 3. (Color online) Key rate of decoy-state MDI-QKD with
statistical fluctuation. The solid line is obtained for the infinite decoy-
state method with infinite length of data. The dashed lines are obtained
for our vacuum + weak decoy state with different length of data. In
the simulations, we assume that five standard deviations (nα = 5) are
used. N is the length of data.
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VII. CONCLUSIONS

The MDI-QKD can exclude all the detection loopholes
in practical situations, and when it is combined with the
decoy-state method, the final key generated by the MDI-QKD
is unconditional security; even the practical weak coherent
sources are used by Alice and Bob. However, the security of
decoy-state MDI-QKD is incomplete. In this paper, we discuss
the decoy-state MDI-QKD with vacuum + weak decoy state,
in which both Alice and Bob use three kinds of state with
different intensity (one signal state, one decoy state, and one
vacuum state). Then we derive general formulas to estimate
the yield and error rate for the fraction of signals in which
both Alice and Bob send a single-photon pulse to Charlie.
The numerical simulations show that our formulas are very

tight, and our method with the vacuum + weak decoy-state
method asymptotically approaches the theoretical limit of the
general decoy-state method (with an infinite number of decoy
states).
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