
PHYSICAL REVIEW A 87, 052320 (2013)

Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

Marcus P. da Silva, Saikat Guha, and Zachary Dutton
Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA

(Received 10 September 2012; published 23 May 2013)

Laser light is widely used for communication and sensing applications, so the optimal discrimination of
coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due
to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability
of error. While concrete optical circuits for the optimal discrimination between two coherent states are well
known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to
achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our
construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke,
and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary
alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused
in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum
limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the
Shannon rate of all conventional optical receivers.

DOI: 10.1103/PhysRevA.87.052320 PACS number(s): 03.67.Lx, 03.67.Ac, 03.67.Hk, 42.50.Dv

I. BACKGROUND

Helstrom provided a set of necessary and sufficient con-
ditions on the measurement that yields the minimum average
probability of error in discriminating K � 2 distinct quantum
states [1]. However, for optical state discrimination, this
mathematical specification of measurement operators does not
usually translate into an explicit receiver specification realiz-
able using standard optical components, thus leaving a gap
between the minimum-error probability (the Helstrom limit)
and the minimum achievable by conventional measurements,
e.g., homodyne, heterodyne, and direct detection.

Dolinar proposed a receiver that achieves the Helstrom limit
exactly for discriminating any two coherent-state signals [2–4].
The receiver works by applying one of two time-varying opti-
cal feedback wave forms to the laser pulse being detected and
instantaneously switching between the two feedback signals at
each click event at a shot-noise-limited photon counter. More
recently [5], it has been shown that an arbitrary multimode
binary projective measurement can be implemented using
adaptive linear-optic feedback and photon counting, thereby
subsuming the Dolinar receiver.

For discriminating multiple (K > 2) coherent states, no
optical receiver that achieves the Helstrom bound has been
proposed, although several suboptimal receivers have been
proposed to discriminate more than two coherent-state signals
[6,7] and implemented [8], improving over the performance
of conventional receivers. Much like the receiver in Ref. [5],
each one of these suboptimal receivers operates via a common
philosophy: that of slicing a coherent-state pulse into smaller
coherent states, detecting each slice via photon counting after
coherent addition of a local field, and feeding forward the
detection outcome to the processing of the next slice, as
illustrated in Fig. 1(a).

Attaining the quantum-limited channel capacity of an
optical channel to carry classical information—the Holevo
limit—requires joint detection over long coherent-state code
words [9]. However, recent work has shown that even a joint-
detection receiver involving the most general coherent-state

feedback, passive linear optics, and photon counting cannot at-
tain the Holevo limit [10]. This proves that lasers, passive linear
optics, and photon counting (the resources used by the Dolinar
receiver) are not sufficient for general minimum-error optical
state discrimination, unlike the binary-discrimination case.

II. DISCRIMINATING MULTIPLE COHERENT STATES

Our main result, the description of an optimal receiver
for K-ary coherent-state discrimination, relies on two
observations.

The first observation is that quantum-limited performance
of any processing of an ensemble of K linearly independent
pure states, A = {|αj 〉}, 1 � j � K , is completely described
by the Hermitian Gram matrix �, whose elements are
the inner products γjk ≡ 〈αj |αk〉. Therefore, by a simple
dimensionality argument, there must exist a unitary map
UA that maps the state ensemble A to an ensemble of states
of �log2 K� qubits. Note that, even though the coherent
states |±α〉 = ∑∞

n=0 e−|α|2/2([±α]n/
√

n!)|n〉 are embedded
in an infinite dimensional space spanned by the photon
number (Fock) states {|n〉}, since the hypothesis states span
a finite dimensional space, the entire relevant information
can be compressed down to a finite dimensional space, e.g.,
the state of a collection of qubits. Helstrom showed that
minimum-error discrimination of K linearly independent pure
states in A requires a K-outcome projective measurement in
the span of A [1]. Thus, assuming UA can be implemented to
compress the hypothesis states to one of K states of �log2 K�
qubits, Helstrom’s optimal projective measurement can be
implemented by a unitary rotation on the compressed state,
followed by measurement of the qubits. However, it is not at
all obvious how to implement UA in the coherent-state case,
as it corresponds to a highly nonlinear optical transformation.
This is where, our second observation—a unique property of
coherent states—comes in handy.

