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Quantum repeaters and quantum key distribution: Analysis of secret-key rates
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We analyze various prominent quantum repeater protocols in the context of long-distance quantum key
distribution. These protocols are the original quantum repeater proposal by Briegel, Dür, Cirac and Zoller, the
so-called hybrid quantum repeater using optical coherent states dispersively interacting with atomic spin qubits,
and the Duan-Lukin-Cirac-Zoller-type repeater using atomic ensembles together with linear optics and, in its
most recent extension, heralded qubit amplifiers. For our analysis, we investigate the most important experimental
parameters of every repeater component and find their minimally required values for obtaining a nonzero secret
key. Additionally, we examine in detail the impact of device imperfections on the final secret key rate and on the
optimal number of rounds of distillation when the entangled states are purified right after their initial distribution.

DOI: 10.1103/PhysRevA.87.052315 PACS number(s): 03.67.Hk, 03.67.Dd

I. INTRODUCTION

Quantum communication is one of the most exciting and
well developed areas of quantum information. Quantum key
distribution (QKD) is a subfield, where two parties, usually
called Alice and Bob, want to establish a secret key. For
this purpose, typically, they perform some quantum operations
on two-level systems, the qubits, which, for instance, can be
realized by using polarized photons [1–5].

Photons naturally have a long decoherence time and hence
could be transmitted over long distances. Nevertheless, recent
experiments show that QKD so far is limited to about 150 km
[6], due to losses in the optical-fiber channel. Hence, the
concept of quantum relays and repeaters was developed
[7–11]. These aim at entangling qubits over long distances
by means of entanglement swapping and entanglement dis-
tillation. There exist various proposals for an experimental
implementation, such as those based upon atomic ensembles
and single-rail entanglement [12], the hybrid quantum repeater
[13], the ion-trap quantum repeater [14], repeaters based on
deterministic Rydberg gates [15,16], and repeaters based on
nitrogen-vacancy (NV) centers in diamond [17].

In this paper, we analyze the performance of quantum
repeaters within a QKD setup for calculating secret key
rates as a function of the relevant experimental parameters.
Previous investigations on long-distance QKD either consider
quantum relays [9,11,18], which only employ entanglement
swapping without using quantum memories or entanglement
distillation, or, like the works in [19,20], they exclusively refer
to the original Duan-Lukin-Cirac-Zoller (DLCZ) quantum
repeater [12]. Finally, in [21] the authors analyze a variation
of the DLCZ protocol [22] where they consider, at most, one
repeater station. Here, our aim is to quantify the influence
of characteristic experimental parameters on the secret key
rate for three different repeater schemes, namely the original
quantum repeater protocol [7], the hybrid quantum repeater
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[13], and a recent variation of the DLCZ repeater [23]. We
investigate the minimally required parameters that allow a
nonzero secret key rate. In order to reduce the complexity of the
full repeater protocol, we consider entanglement distillation
only directly after the initial entanglement distribution. Within
this scenario, we investigate also the optimal number of
distillation rounds for a wide range of parameters. The
influence of distillation during later stages of the repeater, as
well as the comparison between different distillation protocols,
will be studied elsewhere [24].

This paper is organized as follows. In Sec. II we present a
description of the relevant parameters of a quantum repeater,
as well as the main tools for analyzing its performance for
QKD. This section should also provide a general framework
for analyzing other existing quantum repeater protocols and
for studying the performance and the potential of new proto-
cols. Sections III, IV, and V investigate long-distance QKD
protocols for three different quantum repeater schemes; these
sections can be read independently. Section III is devoted to the
original proposal for a quantum repeater [7], Sec. IV analyzes
the hybrid quantum repeater [13], and finally, in Sec. V, we
investigate quantum repeaters with atomic ensembles [12].
The conclusion is given in Sec. VI, and more details on the
calculations are presented in the Appendixes.

II. GENERAL FRAMEWORK

A. Quantum repeater

The purpose of this section is to provide a general
framework that describes formally the theoretical analysis of
a quantum repeater.

1. The protocol

Let L be the distance between the two parties Alice and Bob
who wish to share an entangled state. A quantum repeater [7]
consists of a chain of 2N segments of fundamental length
L0 := L/2N and 2N − 1 repeater stations which are placed
at the intersection points between two segments (see Fig. 1).
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FIG. 1. Scheme of a generic quantum repeater protocol. We adopt
the nested protocol proposed in [7]. The distance between Alice
and Bob is L, which is divided into 2N segments, each having the
length L0 := L/2N . The parameter n describes the different nesting
levels, and the value N represents the maximum nesting level. In this
paper, we consider quantum repeaters where distillation is performed
exclusively before the first entanglement swapping step. The number
of distillation rounds is denoted by k.

Each repeater station is equipped with quantum memories and
local quantum processors to perform entanglement swapping
and, in general, also entanglement distillation. In consecutive
nesting levels, the distances over which the entangled states
are shared will be doubled. The parameter N is the maximal
nesting level.

The protocol starts by creating entangled states in all
segments, i.e., between two quantum memories over distance
L0. After that, if necessary, entanglement distillation is
performed. This distillation is a probabilistic process which
requires sufficiently many initial pairs shared over distance
L0. As a next step, entanglement swapping is performed at
the corresponding repeater stations in order to connect two
adjacent entangled pairs and thus gradually extend the entan-
glement. In those protocols where entanglement swapping is
a probabilistic process, the whole quantum repeater protocol
is performed in a recursive way as shown in Fig. 1. Whenever
the swapping is deterministic (i.e., it never fails), then all
swappings can be executed simultaneously, provided that no
further probabilistic entanglement distillation steps are to be
incorporated at some intermediate nesting levels for enhancing
the fidelities. Recall that in the present work, we do not
include such intermediate distillations in order to keep the
experimental requirements as low as possible. At the same
time it allows us to find analytical rate formulas with no need
for numerically optimizing the distillation-versus-swapping
scheduling in a fully nested quantum repeater.

2. Building blocks of the quantum repeater
and their imperfections

In this section we describe a model of the imperfections
for the main building blocks of a quantum repeater. In an
experimental setup more imperfections than those considered
in this model may affect the devices. However, most of them
can be incorporated into our model. We point out that if not
all possible imperfections are included, the resulting curves

for the figure of merit (throughout this paper: the secret key
rate) can be interpreted as an upper bound for a given repeater
protocol.

(a) Quantum channel. Let us consider photons (in the form
of single- or multiphoton pulses) traveling through optical
fibers.

