
PHYSICAL REVIEW A 87, 052321 (2013)

Increasing and decreasing entanglement characteristics for continuous variables
by a local photon subtraction

Su-Yong Lee,1,2 Se-Wan Ji,2,3 and Chang-Woo Lee2

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
2Department of Physics, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar

3School of Computational Sciences, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu,
Seoul 130-012, South Korea

(Received 14 March 2013; published 24 May 2013)

We investigate how the entanglement characteristics of a non-Gaussian entangled state are increased or
decreased by a local photon subtraction operation. The non-Gaussian entangled state is generated by injecting
a single-mode non-Gaussian state and a vacuum state into a 50:50 beam splitter. We consider a photon-added
coherent state â†|α〉 and an odd coherent state |α〉 − | − α〉 as a single-mode non-Gaussian state. In the regime
of small |α|, we show that the performance of quantum teleportation and the second-order Einstein-Podolsky-
Rosen-type correlation can both be enhanced, whereas the degree of entanglement decreases, for the output state
when a local photon subtraction operation is applied to the non-Gaussian entangled state. The counterintuitive
effect is more prominent in the limit of |α| ∼ 0.
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I. INTRODUCTION

Entangled resources are useful in quantum teleportation,
cryptography, and computation. In the continuous-variable
(CV) regime, two-mode Gaussian entangled states are typi-
cally employed as entangled resources. For two-mode Gaus-
sian entangled states, entanglement can be fully described
by the Einstein-Podolsky-Rosen (EPR) correlation [1], which
is characterized up to second-order moments of the state
[2–4]. For two-mode non-Gaussian entangled states, however,
entanglement is fully described with all orders of moments
[5–7]. Some of us have recently proposed entanglement criteria
beyond the Gaussian regime, where the entanglement criteria
including all orders of EPR correlations can be measured
with homodyne detection [8]. Non-Gaussian entangled states
provide the benefits of enhancing the violation of Bell’s
inequality [9–11] and degree of entanglement [12–21].

A certain class of non-Gaussian entangled state is simply
generated by applying a non-Gaussian operation on a two-
mode Gaussian state. Typical non-Gaussian operations are
photon addition and subtraction operations. The photon addi-
tion operation which was proposed [22] was implemented [23]
via a nondegenerate parametric amplifier with small coupling
strength. The photon subtraction operation was implemented
[24] with a beam splitter of high transmissivity and was
considered in enhancing not only entanglement but also
performance of a quantum-noise-limited amplifier [25–28].
The sequential operations, such as photon addition-then-
subtraction and subtraction-then-addition operations, were
also studied [29–31] and implemented in [32]. In particular,
the photon addition-then-subtraction operation was considered
in achieving a noiseless amplifier [33], quantifying bosonic
behavior in a composite-particle system [34], and distinguish-
ing quantum particles from classical particles [35]. Based
on an interferometric setting, the coherent superpositions of
second-order operations, ââ† ± â†â, was proposed [36] and
implemented [37]. Moreover, it was also proposed in a cavity
system [38]. Some of us have recently proposed the coherent
superposition of the elementary operation, t â + râ† [39], as

well as other coherent superpositions of second-order oper-
ations, t â2 + râ†2 [40] and t ââ† + râ†2 [41]. Other coherent
superposition operations, such as t â + rb̂† and t ââ† + râ†â,
were also proposed to produce an arbitrary photon-number
entangled state in a finite dimension,

∑N
n=0 cn|n,n〉AB [42].

Due to the fact that entanglement characteristics of Gaus-
sian states are enhanced by a non-Gaussian operation [9–21],
it is natural to have a question about whether entanglement
characteristics of non-Gaussian states are enhanced by a
non-Gaussian operation. In particular, we are interested
in non-Gaussian states which do not have any two-mode
squeezing properties in order to determine their usefulness
compared with a typical Gaussian entangled state. Then, we
apply a simple non-Gaussian operation, i.e., a local photon
subtraction operation, to the non-Gaussian states. We generate
the non-Gaussian entangled state by injecting a single-mode
non-Gaussian state and a vacuum state into a 50:50 beam
splitter, where we consider a photon-added coherent state â†|α〉
and an odd coherent state |α〉 − | − α〉 as the single-mode
non-Gaussian state. With these non-Gaussian entangled states,
we investigate the entanglement characteristics: degree of
entanglement, second-order EPR correlation, and performance
of quantum teleportation in Braunstein and Kimble’s (BK)
protocol [43]. After a local photon subtraction operation on
the non-Gaussian resources in the regime of small |α|, we
find that the teleportation fidelity of a coherent state and
the second-order EPR correlation are enhanced, whereas the
degree of entanglement diminishes. In the limit of |α| ∼ 0, the
counterintuitive effect is more prominent: The teleportation
fidelity increases from 0.25 to beyond the classical limit of
0.5, and the second-order EPR correlation begins to emerge,
whereas the degree of entanglement decreases from 1 to 0.