The second observation is that a coherent state |αj 〉 can be
sliced into n independent coherent states of smaller amplitudes
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(a)An optimal BPSK receiver [11]

(b)Unitary compression receiver

FIG. 1. (Color online) (a) It is possible to distinguish between
two coherent states (red lines) optimally by “slicing” the input state
and measuring each slice adaptively—the outcome of each photon
detection measurement (gray dashed arrows) being used to perform
a displacement on the input of the next measurement. Once the final
slice is measured, the final outcome (double solid line) is used to
make a decision about which hypothesis was more likely to have
been received. This is the class of receivers shown in Ref. [5] to be
optimal for binary hypotheses. (b) Here we demonstrate that, instead
of measuring each slice adaptively, one can transfer (T) each coherent
slice into a quantum computer (shaded region), and the information in
the qubits (blue lines) can be efficiently and coherently compressed
by the unitaries U� into a small ancilla quantum register [12], so
that the final state |mi,n〉 of the register can then be measured or
processed further as part of a multimode receiver as discussed in the
text. This unitary compression receiver can be customized to any set
of coherent-state hypotheses, and its design is independent of the
figure of merit being optimized, as all information about the received
state is compressed into the final state of the ancilla register.

using a 1:n symmetric beamsplitter, i.e., |αj 〉 → |βj 〉 ⊗ |βj 〉 ⊗
· · · ⊗ |βj 〉, for βj = αj/

√
n. Furthermore, for n large, |βj | �

1 which implies the average photon number in the slices is
small, and we find |βj 〉 ≈ |0〉+βj |1〉√

1+|βj |2
≡ |hj 〉. In other words,

any coherent state can be split into multiple copies of weak
coherent states, each of which can be faithfully represented by
a qubit encoded in the vacuum |0〉 and single photon |1〉 states
(also known as a single-rail qubit encoding [11]).

It is now easy to see how to explicitly construct UA by
concatenating n unitary gates. We start with a �log2 K�-qubit
ancilla register prepared in some initial state |m0〉. We then
unitarily compress the received state |αj 〉, one slice |αj/

√
n〉

at a time, into the state of the register, following the proposal
by Blume-Kohout et al. for the general multicopy quantum
hypothesis test [12]. This is done using a sequence of
(1 + �log2 K�)-qubit entangling gates U� acting jointly on the
�th slice and the ancilla register, eventually transforming the
ancilla register to a state |mj,n〉. More precisely, we require

U�|hj 〉|mj,�〉 = |φ〉|mj,�+1〉, (1)

for all hypothesis states |hj 〉, where |φ〉 is a fixed quantum state
independent of the hypothesis i which can then be discarded
as it contains no relevant information.

It is possible to do this state transfer in such a way that the
Gram matrix elements of the compressed ensemble approach
the Gram matrix of the original coherent-state ensemble,
i.e., γ

(n)
jk ≡ 〈mj,n|mk,n〉 → γjk , in the limit of many slices

(n → ∞). This follows from the fact that the collection of qubit
states approximating the slices of coherent states have inner
products arbitrarily close to the overlap of the original coherent
states in the limit of large n, i.e., limn→∞〈hj |hk〉n = 〈αj |αk〉.
As we discuss above, once the coherent-state ensemble A
has been compressed faithfully into the ancilla register, any
additional quantum processing can be performed without any
loss in performance. For the purposes of minimum-error
discrimination between the hypothesis states, a projective
measurement of the ancilla states is required. This can be
implemented by a unitary rotation UH on the register’s state
followed by a computational-basis measurement. Since the
number of gates necessary to implement an arbitrary N -qubit
unitary is exponential in N [13], the number of gates necessary
to build UH is only polynomial in the number of hypotheses K .
Therefore, the receiver is efficient from the resource-scaling
point of view. Moreover, computing UH requires solving a
set of K2 nonlinear simultaneous equations prescribed by
Helstrom [1], which can be done with an overhead that is
polynomial in K . See Fig. 1(b) for an illustration of the
compression unitaries acting sequentially on n slices of the
received state.

Finally, unlike Dolinar’s optimal binary-discrimination
receiver—which adaptively, albeit destructively, measures tiny
slices of the received coherent state—our receiver coherently
couples slices of the received coherent state into a �log2 K�
dimensional quantum register, the final state of which has the
entirety of the relevant quantum information that was present in
the original coherent state. The adaptive destructive measure-
ment strategy corresponds to a local operations and classical
communication (LOCC) strategy. If our final measurement is
written in terms of its action on the slices, it becomes clear that
our approach amounts to a collective quantum measurement,
thereby sidestepping the LOCC limitations of the generalized
Dolinar strategy.