Photon losses are the main source of imperfection. Other
imperfections like birefringence are negligible in our context
[8,25]. Losses scale exponentially with the length �; i.e., the
transmittivity is given by [8]

ηt (�) := 10− αatt �

10 , (1)

where αatt is the attenuation coefficient given in dB/km. The
lowest attenuation is achieved in the telecom wavelength range
around 1550 nm and it corresponds to αatt = 0.17 dB/km. This
attenuation is also used throughout the paper. Note that other
types of quantum channels, such as free space, can be treated
in an equivalent way (see, e.g., [26]). Further note that besides
losses, the effect of the quantum channel can be incorporated
into the form of the initial state shared between the connecting
repeater stations.

(b) Source of entanglement. The purpose of a source is to
create entanglement between quantum memories over distance
L0. An ideal source produces maximally entangled Bell states
(see below) on demand. In practice, however, the created state
may not be maximally entangled and may be produced in a
probabilistic way. We denote by ρ0 a state shared between two
quantum memories over the elementary distance L0 and by P0

the total probability to generate and distribute this state. This
probability would contain any finite local state-preparation
probabilities before the distribution, the effect of channel
losses, and the success probabilities of other processes, such
as the conditioning on a desired initial state ρ0 after the state
distribution over L0.

For improving the scaling over the total distance L from
exponential to subexponential, it is necessary to have a
heralded creation and storage of ρ0. How this heralding
is implemented depends on the particular protocol and it
usually involves a form of postprocessing, e.g., conditioning
the state on a specific pattern of detector clicks. This can
also be a finite postselection window of quadrature values
in homodyne detection. However, in the present work, the
measurements employed in all protocols considered here are
either photon-number measurements or Pauli measurements
on memory qubits.

(c) Detectors. We consider photon-number resolving de-
tectors (PNRDs) which can be described by a positive-operator
valued measure (POVM) with elements [27]

�(n) := ηn
d

∞∑
m=0

(
n + m

n

)
(1 − ηd)m |n + m〉 〈n + m| . (2)

Here, �(n) is the element of the POVM related to the detection
of n photons, ηd is the efficiency of the detector, and |n + m〉
is a state of (n + m) photons. In the POVM above, we
have neglected dark counts; we have shown analytically for
those protocols considered in this paper that realistic dark
counts of the order of 10−5 are negligible [see Appendix B,
below Eq. (B5), for the proof]. Note that our analysis could
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also be extended to threshold detectors, by replacing the
corresponding POVM (see, e.g., [27]) in our formulas.

(d) Gates. Imperfections of gates also depend on the par-
ticular quantum repeater implementation. Such imperfections
are described, e.g., in [28]. In our analysis, we characterize
them using the gate quality, which will be denoted by pG [see
Eqs. (19) and (24)].

(e) Quantum memories. Quantum memories are a crucial
part of a quantum repeater. A complete characterization of
imperfections of quantum memories is beyond the purpose
of this paper (see [29] for a recent review). Here we account
for memory errors by using a fixed time-independent quantum
memory efficiency ηm when appropriate. This is the probability
that a photon is released when a reading signal is applied
to the quantum memory, or, more generally, the probability
that an initial qubit state is still intact after write in, storage,
and readout. We discuss the role of ηm only for the quantum
repeater with atomic ensembles (see Sec. V).

(f) Entanglement distillation. As mentioned before,
throughout this work we only consider distillation at the
beginning of each repeater protocol. Entanglement distillation
is a probabilistic process requiring local multiqubit gates
and classical communication. In this paper, we consider
the protocol by Deutsch et al. [30]. This protocol performs
especially well when there are different types of errors (e.g.,
bit flips and phase flips). However, depending on the particular
form of the initial state and on the particular quantum repeater
protocol, other distillation schemes may perform better (see
[24] for a detailed discussion). The Deutsch et al. protocol
starts with 2k pairs, and after k rounds it produces one
entangled pair with higher fidelity than at the beginning. Every
round requires two controlled NOT (CNOT) operations, each
performed on two qubits at the same repeater station, and
projective measurements with postselection.

Distillation has two main sources of errors: imperfect
quantum gates which no longer permit to achieve the ideal
fidelity, as well as imperfections of the quantum memories and
the detectors, decreasing the success probability. We denote the
success probability in the ith distillation round by PD[i].

We study entanglement distillation for the original quantum
repeater protocol (Sec. III) and the hybrid quantum repeater
(Sec. IV). For the quantum repeater with atomic ensembles
(Sec. V), we do not consider any additional distillation on two
or more initial memory pairs.

(g) Entanglement swapping. In order to extend the initial
distances of the shared entanglement, entanglement swapping
can be achieved through a Bell measurement performed at
the corresponding stations between two adjacent segments.
Such a Bell measurement can be, in principle, realized
using a CNOT gate and suitable projection measurements on
the corresponding quantum memories [31]. An alternative
implementation of the Bell measurement uses photons released
from the quantum memories and linear optics [32]. The latter
technique is probabilistic, but typically much less demanding
from an experimental point of view.

We should emphasize that the single-qubit rotation de-
pending on the result of the Bell measurement, as generally
needed to complete the entanglement swapping step, is not
necessary when the final state is used for QKD applications.
In fact, it simply corresponds to suitable bit flip operations

on the outcomes of the QKD measurements; i.e., the effect
of that single-qubit rotation can be included into the classical
postprocessing.

Imperfections of entanglement swapping are characterized
by the imperfections of the gates (which introduce noise and
therefore a decrease in fidelity) and by the imperfections
of the measurement process, caused by imperfect quantum
memories and imperfect detectors. We denote the probability
that entanglement swapping is successful in the nth nesting
level by P

(n)
ES .

(h) Other imperfections. Other imperfections which are
not explicitly considered in this paper but which are likely
to be present in a real experiment include imperfections of the
interconversion process, fluctuations of the quantum channel,
fiber coupling losses, and passive losses of optical elements
(see [25] and references therein for additional details). These
imperfections can be accounted for by a suitable adjustment
of the relevant parameters in our model.

3. Generation rate of long-distance entangled pairs

In order to evaluate the performance of a quantum repeater
protocol it is necessary to assess how many entangled pairs
across distance L can be generated per second.

A relevant unit of time is the fundamental time needed
to communicate the successful distribution of an elementary
entangled pair over distance L0, which is given by

T0 := βL0

c
, (3)

where c = 2 × 105 km/s is the speed of light in the fiber
channel (see, e.g., [25]) and β is a factor depending on the
type of entanglement distribution. Note that here we have
neglected the additional local times needed for preparing and
manipulating the physical systems at each repeater station.
Figure 2 shows three different possibilities of how to model
the initial entanglement distribution. The fundamental time T0

consists of the time to distribute the photonic signals, Tdist, and
the time of acknowledgment, Tack , which all together can be
different for the three cases shown.