In this paper, we begin in Sec. II with the generation of
a non-Gaussian entangled state with a 50:50 beam splitter,
injecting a single-mode non-Gaussian state and a vacuum
state. In Sec. III we investigate the entanglement properties
(entanglement and second-order EPR correlation) of the
non-Gaussian entangled state via a local photon subtraction
operation. Then, we employ the non-Gaussian entangled state
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via a local photon subtraction operation for CV teleportation
in Sec. IV. The main results are summarized in Sec. V.

II. GENERATION OF NON-GAUSSIAN
ENTANGLED STATES

We generate a non-Gaussian entangled state by injecting
a single-mode non-Gaussian state |ψ〉 and a vacuum state
|0〉 into a 50:50 beam splitter. We consider a photon-added
coherent state â†|α〉 and an odd coherent state |α〉 − | − α〉 as
the single-mode non-Gaussian state. We can simply check that
the single-mode non-Gaussian states are maximally nonclas-
sical due to the following: Given |〈β|ψ〉|2 = 0 for at least one
coherent state |β〉, then the state is maximally nonclassical
[44]. The photon-added coherent state was implemented in
the laboratory [23]. To generate the odd coherent state was
proposed in some ways [41,45–47] and implemented in other
ways [48–54]. Applying local photon subtraction operations
on the non-Gaussian entangled state, we can simply obtain the
following form:

|�〉AB = 1√
N

ânb̂mB̂AB |ψ〉A|0〉B

= 1√
N

B̂AB

(
1√
2

)n+m

ân+m|ψ〉A|0〉B, (2.1)

where N is a normalization factor and the beam splitting trans-
formation is B̂

†
ABâB̂AB = 1√

2
(â − b̂),B̂†

ABb̂B̂AB = 1√
2
(b̂ + â).

The values of n and m are non-negative integers.
In the case of |ψ〉A = â†|α〉, the output state |�〉AB

becomes

|�1〉AB = 1√
N1

[
n + m + α√

2
(â† − b̂†)

] ∣∣∣∣ α√
2
,
−α√

2

〉
AB

,

(2.2)

where N1 = (n + m + |α|2)2 + |α|2. In the case of |ψ〉A =
|α〉 − | − α〉, the output state |�〉AB becomes

|�2〉AB = 1√
N2

[∣∣∣∣ α√
2
,
−α√

2

〉
AB

− (−1)n+m

∣∣∣∣−α√
2
,

α√
2

〉
AB

]
,

(2.3)

where N2 = 2[1 − (−1)n+me−2|α|2 ]. According to the total
number of the photon subtraction operation, the relative phase
becomes positive (negative) at odd (even) numbers because the
state |ψ〉A = |α〉 − | − α〉 is transformed into an even (odd)
coherent state by local photon subtraction operations, as shown
in Eq. (2.1). In the next section, we investigate entanglement
properties of these non-Gaussian entangled states after they
are processed with a local photon subtraction operation.

III. ENTANGLEMENT PROPERTIES

A. Entanglement

Entanglement for a pure bipartite state is described with
von Neumann entropy calculated as E = −Tr[ρA log2 ρA] =
−Tr[ρB log2 ρB] = −∑

i λi log2 λi (λi is the eigenvalues of
ρA or ρB) [55]. For |ψ〉A = â†|α〉, the entangled state |�1〉AB

FIG. 1. (Color online) Degree of entanglement for the non-
Gaussian entangled state (2.1) as a function of |α|. (a) |ψ〉A = â†|α〉:
n + m = 0 (blue solid line), 1 (red dotted line), and 2 (orange dashed
line); (b) |ψ〉A = |α〉 − | − α〉: n + m = even (blue solid line) and
odd (red dotted line).

