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Entanglement-purification protocols, developed for the sake of high-fidelity communication through noisy
quantum channels, are highly nonlinear quantum operations and can offer a very useful context to studies of
nonlinear complex maps. Recently it was demonstrated that the feedback mechanism used in a typical purification
protocol can cause the evolution dynamics of qubits to exhibit chaos [Kiss et al., Phys. Rev. Lett. 107, 100501
(2011)]. In this work we extend the investigation by considering the natural time evolution of qubits during a
purification process, leading to a number of interesting findings that reflect the competition between the natural
unitary evolution of qubits and nonlinear purification operations. As a result, the overall evolution dynamics of
entanglement can be much richer. Possible applications are also proposed.
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I. INTRODUCTION

Producing and protecting high-fidelity entanglement is
one of the biggest challenges in the context of quantum
communication. More often than not it is required that the
noise level in the entanglement must be controlled at an
acceptable level for successful implementation of various
tasks of quantum information transfer. To address the prob-
lems of communication along noisy quantum channels many
entanglement-purification protocols have been developed. The
process of entanglement purification distills a number of
maximally entangled states from a larger pool of noisy,
nonmaximally entangled states [1]. The purification operations
must be nonlinear as they involve measurements. This fact
hints that entanglement-purification protocols can offer an
intriguing quantum-physics context for nonlinear dynamics
studies. In particular an entanglement-purification protocol
may be described as nonlinear maps on a complex plane and
the associated dynamics has not been studied extensively.

In a few early studies Kiss et al. demonstrated that the
entanglement of two-qubit systems can evolve chaotically
under certain purification protocols [2—4]. More specifically,
it was shown that the outcome of long-time iteration of certain
purification protocols, e.g., a maximally entangled state or
a completely separable state is strongly sensitive to initial
states due to the nature of chaos. Other dynamical phenomena
presented in Refs. [2—4] are also stimulating. However, the
role of the natural time evolution of the qubit systems still
has not been accounted for yet. The aim of this work is to
investigate how the entanglement dynamics in purification
protocols might be affected if we allow the qubit system to
evolve during the process of purification. This extension is
of interest for at least two reasons. First, based on previous
lessons learned from the so-called quantum Zeno effect
and quantum anti-Zeno effect [5-8], it is expected that the
competition between the natural time evolution of the system
and the nonlinear operations such as measurements often
yields new understandings of physics and also new means for
quantum manipulations. Second, any physical process takes
time to complete and by considering a new time parameter
characteristic of the natural time evolution of the concerned
system (whose states are under purification), we may get one
more step closer to the actual purification dynamics. In doing
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so we are also rewarded with a wider class of nonlinear maps.
In particular we demonstrate that the competition between the
natural time evolution of a two-qubit system and the speed
of the purification process does have a big impact on the
overall evolution dynamics of the system. Our detailed results
suggest that the interplay between the system’s own evolution
and nonlinear operations can lead to highly complex quantum
dynamics, which goes well beyond the quantum Zeno effect
and quantum anti-Zeno effect.

II. A COMPLEX NONLINEAR QUANTUM MAP
ACCOUNTING FOR SYSTEM’S NATURAL EVOLUTION

In this work we focus on a particular entanglement-
purification protocol that makes use of a nonlinear transfor-
mation (denoted by S) followed by a unitary transformation
(U) as depicted schematically in Fig. 1. The system under
purification consists of two qubits. Following the treatment
of Kiss et al. [2-4], we consider a pure two-qubit state
[Y¥) = ¢1]00) 4+ ¢3]01) + ¢3]10) + c4|11). A nonlinear trans-

formation S performs the mapping c¢; s N ciz, where N is a
normalization constant [9]. In the protocol under consideration
here, we choose the unitary transformation tobe U =H ® H,
where H is the one-qubit Hadamard transformation [H;; =

(—1)i7 /+/2]. For a restricted class of nonmaximally entangled
state |¥) = N{(J00) + &|11)) (¢ € C) as initial states, one
iteration of the purification process yields |¢") = US|y).
Two successive iterations map the state |¢) to |[¢?) =
N>(]00) + g(&)|11)), where g(§) : C — C and
22 {

5O =177 (1)
It was demonstrated by Kiss ef al. that, under the map & —
g(&), the values of |g(&)| converge asymptotically to either
0 or 1, corresponding to separable and maximally entangled
states, respectively [2]. The final converged state shows strong
sensitivity to initial values of £. To examine possible effects of
the natural time evolution of the two qubits, we now consider
a modified scheme illustrated in Fig. 2, which is based on
the same purification protocol defined by S and U, but with a
At time lapse between the two successive steps. The system’s
own time evolution occurs during At. Note that to maintain
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FIG. 1. A schematic diagram (similar to what is used in Ref. [2])
illustrating one iteration of entanglement purification. The compo-
nents labeled by M denote the measurement performed on the qubit
pair from B. The dashed-line connection denotes the conditional
selection of the pair of qubits from A based on the outcome of
the measurement performed on the qubit pair from B. If both yield
0, the qubit pair from A will be retained. Otherwise, they will be
discarded. The qubits that pass the selection are transformed by a pair
of Hadamard gates.

the simplicity of our modified purification model (so that the
evolving state will stay in the subspace spanned by |00) and
[11)), the time lapse between S and U within one iteration step
is still ignored.