Throughout the paper, we denote the average number of
final entangled pairs produced in the repeater per second by
RREP. We emphasize that, regarding any figures and plots,
for each protocol, we are interested in the consumption of
time rather than spatial memories. Thus, if one wants to
compare different setups for the same number of spatial
memories, one has to rescale the rates such that the number of
memories becomes equal. For example, in order to compare
a protocol without distillation with another one with k rounds
of distillation, one has to divide the rates for the case with
distillation by 2k (as we need two initial pairs to obtain one
distilled pair in every round).

In the literature, two different upper bounds on the en-
tanglement generation rate RREP are known. In the case of
deterministic entanglement swapping (P (n)

ES = 1) we have [35]

Rdet
REP = [T0ZN (PL0 [k])]−1, (4)

with PL0 [i] being a recursive probability depending on the
rounds of distillation i as follows [35]:

PL0 [i = 0] = P0, (5)
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FIG. 2. (Color online) The fundamental time for different models
of entanglement generation and distribution. The source (S) that
produces the initial entangled states is either placed in the middle
(a), at one side (b), or at both sides (c). In the latter case, photons are
emitted from a source and interfere in the middle (see [33,34]).

PL0 [i > 0] = PD[i]

Z1(PL0 [i − 1])
. (6)

We remind the reader that PD[i] is the success probability in
the ith distillation round. Here,

ZN (P0) :=
2N∑
j=1

(
2N

j

)
(−1)j+1

1 − (1 − P0)j
(7)

is the average number of attempts to connect 2N pairs, each
generated with probability P0.

In the case of probabilistic entanglement swapping, proba-
bilistic entanglement distillation, and P0 � 1, we find an upper
bound on the entanglement generation rate,

R
prob
REP = 1

T0

(
2

3a

)N+k

P0P
(1)
ESP

(2)
ES · · ·P (N)

ES

k∏
i=1

PD[i], (8)

with a � 2
3PL0 [k]Z1(PL0 [k]). Our derivation is given in Ap-

pendix A. For the plots we bound a according to the occurring
parameters, typically a is close to one, which corresponds to
the approximate formula given in [25] for the case when there
is no distillation.

Equations (4) and (8) should be interpreted as a limiting
upper bound on the repeater rate, due to the minimal time
needed for communicating the quantum and classical signals.
For this minimal time, we consider explicitly only those
communication times for initially generating entanglement,

FIG. 3. Scheme of QKD. The state ρAB is produced using a
quantum repeater. Alice and Bob locally rotate this state in a
measurement basis and then they perform the measurement. The
detectors are denoted by dA

0 ,dA
1 ,dB

0 ,dB
1 and to each detector click a

classical outcome is assigned.

but not those for entanglement swapping and entanglement
distillation.

B. Quantum key distribution

1. The QKD protocol

In Fig. 3 a general QKD setup is shown. For long-distance
QKD, Alice and Bob will generate entangled pairs using the
quantum repeater protocol. For the security analysis of the
whole repeater-based QKD scheme, we assume that a potential
eavesdropper (Eve) has complete control of the repeater sta-
tions, the quantum channels connecting them, and the classical
channels used for communicating the measurement outcomes
for entanglement swapping and distillation (see Fig. 3). The
QKD protocol itself starts with Alice and Bob performing
measurements on their shared, long-distance entangled pairs
(see Fig. 3). For this purpose, they would both independently
choose a certain measurement from a given set of measurement
settings. The next step is the classical postprocessing and for
this an authenticated channel is necessary. First, Alice and Bob
discard those measurement outcomes where their choice of
the setting did not coincide (sifting), thus obtaining a raw key
associated with a raw key rate. They proceed by comparing
publicly a small subset of outcomes (parameter estimation).
From this subset, they can estimate the quantum bit error rate
(QBER), which corresponds to the fraction of uncorrelated
bits. If the QBER is below a certain threshold, they apply an
error correction protocol and privacy amplification in order to
shrink the eavesdropper’s information about the secret key (for
more details, see, e.g., [36]).

Various QKD protocols exist in the literature. Besides the
original QKD protocol by Bennett and Brassard from 1984,
the so-called BB84 protocol [37], the first QKD protocol
based upon entanglement was the Ekert protocol [1]. Shortly
thereafter the relation of the Ekert protocol to the BB84
protocol was found [38]. Another protocol which can also be
applied in entanglement-based QKD is the six-state protocol
[39,40].

2. The quantum bit error rate

In order to evaluate the performance of a QKD protocol,
it is necessary to determine the QBER. This is the fraction
of discordant outcomes when Alice and Bob compare a small
amount of outcomes taken from a specified measurement basis.
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This measurement can be modeled by means of four detectors
(two on Alice’s side and two on Bob’s side; see Fig. 3),
where to each detector click a classical binary outcome is
assigned. Particular care is necessary when multiphoton states
are measured [41,42]. In the following, we give the definition
of the QBER for the case of PNRDs and we refer to [20] for the
definition in the case of threshold detectors. The probability
that a particular detection pattern occurs is given by

P
(i)
jklm := tr

(
�

(j )
dA

0
�

(k)
dA

1
�

(l)
dB

0
�

(m)
dB

1
ρ

(i)
AB

)
, (9)

where the POVM �(n) has been defined in Eq. (2) with a
subscript denoting the detectors given in Fig. 3. The superscript
i refers to the measurement basis and ρ

(i)
AB represents the state

ρAB rotated in the basis i.
A valid QKD measurement event happens when one

detector on Alice’s side and one on Bob’s side click. The
probability of this event is given by [20]

P
(i)
click := P

(i)
1010 + P

(i)
0101 + P

(i)
0110 + P

(i)
1001. (10)

The probability that two outcomes do not coincide is given
by [20]

P (i)
err := P

(i)
0110 + P

(i)
1001. (11)

Thus, the fraction of discordant bits, i.e., the QBER for
measurement basis i is [20]

ei := P (i)
err

P
(i)
click

. (12)

For the case that ρAB is a two-qubit state, we find that the
QBER does not depend on the efficiency of the detectors, as
P

(i)
click = η2

d and P (i)
err ∝ η2

d.
If we assume a genuine two-qubit system1 like in the

original quantum repeater proposal (see Sec. III) or the
hybrid quantum repeater (see Sec. IV), without loss of
generality,2 the entangled state ρAB can be considered diagonal
in the Bell basis, i.e., ρAB = A|φ+〉〈φ+| + B|φ−〉〈φ−| +
C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, with the probabilities A,B,C,D,
A + B + C + D = 1, and with the dual-rail3 encoded Bell
states4 |φ±〉 = (|1010〉 ± |0101〉)/√2 and |ψ±〉 = (|1001〉 ±
|0110〉)/√2 (we shall use the notation |φ±〉 and |ψ±〉 for the

1Note that the states of the DLCZ-type quantum repeaters (see
Sec. V) are only effectively two-qubit states when higher-order
excitations of the atom-light entangled states [12], or those of
the states created through parametric down-conversion [23], are
neglected.