can be written as

|�1〉AB = 1√
N1

[
M1

∣∣∣∣ α√
2
,0

〉
A

⊗
∣∣∣∣−α√

2
,0

〉
B

+ α√
2

( ∣∣∣∣ α√
2
,1

〉
A

⊗
∣∣∣∣−α√

2
,0

〉
B

−
∣∣∣∣ α√

2
,0

〉
A

⊗
∣∣∣∣−α√

2
,1

〉
B

)]
, (3.1)

where M1 = n + m + |α|2 and we considered the relation
D̂†(α)â†D̂(α) = â† + α∗. We denote that | α√

2
,0〉 ≡ D̂( α√

2
)|0〉

and | α√
2
,1〉 ≡ D̂( α√

2
)|1〉 are displaced Fock states. The dis-

placed Fock states are orthonormal to each other, such that we
can get the following reduced density matrix:

ρ|�1〉 = 1

2N1

( |α|2 + 2M2
1

√
2α∗M1√

2αM1 |α|2
)

. (3.2)

With the eigenvalues of Eq. (3.2), we derive the degree of
entanglement as a function of |α| in Fig. 1(a). The degree
of entanglement decreases with the total number of the local
photon subtraction operation (n + m). In the limit of |α| ∼ 0,
the degree of entanglement is changed from 1 to nearly zero
via a local photon subtraction operation.

For |ψ〉A = |α〉 − | − α〉, the entangled state |�2〉AB can
be written as

|�2〉AB = 1

2
√

N2
{(1 + e−|α|2 )[1 − (−1)n+m]|e,e〉AB

− (1 − e−|α|2 )[1 − (−1)n+m]|o,o〉AB

+
√

1 − e−2|α|2 [1 + (−1)n+m](|o,e〉AB − |e,o〉AB)},
(3.3)

where |o〉 ≡ 1√
2(1−e−|α|2 )

(| α√
2
〉 − |−α√

2
〉) is an odd coherent state

and |e〉 ≡ 1√
2(1+e−|α|2 )

(| α√
2
〉 + |−α√

2
〉) is an even coherent state.

The odd and even coherent states are orthonormal to each
other, such that the reduced density matrix is represented by

ρ|�2〉 = 1

N2

(
λ+ 0
0 λ−

)
, (3.4)

where λ± = (1 ± e−|α|2 )[1 ∓ (−1)n+me−|α|2 ]. With the eigen-
values of Eq. (3.4), the degree of entanglement is derived as
a function of |α| in Fig. 1(b). The degree of entanglement
decreases from 1 to less than or equal to 1 via a local photon
subtraction operation. In the case of the even number of local
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photon subtraction operations, the degree of entanglement is
constantly 1. In the case of the odd number, it increases from
0 to 1 with |α|.

The above results may be understood by looking into the
states in the regime of small |α|. For state â†|α〉, we consider it
up to the first order of α, and then the non-Gaussian entangled
state can be approximately written as

|�1〉AB ≈ |1,0〉AB − |0,1〉AB + α(|2,0〉AB

+ |0,2〉AB −
√

2|1,1〉AB), (3.5)

where n + m = 0 and the state is not normalized. After a local
photon subtraction operation on either of the modes, Eq. (3.5)
is transformed into

â|�1〉AB ≈ |0,0〉AB +
√

2α(|1,0〉AB − |0,1〉AB). (3.6)

In the limit of |α| → 0, Eq. (3.5) goes to a maximally entangled
state, but Eq. (3.6) goes to a separable state. For state |α〉 −
| − α〉, we consider it up to the third order of α, and then the
non-Gaussian entangled state can be approximately written as

|�2〉AB ≈ |1,0〉AB − |0,1〉AB + α2

2
√

6
(|3,0〉AB − |0,3〉AB

−
√

3|2,1〉AB +
√

3|1,2〉AB ), (3.7)

where n + m = 0 and the state is not normalized. After a local
photon subtraction operation on either of the modes, Eq. (3.7)
is transformed into

â|�2〉AB ≈ |0,0〉AB + α2

2
√

2
(|2,0〉AB+|0,2〉AB −

√
2|1,1〉AB ).

(3.8)

In the limit of |α| → 0, Eq. (3.7) goes to a maximally entangled
state, but Eq. (3.8) goes to a separable state.