A. Binary discrimination

As an illustration, consider the compression unitaries
for distinguishing between the equi-prior binary phase-shift
keying (BPSK) ensemble of coherent states |±α〉, where
α ∈ R. Any pair of coherent states can be transformed
to this ensemble via simple linear-optical transformations.
Although the Dolinar receiver can distinguish these states
with the quantum-limited minimum probability of error, the
compression approach is more flexible, as it is possible to
perform additional quantum processing of the compressed
state in the ancilla register, enabling multimode applications, as
is discussed later. Moreover, the construction of the minimum-
error-discrimination receiver for the binary case generalizes
straightforwardly to larger sets of hypotheses.

After slicing via a symmetric 1:n beamsplitter, the hypoth-
esis states can be approximated well by the states |hj 〉⊗n =
( |0〉+βj |1〉√

1+|βj |2
)⊗n, where β±1 = ±α/

√
n. We assume that n is

chosen large enough such that |βj | � 1 holds. Since K = 2,
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only one ancilla qubit is required. Let us denote the input
state of the ancilla qubit for the �th compression step under
hypothesis j as |mj,�〉 [see Fig. 1(b)], the initial state of the
ancilla |mj,0〉 = |0〉, and the �th compression unitary, U�. The
0th compression step is to map |hj 〉|mj,0〉 to |0〉|mj,1〉, and a
natural choice to make is |mj,1〉 = |hj 〉, so that U0 is just the
exchange of the input and the ancilla states—the well-known
two-qubit swap gate.

The subsequent compression operations have to satisfy

U�|h−1〉|m−1,�〉 = |0〉|m−1,�+1〉, (2)

U�|h+1〉|m+1,�〉 = |0〉|m+1,�+1〉, (3)

i.e., all the information about the received slices is compressed,
sequentially, into the ancilla qubit. We choose |mj,�〉 to be of
the same general form as |hj 〉 but with different parameters. In
particular, we can choose |mj,�〉 = |0〉+jB(�)|1〉√

1+B2
(�)

, for some B(�),

and given the fact that U� preserves the inner product, we obtain

the recursion relation B(�+1) =
√

α2/n+B2
(�)

1+α2B2
(�)/n

and B(0) = 0.

The recursion relation for B(�) can be solved by using
standard methods, yielding

B(�) =
√√√√1 + 2

(−1)�
(

β2+1
β2−1

)�+1 − 1
, (4)

where � > 0 and β is the amplitude of the hypothesis slices.
Given this parameter and the constraint (2) and (3), the

relevant two-dimensional block of U� is uniquely determined.
For our purposes, the remaining block can be chosen arbitrarily
to complete the unitary, e.g., resulting in

U�>0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
1+β2B2

(�)

0 0 βB(�)√
1+β2B2

(�)

0 B(�)√
β2+B2

(�)

β√
β2+B2

(�)

0

0 β√
β2+B2

(�)

− B(�)√
β2+B2

(�)

0
βB(�)√

1+β2B2
(�)

0 0 − 1√
1+β2B2

(�)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(5)

Finally, the inner product between compressed ancilla states

for the hypothesis states |hj 〉 = |0〉+j α√
n
|1〉√

1+ α2
n

is given by

(
1 − α2

n

1 + α2

n

)n+1

, (6)

which in the limit of n → ∞ reduces to 〈−α|α〉 = e−2α2
as

claimed.
It can be easily shown that the measurement that dis-

tinguishes the final compressed hypotheses |mi,n−1〉 with
minimum-error probability is a measurement in the basis
|0〉 ± |1〉. The error probability is given by (1 − B(n))2/2(1 +
B2

(n)), which in the limit of n → ∞ equals the Helstrom

bound (1 −
√

1 − e−4α2 )/2, demonstrating that performance
can approximate the optimal value for any α arbitrarily well.

III. LOSS AND TRANSFER OF OPTICAL STATES
TO QUBITS

In the presence of photon loss during the slicing of the
coherent-state hypotheses, the states |βj 〉 are mapped to
|βj

√
1 − η〉, where η is the overall photon loss probability.

For known η, this loss can be accounted for to reach the
Helstrom bound for the scaled hypotheses |αj

√
1 − η〉 instead.

Just as in the optimal proposals for the binary case [2,5], this
degradation cannot be avoided, but in well-engineered systems
η is expected to be <10−2 and therefore not significant.