2As proven in [43,44], it is possible to apply an appropriate local
twirling operation that transforms an arbitrary two-qubit state into
a Bell diagonal state, while the security of the protocol is not
compromised.

3In this paper, by dual-rail representation we mean that a single
photon can be in a superposition of two optical modes, thus
representing a single qubit. By single-rail representation we mean
that a qubit is implemented using only one single optical mode.
See [27] for additional details.

4The ket |abcd〉 is a vector in a Hilbert space of four modes and
the values of a, b, c, and d represent the number of excitations in the
Fock basis.

Bell basis in any type of encoding throughout the paper). Then
the QBER along the directions X, Y , and Z corresponds to [6]

eX := B + D, eZ := C + D, eY := B + C. (13)

Throughout the whole paper X, Y , and Z denote the three
Pauli operators acting on the restricted Hilbert space of qubits.

3. The secret key rate

The figure of merit representing the performance of QKD
is the secret key rate RQKD, which is the product of the raw key
rate Rraw (see above) and the secret fraction r∞. Throughout
this paper, we use asymptotic secret key rates. The secret
fraction represents the fraction of secure bits that may be
extracted from the raw key. Formally, we have

RQKD := Rrawr∞ = RREPPclickRsiftr∞, (14)

where the sifting rate Rsift is the fraction of measurements
performed in the same basis by Alice and Bob. Throughout
the paper we use Rsift = 1, which represents the asymptotic
bound for Rsift when the measurement basis are chosen with
biased probability [45]. We point out that both RREP and r∞
are functions of the explicit repeater protocol and the involved
experimental parameters, as we discuss in detail later. Our aim
is to maximize the overall secret key rate RQKD. There will be
a trade-off between RREP and r∞, as the secret key fraction r∞
is an increasing function of the final fidelity, while the repeater
rate RREP typically decreases with increasing final fidelity.

Note that even though for the considered protocol we find
upper bounds on the secret key rate, an improved model (e.g.,
including distillation in later nesting levels or multiplexing
[46]) could lead to improved key rates.

The secret fraction represents the fraction of secure bits over
the total number of measured bits. We adopt the composable
security definition discussed in [47–49]. Here, composable
means that the secret key can be used in successive tasks
without compromising its security. In the following we
calculate secret key rates using the state produced by the
quantum repeater protocol.

In the present work, we consider only two QKD protocols,
namely the BB84 protocol and the six-state protocol, for which
collective and coherent attacks are equivalent [43,44] in the
limit of a large number of exchanged signals. The unique
parameter entering the formula of the secret fraction is the
QBER.

In the BB84 protocol only two of the three Pauli matrices
are measured. We adopt the asymmetric protocol where the
measurement operators are chosen with different probabilities
[45], because this leads to higher key rates. We call X the basis
used for extracting a key, i.e., the basis that will be chosen with
a probability of almost one in the measurement process, while
Z is the basis used for the estimation of the QBER. Thus, in
the asymptotic limit, we have Rsift = 1. The formula for the
secret fraction is [6]

rBB84
∞ := 1 − h(eZ) − h(eX), (15)

with h(p) := −p log2 p − (1 − p) log2(1 − p) being the bi-
nary entropy. This formula is an upper bound on the secret
fraction, which is achievable only for ideal implementations
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of the protocol; any realistic, experimental imperfection will
decrease this secret key rate.

In the six-state protocol we use all three Pauli matrices.
We call X the basis used for extracting a key, which will be
chosen with a probability of almost one, and both Y and Z

are the bases used for parameter estimation. In this case, the
formula for the secret fraction is given by [6,36]5

r6S
∞ : = 1 − eZh

(
1 + (eX − eY )/eZ

2

)

− (1 − eZ)h

(
1 − (eX + eY + eZ)/2

1 − eZ

)
− h(eZ).

(16)

C. Methods

The secret key rate represents the central figure of merit for
our investigations. We study the BB84 protocol, because it is
most easily implementable and can also be used for protocols,
where ρAB is not a two-qubit state, with help of the squashing
model [41,42]. Throughout the paper, we also report on results
of the six-state protocol if applicable. We evaluate Eq. (14)
exactly, except for the quantum repeater based on atomic
ensembles where we truncate the states and cut off the higher
excitations at some maximal number (see footnote 11 for the
details). For the maximization of the secret key rate, we have
used the numerical functions provided by Mathematica [50].

III. THE ORIGINAL QUANTUM REPEATER

In this section, we consider a general class of quantum
repeaters in the spirit of the original proposal by Briegel
et al. [7]. We analyze the requirements for the experimental
parameters such that the quantum repeater is useful in
conjunction with QKD. The model we consider in this section
is applicable whenever two-qubit entanglement is distributed
by using qubits encoded into single photons. This is the case,
for instance, for quantum repeaters based on ion traps or
Rydberg-blockade gates. We emphasize that we do not aim
to capture all peculiarities of a specific setup. Instead, our
intention is to present a fairly general analysis that can give
an idea of the order of magnitude, which has to be achieved
for the relevant experimental parameters. The error model we
consider is the one used in [7].

A. The setup

1. Elementary entanglement creation

The probability that two adjacent repeater stations (sepa-
rated by distance L0) share an entangled pair is given by

P0 := ηt (L0) , (17)

where ηt (�), as defined in Eq. (1), is the probability that a
photon is not absorbed during the channel transmission. In a

5Note that the formula for the six-state protocol is independent of the
choice of basis, when we assume the state of Alice and Bob ρAB to be
Bell diagonal. Then the secret fraction reduces to r6S

∞ = 1 − S(ρE)
with S(ρ) the von Neumann entropy and ρE is the eavesdropper’s
state.

specific protocol, P0 may contain an additional multiplicative
factor such as the probability that entanglement is heralded or
also a source efficiency. We assume that the state created over
distance L0 is a depolarized state of fidelity F0 with respect to
|φ+〉; i.e.,

ρ0 : = F0|φ+〉〈φ+|
+ 1 − F0

3
(|ψ+〉〈ψ+| + |ψ−〉〈ψ−| + |φ−〉〈φ−|). (18)

The fidelity F0 contains the noise due to an imperfect
preparation and the noise in the quantum channel. We have
chosen a depolarized state, because this corresponds to a
generic noise model and, moreover, any two-qubit mixed
quantum state can be brought into this form using local twirling
operations [51].