B. Second-order Einstein-Podolsky-Rosen correlation

Second-order EPR correlation is described with the total
variance of a pair of EPR-like operators,

�2(x̂A − x̂B) + �2(p̂A + p̂B)

= 1 + (〈â†â〉 + 〈b̂†b̂〉 − 〈âb̂〉 − 〈â†b̂†〉)
− (〈â〉 − 〈b̂†〉)(〈â†〉 − 〈b̂〉), (3.9)

where x̂j = 1
2 (âj + â

†
j ) and p̂j = −i

2 (âj − â
†
j ) (j = A,B). The

total variance, which is less than 1, indicates Gaussian quantum
entanglement [2], an important resource in CV quantum
protocols. Given a symmetric state, we can evaluate the
second-order EPR correlation with the expectation values,
such as 〈â†â〉, 〈âb̂〉, and 〈â〉. The other terms are obtained
with the complex conjugate of the expectation value, e.g.,
〈â†〉 = 〈â〉∗.

In the case of |ψ〉A = â†|α〉, the second-order EPR corre-
lation of Eq. (2.2) is described in this form:

�2(x̂A − x̂B) + �2(p̂A + p̂B)

= 1 + |α|2[(M1 + 1)2 + |α|2](1 + cos 2ϕ)

N1

− |α|2 cos 2ϕ

N1
− 2|α|2(N1 + M1)2 cos2 ϕ

N2
1

, (3.10)

where α = |α|eiϕ . Equation (3.10) is optimized at ϕ = 0. We
consider the second-order EPR correlation as a function of
|α| at n + m = 0,1,2, as shown in Fig. 2(a). At n + m =
0, the second-order EPR correlation is not shown in the
region of |α| � 1. However, applying local photon subtraction
operations on the state, we can see that the EPR correlation
shows up in the region of |α| � 1 at n + m = 1,2. In the
region of |α| � 1.454, the second-order EPR correlation is
improved by a local photon subtraction operation. In the case
of |ψ〉A = |α〉 − | − α〉, the second-order EPR correlation of
Eq. (2.3) is described in this form:

�2(x̂A − x̂B) + �2(p̂A + p̂B)

= 1 + |α|2
[

1 + (−1)n+me−2|α|2

1 − (−1)n+me−2|α|2 + cos 2ϕ

]
, (3.11)

where α = |α|eiϕ . Equation (3.11) is optimized at ϕ = π/2.
We consider the second-order EPR correlation as a function of
|α| at n + m = even or odd, as shown in Fig. 2(b). At n + m =
even, the second-order EPR correlation is not shown in the
whole region of |α|. On the other hand, the second-order EPR
correlation shows up in the whole region of |α| at n + m =
odd.

From the above results, we can understand that local photon
subtraction operation plays the role of second-order EPR
correlation for the non-Gaussian entangled states.

IV. CONTINUOUS-VARIABLE TELEPORTATION USING
NON-GAUSSIAN ENTANGLED STATES

After a local photon subtraction operation on the non-
Gaussian entangled states, we can see that the second-order
EPR correlation can be created, whereas the degree of
entanglement decreases. Now we consider the non-Gaussian
entangled states as entangled resources to teleport a coherent
state in CV teleportation. We consider the BK protocol
[43], whose performance is evaluated by the average fidelity
between an unknown input state and its teleported state.
Teleportation of coherent states has a classical limit of average
fidelity Fclassical = 1/2 if Alice and Bob make use of a classical
channel [56]. The average fidelity of teleportation is given by

F = 1

π

∫
d2λCout(λ)Cin(−λ), (4.1)

where Cout(λ) = Cin(λ)CE(λ∗,λ) [57] is the characteristic
function of the teleported state. Here, CE(λ∗,λ) is the char-
acteristic function of an entangled resource, and Cin(λ) is that
of an input state. For input coherent states, it is sufficient
to calculate the teleportation fidelity for a particular input
coherent state [20] since there is no difference between the
amplitudes of the input and output coherent states in the BK
protocol. For brevity, we will refer to fidelity as the average
fidelity hereafter.