With the time evolution of the system over the Ar period
accounted for, the overall map after two successive purification

iterations then become
282 iE At @
exp| — ,
1484 P h

where E is the energy difference between states |11) and |00).
For convenience we now use the phase factor ¢ = E At /h as
a parameter to describe the system’s natural time evolution.
All possible effects of the system’s natural time evolution are
now captured by ¢ and the map in Eq. (2) is the main subject
of our numerical investigation. In cases where the extra phase
factor is not of interest, then it can be canceled if a “spin-echo”
technique is applied. Specifically, if we place two additional
NOT gates in the purification process as shown in Fig. 3, then a
simple calculation shows that the nonlinear map described in
Eq. (1) can be recovered.

§—>g)=

III. RESULTS FOR FIXED VALUES OF ¢

The convergence of the states (i.e., the value of & shown
on a complex plane after a number of iterations) under the
purification map in Eq. (2) is summarized in Fig. 4. First of
all, for ¢ = 7 /2, the convergence pattern coincides with the
results obtained by Kiss et al. [2].

At

FIG. 2. (Color online) Schematic illustration of a purification step
with the system’s own time evolution over a time period of At between
every two successive iterations.
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FIG. 3. (Color online) Schematic representation of the modified
purification process in which the effects of natural time evolution are
cancelled.

This can be understood from the following relation between
casesof ¢ =m/2and ¢ = 0:

[8° " E))p=rr2 = 8" ENpmoe F* " (3)

that is, the results of the two maps differ only by a pure
phase factor. Second, all the shown patterns have an attractive
region in the center, with a radius p ~ 0.543 where |g(£)|
asymptotically converges to (0,0). Third, for the region outside
radius p = 2 all values of & converge to (0,0).

Fixed points of period n of the map can be found by
evaluating g* (&) = &. Specifically, the function g(£) acting on
& = (x,y) can be regarded as a transformation on the complex

(b) ¢ =m/4

(@¢=m/2

1.5
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FIG. 4. (Color online) Convergence pattern of initial values of &
for (a) ¢ = /2 to two fixed points (0,0) and (0,1) denoted by the
color blue and green on the complex plane, respectively, (b) ¢ = /4
showing most initial values of & have converged to (0,0) after 30
iterations, (c) ¢ = /9 to the fixed point (0,0) and to an attracting
cycle of period 3, and (d) ¢ = /12 to two fixed points (0,0) and
(1.05233,0.21486) denoted by the color blue and green, respectively.
(a), (c), and (d) Display asymptotic behaviors of the entanglement
evolution dynamics. (b) Displays behaviors after only 30 iterations;
long-term behavior is such that all initial values of & converge
to (0,0).
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plane,

x Re{g(x,y)}
— . (@)
y Im{g(x,y)}
The linear stability matrix M can be written as the Jacobian
matrix for this transformation,

oRefg(x,y)}  9Refg(x,y)}
dx ay
M= 5
oIm{g(x,y)}  dIm{g(x,y)} )
dx ay

To determine the stability of a particular fixed point, the
eigenvalue (w;) of the linear stability matrix is evaluated at
that fixed point. By looking into the eigenvalues of the stability
matrix M at the fixed points associated with ¢ = /2, two
stable fixed points were found to be at (0,0), which corresponds
to a totally separable state, and (0, 1), which corresponds to the

maximally entangled state |¢) = %(lOO) +1|11)).

Next we study cases with ¢ # /2. For ¢ = /12 [see
Fig. 4(d)], the linear stability analysis shows that |g(£)| con-
verges to (1.05233,0.21486) instead of (0,1) on the complex
plane. The output state is therefore no longer a maximally
entangled state because the magnitude of the relative phase
is |€] = 1.07404. For ¢ = 7/9 [see Fig. 4(c)], it is observed
that the values of |g(§)| converge to a stable cycle with period
3 in which none of the values correspond to a maximally
entangled state. This is intriguing because the existence of
period 3 orbits in a nonlinear system is often connected with the
existence of orbits of all possible periods [10]. The most drastic
change in the convergence patterns, however, is observed for
¢ = /4 [Fig. 4(b)]: |g(&)| asymptotically approaches (0,0)
for all values of &. Physically, this means that all initial states
will converge to a separable state for a purification process
with the phase factor ¢ = /4. The linear stability analysis
confirms that (0,0) is indeed the only stable fixed point for this
case. This indicates that the system’s own time evolution can
have a huge influence on the entanglement evolution dynamics.