2. Imperfect gates

For the local qubit operations, such as the CNOT gates, we
use a generic gate model with depolarizing noise, as considered
in [7]. Thus, we assume that a noisy gate OBC acting upon two
qubits B and C can be modeled by

OBC(ρBC) = pGO ideal
BC (ρBC) + 1 − pG

4
1lBC, (19)

where O ideal
BC is the ideal gate operation and pG describes the

gate quality. Note that, in general, the noisy gates realized in an
experiment do not necessarily have this form; however, such
a noise model is useful for having an indication as to how
good the corresponding gates must be. Other noise models
could be analogously incorporated into our analysis. Further,
we assume that one-qubit gates are perfect.

3. Entanglement distillation

We consider entanglement distillation only before the
first entanglement swapping steps, right after the initial pair
distributions over L0. We employ the Deutsch et al.protocol
[30] which indeed has some advantages, as shown in the
analysis of [24]. In Appendix B2, we review this protocol and
we also present the corresponding formulas in the presence of
imperfections. We point out that when starting with two copies
of depolarized states, the distillation protocol will generate an
output state which is no longer a depolarized state, but instead
a generic Bell diagonal state. Distillation requires two-qubit
gates, which we describe using Eq. (19).

4. Entanglement swapping

The entanglement connections are performed through en-
tanglement swapping by implementing a (noisy) Bell measure-
ment on the photons stored in two local quantum memories.
We consider a Bell measurement that is deterministic in the
ideal case. It is implemented using a two-qubit gate with gate
quality pG [see Eq. (19)]. Analogous to the case of distillation,
starting with two depolarized states, at the end of the noisy Bell
measurement, we obtain generic Bell diagonal states. Also in
this case, it turns out that a successive depolarization decreases
the secret key rate and this step is therefore not performed in
our scheme.
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B. Performance in the presence of imperfections

The secret key rate Eq. (14) represents our central object of
study, as it characterizes the performance of a QKD protocol.
It can be written explicitly as a function of the relevant
parameters,

RO
QKD = RREP(L0,N,k,F0,pG,ηd)Pclick(ηd)

×Rsiftr∞(N,k,F0,pG), (20)

where RREP is given by Eq. (4) when ηd = 1 (because then
PES = 1) or by Eq. (8) if ηd < 1.6 The probability that
the QKD measurement is successful is given by Pclick = η2

d
and the secret fraction r∞ is given by either Eq. (15) or
Eq. (16), depending on the type of QKD protocol. For the
asymmetric BB84 protocol, we have Rsift = 1 (see Sec. II B).
The superscript O refers to the original quantum repeater
proposal as considered in this section. In order to have a
nonzero secret key rate, it is then necessary that the repeater
rate, the probability for a valid QKD measurement event, and
the secret fraction are each nonzero too. As typically RREP > 0,
Rsift > 0, and Pclick > 0, for RQKD > 0, it is sufficient to have
a nonzero secret fraction, r∞ > 0. The value of the secret
fraction does not depend on the distance, and therefore some
properties of this protocol are distance invariant.

Minimally required parameters. In this paragraph, we
discuss the minimal requirements that are necessary to be able
to extract a secret key; i.e., we specify the parameter region
where the secret fraction is nonzero. From the discussion in the
previous paragraph, we know that this region does not depend
on the total distance, but only on the initial fidelity F0, the
gate quality pG, the number of segments 2N , and the maximal
number of distillation rounds k. Moreover, note that even if
the secret fraction is not zero, the total secret key rate can be
very low (see below).

For calculating the minimally required parameters, we start
with the initial state in Eq. (18), we distill it k times (see the
formulas in Appendix B2), and then we swap the distilled state
2N − 1 times (see the formulas in Appendix B1). At the end,
a generic Bell diagonal state is obtained. Using Eq. (13) one
can then calculate the QBER, which is sufficient to calculate
the secret fraction.

Tables I and II show the minimally required values for F0

and pG for different maximal nesting levels N (i.e., different
numbers of segments 2N ) and different numbers of rounds of

6The supposed link between the effect of imperfect detectors
and the determinism of the entanglement swapping here assumes
the following. Any incomplete detection patterns that occur in the
Bell measurements due to imperfect detectors are considered as
inconclusive results and will be discarded. Conversely, with perfect
detectors, we assume that we always have complete patterns and thus
the Bell state discrimination becomes complete too. Note that this
kind of reasoning directly applies to Bell measurements in dual-rail
encoding, where the conclusive output patterns always have the same
fixed total number for every Bell state (namely, two photons leading
to twofold detection events), and so any loss of photons will result in
patterns considered inconclusive. In single-rail encoding, the situation
is more complicated and patterns considered conclusive may be the
result of an imperfect detection.

TABLE I. Minimal initial fidelity F0 (pG is fixed to one) for
extracting a secret key with maximal nesting level N and number of
distillation rounds k for the BB84 and six-state protocols.

�
��N

k

0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 0.835 0.810 0.733 0.728 0.671 0.669 0.620 0.614
1 0.912 0.898 0.821 0.818 0.742 0.740 0.669 0.664
2 0.955 0.947 0.885 0.884 0.801 0.800 0.713 0.709
3 0.977 0.973 0.929 0.928 0.849 0.848 0.752 0.749
4 0.988 0.987 0.957 0.957 0.887 0.887 0.788 0.785
5 0.994 0.993 0.975 0.975 0.917 0.917 0.819 0.818
6 0.997 0.997 0.985 0.985 0.939 0.939 0.847 0.846
7 0.999 0.998 0.992 0.992 0.956 0.956 0.872 0.870

distillation k. Throughout these tables, we can see that for the
six-state protocol, the minimal fidelity and the minimal gate
quality pG are lower than for the BB84 protocol. Our results
confirm the intuition that the larger the number of distillation
rounds, the smaller the affordable initial fidelity can be (at the
cost of needing higher gate qualities).

In Fig. 4, the lines represent the values of the initial infidelity
and the gate error for a specific N that allow for extracting a
secret key. As shown in Fig. 4, any lower initial fidelity requires
a correspondingly higher gate quality and vice versa. Note that
above the lines in Fig. 4 it is not possible to extract a secret
key.