As described above, the ability to implement a universal set
of qubit operations is essential for the implementation of our
proposal for quantum-limited minimum-error discrimination
of coherent-state signals. However, operations on single-rail
qubits suffer from significant technical challenges [11]. Viable
optical implementations of general deterministic single-qubit
operations remain unknown, and two-qubit interactions are
also challenging.

This problem can be avoided by transferring the optical
state of the slices into another qubit realization where such
operations are more easily implemented. We consider two
possibilities: (a) the ideal mapping of the {|0〉,|1〉} subspace
of the optical mode to a qubit, and (b) a stimulated Raman
adiabatic passage (STIRAP) based transfer of the optical
mode state to an atomlike system that can then be manip-
ulated as a qubit [14]. In both cases we take the unitary
manipulation of the resulting states to be unrestricted and
consider only the degradation effects of the transfer process
(noise in the quantum computer can be handled using standard
fault-tolerance techniques [15]). As the sections that follow
illustrate, the result is that, instead of having each slice of
the coherent state map to the pure states |hj 〉, one obtains

the mixed states ρ
(a)
βj

= e−β2
j |hj 〉〈hj | + (1 − e−β2

j )|0〉〈0| and

ρ
(b)
βj

= e−β2
j |hj 〉〈hj | + (1 − e−β2

j )|1〉〈1|, corresponding to the
two possibilities for the transfer procedure described above,
and which deviate from the qubit hypotheses due to popu-
lations in the subspace with two photons or more. Despite
this source of decoherence, it is always possible to make the
distinguishability between the collection of transferred states
and the collection of corresponding pure-state hypotheses
arbitrarily small by making n sufficiently large (see Secs. III A
and III B). This translates to being able to use the unitaries U�

designed for the pure states |hj 〉 on the mixed states ρ
(a)
βj

and

ρ
(b)
βj

, while remaining arbitrarily close to the Helstrom bound
for the minimum probability of error, as illustrated in Fig. 2.

A. Ideal unitary transfer of 0/1 photon subspace to qubits

Given any quantum state of an optical mode decomposed in
the basis of Fock states (or photon number states) |n〉F for n �
0, it is in principle possible to unitarily swap the contents of
the |0〉F /|1〉F subspace with a qubit. The unitary that performs
this operation is

|0〉〈0|F ⊗ |0〉〈0| + |1〉〈1|F ⊗ |1〉〈1| + |0〉〈1|F ⊗ |1〉〈0|
+ |1〉〈0|F ⊗ |0〉〈1|, (7)
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(a)BPSK alphabet

(b)3ASK alphabet

FIG. 2. (Color online) The minimum-error probability of distin-
guishing between a set of coherent states as a function of the amplitude
α follows the well-known bound given by Helstrom [1] (solid black
curves). Maximum-likelihood estimation of the hypothesis based on
homodyne detection leads to higher error rates (solid gray curves).
The receiver described here has a probability of error arbitrarily close
to the minimum for sufficiently small α/

√
n. This is illustrated by the

curves for ideal unitary transfer (dashed) and STIRAP state transfer
(dotted), both in the (a) binary alphabet case and in the (b) ternary
alphabet case, for n = 2 (blue), n = 10 (red), n = 30 (purple), and
n = 100 (green) slices.

and by applying this operation to the state |βj 〉|0〉 and tracing
out the optical mode, one obtains

ρ
(a)
βj

= e−β2
j |hj 〉〈hj | + (1 − e−β2

j )|0〉〈0|, (8)

so the fidelity to |hj 〉 is given by

F (a)(βj ) = e−|βj |2 |βj |2 + 1

1 + |βj |2 . (9)

One finds

F (a)(α/
√

n)n = 1 − |α|6
2n2

+ O

( |α|8
n3

)
, (10)

so that even by manipulating only the 0/1 photon subspace and
ignoring the higher excitations, the collection of transferred
states can be made arbitrarily close to the collection of ideal
slices of any hypothesis.