IV. BIFURCATION DIAGRAM AND FINITE-TIME
EXPONENTIAL SENSITIVITY

In this section we investigate the evolution of a maximally
entangled state, with the phase parameters ranging from ¢ = 0
to ¢ = . To present the impact of ¢ via a bifurcation diagram,
we choose the Bell’s state |®1) = %OOO) + |11)) as the

initial state. The results are shown in Fig. 5, which depicts
the behavior of the evolution emanating from |®*) for the
first 100 iterations of our protocol. As seen from Fig. 5,
the bifurcation diagram has a period of /2, and it has a
strong dependence on ¢. In regimes such as 0 < ¢ < 0.30 and
1.30 < ¢ < 1.85, there is very stable convergence with small
deviation from a fully entangled state. In addition, there are
apparently interesting regimes with very long periods. Echoing
with those convergence patterns shown in Fig. 3, the results
here once again demonstrate the important role that the natural
time evolution of the two qubits can play.

To gain insight into the nature of the attractors associated
with each ¢, we have also computed the finite-time Lyapunov
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FIG. 5. (Color online) The bifurcation diagram displays the
behaviors of |g(£)| with fixed initial value of & = (1,0) for different
values of the phase parameter ¢, for the first 100 iterations of Eq. (2).

exponent A, i.e.,

)= lim lim ~1n% 6
= Jim im0 S, ©
where 8d; = |g°*(£1) — g°(&>)| is the separation between two
initially slightly different relative phases &; and &, after the kth
iteration. In our analysis, N is chosen to be a large value
but the number of iterations should be before every point
is reverted back to 0. The gradient of the least-square fit
line on the graph that plots In(6d) against the number of
iterations 7 is taken to indicate the Lyapunov exponent that
corresponds to a particular initial state and phase parameter.
Table I shows the Lyapunov exponents for some values of the
phase parameter ¢ near the chaotic regime with the initial
states & = (1,0) and & = (1.0001,0.0001). The existence
of positive (though finite-time) Lyapunov exponents further
indicates the exponentially fast separation of two slightly
different initial states. The dependence of A upon ¢ also shows
that the complexity of the dynamics is strongly correlated
with ¢.

TABLE 1. Finite-time Lyapunov exponents obtained for some
values of ¢. The exponents corresponding with ¢ = 0.6, 0.7, and 0.8
are calculated for only the first two iterations because from the third
iteration onwards the points start converging to each other when both
are attracted to the origin.

Phase parameter Lyapunov exponent

¢ A

0.3 0.10
0.4 0.21
0.425 0.44
0.45 0.62
0.475 0.50
0.5 0.44
0.525 0.56
0.55 0.34
0.6 0.17
0.7 422
0.8 7.76
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FIG. 6. (Color online) Convergence patterns for a fluctuating
phase parameter ¢ after 20 iterations. (a) ¢ = 7/2 £ 0.10 and (b)
¢ = /9 £ 0.10 (noise fluctuations are uniformly distributed in the
indicated intervals). Results here should be compared with those
presented in Figs. 4(a) and 4(c).

V. POSSIBLE APPLICATIONS

A. Weak or strong sensitivity to ¢

For purification-related applications, it should be of interest
to examine what values of the phase parameter ¢ can make the
purification process more resilient to small fluctuations in ¢.
The bifurcation diagram (Fig. 5) shows that quasimaximally
entangled states are preserved by the purification scheme for
a wide range of phase parameters around ¢ = 7 /2. This leads
to a possibility of a relatively robust purification scheme after
taking into account the system’s natural evolution (Strictly
speaking, whether a maximally entangled state or an almost
maximally entangled state can be preserved also depends on
the initial states. However, by referring to the convergence
map, one can already roughly know which (initial) states will
converge to a maximally entangled state).