The secret key rate. In this section, we analyze the influence
of the imperfections on the secret key rate; see Eq. (20).

In Fig. 5 we illustrate the effect of gate imperfections on the
secret key rate for different numbers of rounds of distillation
and for a fixed distance, initial fidelity, and maximal number of
nesting levels. Throughout this whole section, we use β = 2
in Eq. (3) for the fundamental time, which corresponds to
the case where a source is placed at one side of an elementary
segment (see Fig. 2). The optimal number of distillation rounds
decreases as pG increases. We see from the figure that k = 2 is
optimal when pG = 1. This is due to the fact that from k = 1
to k = 2, the raw key rate decreases by 40%, but the secret
fraction increases by 850%. However, from k = 2 to k = 3,
the raw key rate decreases once again by 40%, but now the

TABLE II. Minimal pG (F0 is fixed to one) for extracting a secret
key with maximal nesting level N and number of distillation rounds
k for the BB84 and six-state protocols.

�
��N

k

0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 0.800 0.773 0.869 0.860 0.891 0.884
1 0.780 0.748 0.922 0.910 0.942 0.937 0.947 0.942
2 0.920 0.908 0.965 0.960 0.973 0.970 0.974 0.972
3 0.965 0.959 0.984 0.981 0.987 0.986 0.987 0.986
4 0.984 0.981 0.992 0.991 0.994 0.993 0.994 0.993
5 0.992 0.991 0.996 0.995 0.997 0.997 0.997 0.997
6 0.996 0.995 0.998 0.998 0.999 0.998 0.999 0.998
7 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
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FIG. 4. (Color online) Original quantum repeater and the BB84
protocol: Maximal infidelity (1 − F0) as a function of gate error (1 −
pG), making it possible to extract a secret key for various maximal
nesting levels N and numbers of distillation rounds k (parameter:
L = 600 km).

secret fraction increases only by 141%. In this case, the net
gain is smaller than 1 and therefore three rounds of distillation
do not help to increase the secret key rate compared to the
case of two rounds. In other words, what is lost in terms of
success probability when having three probabilistic distillation
rounds is not added to the secret fraction. For a decreasing pG,
more rounds of distillation become optimal. The reason is that
when the gates become worse, additional rounds of distillation
make it possible to increase the secret key rate sufficiently to
compensate the decrease of RREP.

In Fig. 6 we show the optimal number of rounds of
distillation k as a function of the imperfections of the gates
and the initial fidelity. It turns out that when the experimental
parameters are good enough, then distillation is not necessary
at all.

Let us now investigate the secret key rate Eq. (20) as a
function of the distance L between Alice and Bob. In Fig. 7
the secret key rate for the optimal number of distillation rounds
versus the distance for various nesting levels is shown for a
fixed initial fidelity and gate quality. These curves should be

0.975 0.98 0.985 0.99 0.995 1
Gate quality pG

0

0.05

0.1

0.15

0.2

Se
cr

et
 k

ey
 ra

te
 (b

its
 p

er
 se

co
nd

) 

k=1
k=2
k=3
k=4
k=5
k=6

FIG. 5. (Color online) Original quantum repeater and the BB84
protocol: Secret key rate Eq. (20) versus gate quality pG for different
rounds of distillation k. The case k = 0 leads to a vanishing secret
key rate (parameters: F0 = 0.9, N = 2, L = 600 km).
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FIG. 6. (Color online) Original quantum repeater and the BB84
protocol: Number of distillation rounds k that maximizes the secret
key rate as a function of gate quality pG and initial fidelity F0. In the
white area, it is no longer possible to extract a secret key (parameters:
N = 2, L = 600 km).

interpreted as upper bounds; when additional imperfections
are included, the secret key rate will further decrease. We see
that for a distance of more than 400 km, the value N = 4
(which corresponds to 16 segments) is optimal. Note that with
the initial fidelity and gate quality assumed here, it is no longer
possible to extract a secret key for N = 5.

In many implementations, detectors are far from being
perfect. The general expression of the raw key rate including
detector efficiencies ηd becomes

Rraw = 1

T0
Rsift

(
2

3

)N+k

η
2(k+N+1)
d P0

k∏
i=1

PD[i], (21)

using Eq. (14) with the repeater rate RREP given by Eq. (8). The
term η2k

d arises from the twofold detections for the distillation,
and, similarly, η2N

d comes from the entanglement swapping
and η2

d from the QKD measurements.
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FIG. 7. (Color online) Original quantum repeater and the BB84
protocol: Optimal secret key rate Eq. (20) versus distance for different
nesting levels, with and without perfect detectors. For each maximal
nesting level N , we have chosen the optimal number of distillation
rounds k. A nesting level N � 5 no longer permits to obtain a nonzero
secret key rate (parameters: F0 = 0.9 and pG = 0.995).
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In Fig. 7 we observe that even if detectors are imperfect, it is
advantageous to do the same number of rounds of distillation
as for the perfect case. This is due to the fact that the initial
fidelity is so low that even with a lower success probability, the
gain in the secret fraction produces a net gain greater than 1.

For realistic detectors, the dark count probability is much
smaller than their efficiency. We show in Appendix B that,
provided that the dark count probability is smaller than 10−5,
dark counts can be neglected. This indeed applies to most
modern detectors [52].

IV. THE HYBRID QUANTUM REPEATER

In this section, we investigate the so-called hybrid quantum
repeater (HQR) introduced by van Loock et al. [13] and
Ladd et al. [53]. In this scheme, the resulting entangled pairs
are discrete atomic qubits, but the probe system (also called
qubus) that mediates the two-qubit entangling interaction
is an optical mode in a coherent state. The scheme does
not only employ atoms and light at the same time, but it
also uses both discrete and continuous quantum variables;
hence, the name hybrid. The entangled pair is conditionally
prepared by suitably measuring the probe state after it has
interacted with two atomic qubits located in the two spatially
separated cavities at two neighboring repeater stations. Below
we consider a HQR where the detection is based on an
unambiguous state discrimination (USD) scheme [54,55]. In
this case, arbitrarily high fidelities can be achieved at the
expense of low probabilities of success.