B. STIRAP transfer of 0/1 photon subspace to qubits

The transfer of the photonic excitation into a cavity mode
enables the use of STIRAP to coherently exchange a single
excitation between the cavity mode and a qubit. The unitary
that corresponds to this operation is

∞∑
n=1

|n − 1〉〈n|F ⊗ |1〉〈0| +
∞∑

n=1

|n〉〈n − 1|F ⊗ |0〉〈1|

+ |0〉〈0|F ⊗ |0〉〈0|, (11)

and by applying this operation to the state |βj 〉|0〉 and tracing
out the optical mode, one obtains

ρ
(b)
βj

= e−β2
j |hj 〉〈hj | + (1 − e−β2

j )|1〉〈1|, (12)

so the fidelity to |hj 〉 is given by

F (b)(βj ) = e−|βj |2 + |βj |2
1 + |βj |2 . (13)

One finds a similar series expansion for the sliced case,

F (b)(α/
√

n)n = 1 − |α|4
2n

+ O

( |α|6
n2

)
, (14)

so that just as in the ideal unitary transfer case, the collection of
transferred states can be made arbitrarily close to the collection
of ideal slices of any hypothesis.

Similar performance can also be obtained via a tunable
Jaynes-Cummings interaction between a cavity mode and a
qubitlike system.

IV. TERNARY AND MULTIMODE CASES

Let us consider now the case of three coherent-state
hypotheses, which for simplicity we take to be |jα〉 for
j ∈ {−1,0,1} (i.e., a displaced ternary amplitude-shift keying
or 3ASK alphabet, where the displacement adds symmetry to
simplify the analysis). No known generalization of the optimal
receivers for BPSK can achieve the minimum probability of
error in distinguishing these three states, but our coherent
compression receiver can. Using the same approach of slicing
the coherent states to obtain states that are well approximated
by qubit states, we simply need to specify the unitaries V� that
perform the compression. In this case, we choose the ancilla
states to have the form

|m′
j,�〉 = |00〉 + jC(�)|01〉 + j 2D(�)|11〉√

1 + j 2C2
(�) + j 2D2

(�)

, (15)

with the resulting coupled recursion relations given by

C(�+1) = α√
n

√
C2

(�) + α2/n + α2D2
(�)

/
n , (16)

D(�+1) =
√

D2
(�) + α2C2

(�)

/
n, (17)

C(0) = D(0) = 0, (18)

which, as in the binary case, can be solved exactly.
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The constraints for the compression unitary V� have a similar form as in the BPSK case constraints (2) and (3), although now
there are three hypotheses, resulting in

V�|h′
−1〉|m′

−1,�〉 = |0〉|m′
−1,�+1〉, (19)

V�|h′
0〉|m′

0,�〉 = |0〉|m′
0,�+1〉, (20)

V�|h′
+1〉|m′

+1,�〉 = |0〉|m′
+1,�+1〉, (21)

while the remaining degrees of freedom of V� can be completed arbitrarily for our purposes. This results in

V�>0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 C(�)√
β2+C2

(�)+β2D2
(�)

0 0 β√
β2+C2

(�)+β2D2
(�)

0 0 βD(�)√
β2+C2

(�)+β2D2
(�)

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 D(�)√

D2
(�)+β2C2

(�)

0 βC(�)√
D2

(�)+β2C2
(�)

0 0 0

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where once again the ∗ entries are free parameters.
The recurrence relation for C(�) and D(�) can also be solved

analytically, yielding

C(�) =
√

(1 + β2)� − (1 − β2)�

2
, (23)

D(�) =
√

(1+β2)�+(1−β2)�

2 − 1, (24)

where � > 0 and β is the amplitude of the hypothesis
slices.

The Gram matrix (the matrix of inner products) for the three
compressed hypothesis states is⎡

⎢⎢⎢⎢⎣
1

(
n

n+α2

)n/2 (
n

n+α2

)n/2

(
n

n+α2

)n/2
1

(
n−α2

n+α2

)n

(
n

n+α2

)n/2
(

n−α2

n+α2

)n

1

⎤
⎥⎥⎥⎥⎦ , (25)

which reduces to the Gram matrix for the three coherent-state
hypotheses in the 3ASK alphabet in the limit of n → ∞ as
claimed.

For a finite number of slices n, the minimum-error proba-
bility for distinguishing the states in the 3ASK alphabet can be
computed semianalytically (see the Appendix), and the same
general behavior of the BPSK case, where the performance
approaches the Helstrom limit, can be observed for the 3ASK
case as well, as illustrated in Fig. 2(b).

This compression receiver approach opens the door to
quantum-limited optimization of metrics other than the prob-
ability of error in detection of a coherent-state ensemble.
Examples are maximizing the one-shot accessible information
of an ensemble for the optimal measurement choice [16]
and minimizing the phase-space Euclidean norm in detecting
a coherent state from a constellation. This is because the

compression operations are independent of how the final
measurement of the ancilla register is optimized.