We have numerically tested the stability of the convergence
patterns by introducing small random fluctuations in the phase
parameter ¢. That is, after each iteration of the purification
protocol, the value of ¢ is allowed to fluctuate by a small
amount. The results are shown in Fig. 6. For ¢ = /2, the
convergence pattern in Fig. 6(a) with fluctuations §¢ = 0.10
shows resemblance to the one in Fig. 4(a) with ¢ fixed at
¢ = m/2. Any input state in the “green” region in Fig. 6(a)
will generate an output state that is maximally entangled. In
contrast, for ¢ = /9 the convergence pattern has changed
significantly as compared to Fig. 4(c). For both cases, a too
large uncertainty in the phase parameter would destroy the
entanglement altogether. We thus conclude that ¢ = mm/2
(m an integer) can be chosen for the sake of a more robust
purification process after the system’s natural evolution is
taken into account.

On the other hand, the strong sensitivity of the purification
outcomes to small fluctuations in ¢ regimes away from ¢ =
7 /2 might be useful as well. For example, if the initial state is
precisely known and if the error in the operations S and U are
sufficiently small, then this sensitivity may provide a novel tool
to detect small phase fluctuations in ¢, which may be caused by
an environment weakly interacting with the two-qubit system
or a weak external field.

B. Sensitivity to initial states

Finally, we discuss the usefulness of the sensitivity of the
purification outcome to the initial states. It was proposed
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FIG. 7. (Color online) Convergence patterns with ¢ = 1.12. The
number of iteration is 18, 20, 22, and 24 for panels (a)—(d), respec-
tively. The magnitude of the coefficient is indicated by the color bar.

earlier that a strong sensitivity to initial states can be used
to distinguish slightly different quantum states exponentially
fast [3,11]. For phase parameters with a stable convergence
pattern such as ¢ = /2 [Fig. 4(a)] or ¢ = m /12 [Fig. 4(d)],
this scenario would only work if we hope to distinguish states
located near the boundaries of different converged states.
Interestingly, we may do more than that by exploiting the
richer dynamics associated with other values of ¢.

Consider then a convergence pattern shown in Fig. 7, for
¢ = 1.12. Linear stability analysis shows that (0,0) is the
only stable fixed point. After many iterations, the “chaotic”
purification dynamics only displays convergence to (0,0),
which is similar to the dynamics for ¢ = w/4. However,
their explicit evolution histories of the “trajectories” are
much different. For a certain finite number of iterations, the
convergence pattern shows very fine structure (as shown on the
complex plane in the region around the point (1,0) in Fig. 7),
whereas the same regime would have all converged to 0 for
¢ = m/4 [Fig. 4(b)].

It seems possible now to make use of the fine structures
on the complex plane to facilitate the distinguishing between
different initial quantum states. For instance, we can compare
an arbitrary state with a state located at the center of one of
the white dots in Fig. 7 (corresponding to values of & larger
than 2). If the given arbitrary state is located outside the area
of the white dot, their evolution will be very different (Fig. 7).
If the arbitrary state is located within the area of the white dot,
both states will converge to the separable state |i) = |00).
This is simply because all points on the complex plane with
|&] > 2 will be attracted to (0,0) (see Sec. IIT). The area of
the white dot can thus be regarded as a maximum resolution
in distinguishing two quantum states. As we consider a larger
number of iterations, the area of the white dots decreases and
we in principle can have a higher resolution.

There are, however, two major limitations when it comes to
experimental realizations. Firstly, since half of the resources
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are completely used up in each implementation of the U-S
transformations, to accomplish # iterations we need 2" qubits.
The number of qubits required increases rapidly if a large
number of iterations is considered. This presents a practical
difficulty for implementing this idea. However, this difficulty
is perhaps inherent to the purification protocol itself. One
solution is to make the purification protocol more efficient by
keeping the discarded qubits [9]. Secondly, we have assumed
that the phase parameter ¢ is not fluctuating. As suggested
in the previous subsection, very small randomness in ¢ may
significantly change the fine structures seen in the convergence
pattern. Ultimately, the use of exponential sensitivity as a
“Schrodinger’s microscope” to distinguish two very close
quantum states must account for all the different aspects of
a nonlinear quantum map.

VI. CONCLUSIONS

In this paper, by considering the natural time evolution of a
two-qubit system, we have found different types of attractors
emerging from the entanglement dynamics associated with
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a quantum purification protocol. This constitutes a novel
example of the interplay between the system’s own unitary evo-
lution and some measurement-related nonlinear operations.
The nature of the found attractors depends heavily on the phase
acquired by the system between two successive purification
steps. By investigating the sensitivity of the dynamics to
fluctuations in the phase parameter, we have identified a
particular parameter regime in which the purification protocol
is more stable. We have also discussed the possible use
of purification processes in distinguishing between quantum
states and in detecting fluctuations in a phase parameter. Our
results are hoped to stimulate further studies of quantum
nonlinear maps, which are of interest to both areas of nonlinear
dynamics and quantum physics.
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