A. The setup

1. Elementary entanglement creation

Entanglement is shared between two electronic spins (such
as 
 systems effectively acting as two-level systems) in
two distant cavities (separated by L0). The entanglement
distribution occurs through the interaction of the coherent-
state pulse with both atomic systems. The coherent-state
pulse and the cavity are in resonance, but they are detuned
from the transition between the ground state and the excited
state of the two-level system. This interaction can then be
described by the Jaynes-Cummings interaction Hamiltonian
in the limit of large detuning, Hint = h̄χZa†a, where χ is
the light-atom coupling strength, a (a†) is the annihilation
(creation) operator of the electromagnetic field mode, and
Z = |0〉〈0| − |1〉〈1| is the Z operator for a two-level atom
(throughout this section, |0〉 and |1〉 refer to the two Z Pauli
eigenstates of the effective two-level matter system and not
to the optical vacuum and one-photon Fock states). After the
interaction of the qubus in state |α〉 with the first atomic state,
which is initially prepared in a superposition, the output state
is Uint[|α〉(|0〉 + |1〉)/√2] = (|αe−iθ/2〉|0〉 + |αeiθ/2〉|1〉)/√2,
with θ = 2χt an effective light-matter interaction time inside
the cavity. The qubus probe pulse is then sent through the lossy
fiber channel and interacts with the second atomic qubit also
prepared in a superposition. Here we consider the protocol
of [55], where linear optical elements and photon detectors are
used for the unambiguous discrimination of the phase-rotated
coherent states. Different from [55], however, we use imperfect
PNRDs, as described by Eq. (2), instead of threshold detectors.

FIG. 8. (Color online) Schematic diagram for the entanglement
generation by means of a USD measurement following [55]. The
two quantum memories A and B are separated by a distance L0.
The part on the left side (an intermediate Alice) prepares a pulse
in a coherent state |α〉a (the subscript refers to the corresponding
spatial mode). This pulse first interacts with her qubit A and is then
sent to the right side together with the local oscillator pulse (LO).
The part on the right side (an intermediate Bob) receives the state
|√ηtα〉b1 and produces from the LO through beam splitting a second
probe pulse |√ηtα〉b2 , which interacts with his qubit B. He further
applies a 50:50 beam splitter to the pulses in modes b1 and b2, and a
displacement D(−√

2ηtα cos θ/2) = e−√
2ηt α cos θ/2(a†−a) to the pulse

in mode b4. The entangled state is conditionally generated depending
on the results of detectors D1 and D2. The fiber attenuation ηt (L0)
has been defined in Eq. (1).

By performing such a USD measurement on the probe state,
as illustrated in Fig. 8, the following entangled state can be
conditionally prepared,

ρ0 := F0|φ+〉〈φ+| + (1 − F0)|φ−〉〈φ−|, (22)

where we find F0 = [1 + e−2(1+ηt (1−2ηd ))α2 sin2(θ/2)]/2 for α real,
ηt (L0) is the channel transmission given in Eq. (1), and ηd is
the detection efficiency (see Sec. II A2). Our derivation of
the fidelity F0 can be found in Appendix C1. Note that the
form of this state is different from the state considered in
Sec. III. It is a mixture of only two Bell states, since the two
other (bit flipped) Bell states are filtered out through the USD
measurement. The remaining mixedness is due to a phase flip
induced by the coupling of the qubus mode with the lossy
fiber environment. We find the optimal probability of success
to generate an entangled pair in state ρ0,

P0 = 1 − (2F0 − 1)
ηt ηd

1+ηt (1−2ηd ) , (23)

which generalizes the formula for the quantum mechanically
optimal USD with perfect detectors, as given in [54], to the case
of imperfect PNRDs. We explain our derivation of Eq. (23) in
Appendix C1. 7

2. Entanglement swapping

A two-qubit gate is essential to perform entanglement swap-
ping and entanglement distillation. In the HQR a controlled-Z

7One may also measure the qubus using homodyne detection [13].
However, for this scheme, final fidelities would be limited to F0 <

0.8 for L0 = 10 km [13], whereas by using USD, we can tune the
parameters for any distance L0, such that the fidelity F0 can be chosen
freely and, in particular, made arbitrarily close to unity at the expense
of the success probability dropping close to zero [54].
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(CZ) gate operation can be achieved by using dispersive
interactions of another coherent-state probe with the two input
qubits of the gate. This is similar to the initial entanglement
distribution, but this time without any final measurement
on the qubus [56]. Controlled rotations and uncontrolled
displacements of the qubus are the essence of this scheme. The
controlled rotations are realized through the same dispersive
interaction as explained above. In an ideal scheme, after a
sequence of controlled rotations and displacements on the
qubus, the qubus mode will automatically disentangle from
the two qubits and the only effect will be a sign flip on the |11〉
component of the input two-qubit state (up to single-qubit
rotations), corresponding to a CZ gate operation. Thus, this
gate implementation can be characterized as measurement-free
and deterministic. Using this gate, one can then perform a fully
deterministic Bell measurement (i.e., one is able to distinguish
between all four Bell states), and consequently, the swapping
occurs deterministically (i.e., PES ≡ 1).

In a more realistic approach, local losses will cause errors in
these gates. Following [57], after dissipation, we may consider
the more general, noisy two-qubit operation OBC acting upon
qubits B and C,

OBC(ρBC) = O ideal
BC

{
p2

c (x)ρBC

+pc(x)[1 − pc(x)](ZBρBCZB + ZCρBCZC)

+ [1 − pc(x)]2ZBZCρBCZCZB
}
, (24)

where

pc(x) := 1 + e−x/2

2
(25)

is the probability for each qubit to not suffer a Z error, and

x := π
1−p2

G√
pG(1+pG) ; here pG is the local transmission parameter

that incorporates photon losses in the local gates.8 We
derive explicit formulas for entanglement swapping including
imperfect two-qubit gates in Appendix C2.

3. Entanglement distillation

For the distillation, the same two-qubit operation as
described above in Eq. (24) can be used. It is then interesting
to notice that if we start with a state given in Eq. (22), after one
round of imperfect distillation, the resulting state is a generic
Bell diagonal state. The effect of gate errors in the distillation
step is derived in Appendix C3.9

B. Performance in the presence of imperfections

In the following, we only consider the BB84 protocol,
because it is experimentally less demanding and also because

8Note that this error model is considering a CZ gate operation. For
a CNOT gate, Z errors can be transformed into X errors.