In the case of |ψ〉A = â†|α〉, we consider the non-
Gaussian entangled state (2.2) to teleport a coherent state. The
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FIG. 2. (Color online) Second-order EPR correlation of the non-
Gaussian entangled state (2.1) as a function of |α|. (a) |ψ〉A = â†|α〉:
n + m = 0 (blue solid line), 1 (red dotted line), and 2 (orange dashed
line); (b) |ψ〉A = |α〉 − | − α〉 : n + m = even (blue solid line) and
odd (red dotted line).

characteristic function of the state is given by

CE(λ2,λ3) = e− 1
2 (|λ2|2+|λ3|2)+δ−δ∗

N1
[|α|2 + (M1 + δ)(M1 − δ∗)],

(4.2)

where δ = α∗√
2
(λ2 − λ3). Using Eq. (4.1), we can obtain the

teleportation fidelity, which is optimized at ϕ = 0 for α =
|α|eiϕ . We consider the teleportation fidelity as a function of
|α| at n + m = 0,1,2, as shown in Fig. 3(a). At n + m = 0,
the teleportation fidelity is less than 1/2 in the region of |α| <

0.686. At n + m = 1,2, the teleportation fidelity becomes
larger than 1/2 in the whole region of |α|. The teleportation
fidelity is improved by a local photon subtraction operation in
the region of |α| < 0.963. In the case of |ψ〉A = |α〉 − | − α〉,
we obtain the following characteristic function:

CE(λ2,λ3) = 2e−(|λ2|2+|λ3|2)/2

N2
[cosh(δ − δ∗)

− (−1)n+me−2|α|2 cosh(δ + δ∗)]. (4.3)

Using Eq. (4.1), we can obtain the teleportation fidelity,
which is optimized at ϕ = π/2 for α = |α|eiϕ . We consider
the teleportation fidelity as a function of |α| at n + m =
even or odd, as shown in Fig. 3(b). The teleportation fidelity
becomes larger than 1/2 in the whole region of |α| by an odd
number of the local photon subtraction operation.

We may understand the above result by comparing it
with the second-order EPR correlation and the degree of
entanglement. First of all, we compare the teleportation
fidelity with the second-order EPR correlation in Figs. 2
and 3. In the case of |ψ〉A = â†|α〉, the teleportation fidelity,
which is larger than 1/2, does not guarantee the existence of
the second-order EPR correlation in the region of 0.686 �
|α| < 1. In the case of |ψ〉A = |α〉 − | − α〉, on the other
hand, the teleportation fidelity, which is larger than 1/2,
guarantees the existence of the second-order EPR correlation.
The former case can be explained by all orders of the EPR
correlation, such that we consider another teleportation fidelity
formula represented by all orders of the EPR correlation,
Fepr = 〈e−�2û−�2v̂〉ρAB

[8], where �2û + �2v̂ = [b̂† − 〈b̂†〉 −
â + 〈â〉][b̂ − 〈b̂〉 − â† + 〈â†〉]. Since we consider entangled
states generated by a 50:50 beam splitter, the fidelity is simply
transformed into [8]

Fepr = 〈e−2(X̂b−〈X̂b〉)2〉〈e−2(P̂a−〈P̂a〉)2〉, (4.4)

FIG. 3. (Color online) Teleportation fidelity of a coherent state
with the non-Gaussian entangled resource (2.1) as a function of |α|.
(a) |ψ〉A = â†|α〉 : n + m = 0 (blue solid line), 1 (red dotted line),
and 2 (orange dashed line); (b) |ψ〉A = |α〉 − | − α〉: n + m = even
(blue solid line) and odd (red dotted line).

where X̂b = 1
2 (b̂ + b̂†) and P̂a = −i

2 (â − â†). According
to Eq. (2.1), we can derive the expectation value
〈0|e−2(X̂b−〈X̂b〉)2 |0〉 = 1/

√
2 for input mode B. For input mode

A, we can employ the following relation:

e−2(P̂a−〈P̂a〉)2 = e2〈P̂a〉2

√
2

e
1
4 â†2

(
1

2

)â†â

e
1
4 â2

D̂(2i〈P̂a〉)e−4i〈P̂a〉â .

(4.5)

Thus, in the case of |ψ〉A = â†|α〉, we can get the following
fidelity:

Fepr = M(M + |αβ|) + |α|2
2

(
1 + |β|2

2

)
2N1

e−(|α|− |β|
2 )2

, (4.6)

where |β| = 2|α|(1 + M+|α|2
N1

) and M = n + m. We can check
that the teleportation fidelity Fepr is equal to the fidelity
obtained from Eq. (4.2). Therefore, the teleportation fidelity
in the BK protocol can be explained by all orders of the
EPR correlation. Second, we compare the teleportation fidelity
with the degree of entanglement in Figs. 1 and 3. For the
cases of |ψ〉A = â†|α〉 and |ψ〉A = |α〉 − | − α〉 in the regime
of small |α|, a local photon subtraction operation enhances
the teleportation fidelity, whereas the operator diminishes
the degree of entanglement. In the limit of |α| ∼ 0, the
teleportation fidelity increases from 1/4 to beyond 1/2,
whereas the degree of entanglement E decreases from E = 1
to E ∼ 0. We can predict that all orders of the correlation in the
non-Gaussian resources are not always useful for enhancing
the teleportation fidelity in the BK protocol.