Another notable feature of this general class of receivers,
as alluded to earlier, is the possibility of additional quan-
tum processing of the compressed states. This enables, in
particular, the discrimination of multimode coherent states
(such as the ones used in sensing or coded communica-
tions applications) by reusing the compression operations
for single-mode states. For example, if one would like to
discriminate between the three states, |+α〉|+α〉|−α〉|−α〉,
|−α〉|+α〉|+α〉|−α〉, and |−α〉|−α〉|+α〉|+α〉, one would
slice and compress the state of each mode independently using
our coherent BPSK receiver, but instead of measuring the
four compressed ancilla states corresponding to each mode,
one would perform additional compression of these states
into a three-dimensional subspace of a two-qubit register. The
coherent compression ensures that the Helstrom bound for dis-
tinguishing between the three states can be reached, while the
individual measurement of each mode leads to a higher error
probability.

This modularity also allows for a systematic way to develop
receivers that surpass the Shannon capacity of an optical
channel with structured optical receivers and to approach the
Holevo limit to the rate at which classical data can be sent
reliably over an optical channel [9,16]. This can be done by first
compressing each of the N code-word symbols—which are
coherent states from a known and finite M-ary constellation—
into the states of N separate �log2 M�-qubit registers. These
states are then unitarily transformed in such a way that the
naturally accessible measurements in the system correspond to
the optimal measurements for minimum-error discrimination
of the code-word states. One may be able to find efficient
implementations of this unitary transformation by leveraging
the structure of Holevo-capacity-achieving error-correcting
codes [17].
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V. SUMMARY

We have demonstrated how to construct a receiver to
discriminate between any set of coherent-state (laser light)
signals, using a small special-purpose quantum computer.
Our solution leverages two properties of coherent states of
light—first, that splitting a coherent state via a beamsplitter
produces independent coherent states with smaller amplitudes,
and second, that a coherent state of a small amplitude is
well approximated by a qubit encoded by the vacuum and
the one-photon Fock state of an optical mode, the single-rail
qubit. These two properties, in conjunction with a recent
result on distinguishing multicopy quantum hypotheses by
a sequential coherent-processing receiver [12], leads to an
explicit construction of an optimal receiver for any specified
coherent-state hypothesis test. This solves the long-standing
problem of building receivers that can achieve the Helstrom
limit for nonbinary coherent-state signals. There remain practi-
cal challenges in implementing our receiver because universal
quantum computing on single-rail qubits still eludes us. How-
ever, we address one potentially practical means to implement
our receiver by transferring the state of an optical mode to an
atomic system [14]. Our solution also opens the door to the
quantum-limited optimization of other important metrics, such
as achieving the Holevo bound on the rate of classical informa-
tion transmission over a quantum channel. This would allow
for reliable information transmission on an optical channel at
rates higher than the Shannon limit of any known receiver.
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APPENDIX: MINIMAL PROBABILITY OF ERROR
MEASUREMENT FOR THREE HYPOTHESES WITH

ISOSCELES CONFIGURATION

Here we briefly describe a minor generalization of an
example from Helstrom’s book [1] so that it can be applied to
the minimal error probability discrimination of both coherent
states and qubit hypothesis states (details of the derivation can
be found in Ref. [1]).

Consider three linearly independent pure-state hypotheses
with corresponding Gram matrix
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where, in our case, x = 〈0|α〉 and y = 〈−α|α〉, but this need
not be the case in general. Due to the symmetry of the Gram
matrix, the matrix 
 of the inner products 〈wi |ψj 〉 between the
optimal projectors |wi〉 and the hypotheses |ψj 〉 is restricted
to take the form
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where the matrix elements must satisfy the following con-
straints [1]:

a2 + 2b2 = 1, (A3)

d2 + c2 + e2 = 1, (A4)

ad + b(c + e) = x, (A5)

d2 + 2ce = y, (A6)

ab = cd. (A7)

Solving the first four constraints in terms of d results in
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, (A8)

b = x − 2d2x + xy − d
√
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which can then be plugged into the fifth constraint to solve for
d numerically. The resulting 
 matrix describes the optimal
projectors to discriminate between the hypotheses described
by the Gram matrix � with a minimal probability of error of
1 − 1

3 (a2 + 2c2).
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