Furthermore, we study some cases about the teleportation
fidelity of the classical limit of 1/2 regarding entanglement
and second-order EPR correlation of pure bipartite entan-
gled states, as shown in Table I. Some entangled states

TABLE I. Teleportation fidelity in the BK protocol.

Fidelity Entanglement Second-order EPR Case

F > 1
2 Yes Yes [12,14,15]

Yes No [8,17], this paper

F < 1
2 Yes Yes [20]

Yes No This paper
No No Pure separable
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with second-order EPR correlation can teleport a coher-
ent state with a fidelity which is beyond 1/2 [12,14,15].
For the entangled states, â†b̂†|TMSS〉 and â†b̂†âb̂|TMSS〉,
(|TMSS〉 = √

1 − λ2
∑∞

n=0 λn|n〉A|n〉B (λ = tanh s) is the
two-mode squeezed vacuum state), in the region of 0.16 <

λ < 0.4, however, we can find that the second-order EPR
correlation cannot be exhibited, but the teleportation fidelity
of a coherent state can be beyond 1/2 [17]. There is another
example shown in the Supplemental Material of Ref. [8], where
a single photon state can be teleported with fidelity up to 1 via
an entangled resource with no second-order EPR correlation.
For the entangled state, â|TMSS〉, in the region of λ ∼ 0.38,
there is entanglement as well as second-order EPR correlation,
but the teleportation fidelity of a coherent state can be below
1/2 [20]. For the entangled state at n + m = 0 in Eq. (2.3),
there is a high degree of entanglement without second-order
EPR correlation, but the teleportation fidelity cannot be beyond
1/2. For any pure bipartite separable states, the teleportation
fidelity is below 1/2.

V. CONCLUSION

In this paper, we have shown that a local photon subtraction
operation on a non-Gaussian entangled state, in the regime
of small |α|, can enhance the teleportation fidelity and the
second-order EPR correlation while diminishing the degree
of entanglement at the same time. We considered the non-
Gaussian entangled state generated by injecting a vacuum state
and a photon-added coherent state â†|α〉 (an odd coherent
state |α〉 − | − α〉) into a 50:50 beam splitter. In the limit
of |α| ∼ 0, the local photon subtraction operation enhanced
the teleportation fidelity by a little bit more than 1/2 from
1/4 and made the second-order EPR correlation appear from
nonexistence, whereas the degree of entanglement is reduced

from 1 to 0 via the local photon subtraction operation. In
the regime of large |α|, all the entanglement properties we
considered slightly decreased via a local photon subtraction
operation. Furthermore, we could find the particular cases
when the teleportation fidelity could be beyond (below)
the classical limit of 1/2 without (with) second-order EPR
correlation.

The present study can be compared with a Gaussian
entangled state via a local photon subtraction operation. We
consider a two-mode squeezed vacuum state as the Gaussian
entangled state. We can find the opposite behavior of the
Gaussian entangled state and the non-Gaussian entangled state
we considered in this paper. The photon subtraction operation
on a two-mode squeezed vacuum state, â|TMSS〉, enhances
the degree of entanglement but decreases the teleportation
fidelity and the second-order EPR correlation [20]. In the small
squeezing regime, the teleportation fidelity F decreases from
F > 1/2 to F < 1/2, and the second-order EPR correlation
goes from existence to nonexistence.

According to a quantum protocol, we can apply an
appropriate local operation on an entangled state to enhance
the performance. In our case, non-Gaussian states via a local
photon subtraction operation are useful for performing the
BK protocol. As further work, it would be interesting to
investigate what kind of local operation on an entangled state
is appropriate to enhance the performance of some quantum
protocols.
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[33] A. Zavatta, J. Fiurášek, and M. Bellini, Nat. Photonics 5, 52

(2011).
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