9Note that we assume perfect qubit measurements for the distillation
and the swapping, but imperfect two-qubit gates. In principle, these
qubit measurements can be done using a local qubus and homodyne
measurement [54]. In this case, losses in the qubit measurement can
be absorbed into losses of the gates. On the other hand, if we consider
imperfect detectors for the qubit measurement then entanglement
swapping will succeed with probability given by Eq. (B5).
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FIG. 9. (Color online) Hybrid quantum repeater with perfect
quantum operations (pG = 1) and perfect detectors (ηd = 1) (black
lines) compared to imperfect quantum operations (pG = 0.995) and
imperfect detectors (ηd = 0.9) (orange lines): Secret key rate per
second Eq. (26) as a function of the initial fidelity for 23 segments
(N = 3) and various rounds of distillation k. The distance between
Alice and Bob is 600 km.

we found in our simulations that the six-state protocol produces
almost the same secret key rates, due to the symmetry of the
state in Eq. (22). The secret key rate per second for the HQR
can be written as a function of the relevant parameters:

RH
QKD = Rdet

REP(L0,N,k,F0,pG,ηd)

×Rsiftr
BB84
∞ (L0,N,k,F0,pG), (26)

where Rdet
REP is the repeater pair-creation rate for deterministic

swapping Eq. (4) described in Sec. II A3 and rBB84
∞ is

the secret fraction for the BB84 protocol Eq. (15). For the
asymmetric BB84 protocol, we have Rsift = 1 (see Sec. II B).
The superscript H stands for HQR. Note that the fundamental
time is T0 = 2L0

c
, as the qubus is sent from Alice to Bob

and then classical communication in the other direction is
used (see Sec. II A3 and Fig. 2). Further notice that the
final projective qubit measurements which are necessary for
the QKD protocol are assumed to be perfect. Thus, the
secret key rate presented here represents an upper bound and,
depending on the particular setup adopted for these measure-
ments, it should be multiplied by the square of the detector
efficiency.

The secret key rate. Figure 9 shows the secret key rate for
23 segments (N = 3) for various rounds of distillation. We
see from the figure that for the HQR the secret key rate is
not a monotonic function of the initial fidelity. The reason
is that increasing F0 decreases P0 [see Eq. (23)] and vice
versa. We find that the optimal initial fidelity, i.e., the fidelity
where the secret key rate is maximal, increases as the maximal
number of segments increases (see Table III). On the other
hand, examining the optimal initial fidelity as a function of the
distance, it turns out that it is almost constant for L > 100 km.
Thus, for such distances, it is neither useful nor necessary
to produce higher fidelities, because these would not make it
possible to increase the secret key rate.

We also observe that the maximum of the initial fidelity is
quite broad for small N , and gets narrower as N increases.
If we now consider perfect gates and perfect detectors, we
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TABLE III. Hybrid quantum repeater without imperfections
(pG = 1 and ηd = 1): Initial fidelity F0 that maximizes the secret
key rate in Eq. (26) for a given number 2N of segments and k rounds
of distillation.

�����N

k

0 1 2 3

1 0.898 0.836 0.765 0.705
2 0.946 0.876 0.788 0.715
3 0.972 0.907 0.812 0.726
4 0.986 0.931 0.834 0.741

see that by fixing a certain secret key rate, we can reach this
value with lower initial fidelities by performing distillation.
Furthermore, by distilling the initial entanglement, we can
even exceed the optimal secret key rate without distillation by
one order of magnitude. However, note that distillation for k

rounds requires 2k memories at each side. If we then assume
that we choose the protocol with no distillation and perform it
in parallel 2k times, i.e., we use the same amount of memories
as for the scheme including distillation, the secret key rate
without distillation (as shown in Fig. 9) should be multiplied
by 2k . As a result, the total secret key rate can then be even
higher than that obtained with distillation.

Let us now assess the impact of the gate and detector
imperfections on the secret key rate (orange lines) in Fig. 9. We
notice that pG has a large impact even if it is only changed by a
small amount, like here from pG = 1 to pG = 0.995; the secret
key rates drop by one order of magnitude. Imperfect detectors
are employed in the creation of entanglement. As we see in
Fig. 10, imperfect detectors do not affect the secret key rate
significantly. As for N = 3 and k = 0, improving the detector
efficiency from 0.5 to 1 leads to a doubling of the secret key
rate. We conclude that for the HQR, the final secret key rates
are much more sensitive to the presence of gate errors than
to inefficiencies of the detectors. However, recall that in our
analysis, we only take into account detector imperfections that
occur during the initial USD-based entanglement distribution.
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FIG. 10. (Color online) Hybrid quantum repeater with perfect
gates (pG = 1): The optimal secret key rate Eq. (26) for the BB84
protocol in terms of the detector efficiency ηd for the distance
L = 600 km with various numbers of segments 2N and rounds of
distillation k.
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FIG. 11. (Color online) Hybrid quantum repeater with distillation
and imperfections: Maximally allowed infidelity (1 − F0) as a
function of the local loss probability (1 − pG) for various maximal
numbers of segments 2N and rounds of distillation k (distance:
L = 600 km). Above the curves it is no longer possible to extract a
secret key. The lines with k = 0 correspond to entanglement swapping
without distillation.

For simplicity, any measurements on the memory qubits
performed in the local circuits for swapping and distillation are
assumed to be perfect, whereas the corresponding two-qubit
gates for swapping and distillation are modeled as imperfect
quantum operations (see footnote for more details).

Minimally required parameters. As we have seen in the pre-
vious section, it is also worth finding the minimal parameters
for F0 and pG, for which we can extract a secret key. Figure 11
shows the initial infidelity required for extracting a secret key
as a function of the local loss probability pG, which was
introduced in Sec. IV A2. We obtain also the minimal values
of the local transmission probability pmin

G,N without distillation
(solid lines in Fig. 11). If pG < pmin

G,N , then it is no longer
possible to extract a secret key. As shown in Fig. 11, these
minimal values (for which the minimal initial fidelity becomes
F0 = 1, without distillation) are pmin

G,1 = 0.853 (not shown in
the plot), pmin

G,2 = 0.948, pmin
G,3 = 0.977, and pmin

G,4 = 0.989 (not
shown in the plot). When including distillation, we can extend
the regime of nonzero secret key rate to smaller initial fidelities
at the cost of better local transmission probabilities. So there
is a trade-off: If we can produce almost perfect Bell pairs, that
is, initial states with high fidelities F0, we can afford larger
gate errors. Conversely, if high-quality gates are available, we
may operate the repeater with initial states having a lower
fidelity. Note that these results and Fig. 11 do not depend on
the length of each segment in the quantum repeater, but only
on the number of segments.

In Fig. 12 we plotted the optimal secret key rate for a fixed
local transmission probability pG and detector efficiency ηd in
terms of the total distance L. We varied the number of segments
2N and the number of distillation rounds k. We observe that a
high value of k is not always advantageous: There exists for
every N an optimal k, for which we obtain the highest key
rate. We see, for example, that for N = 1, the optimal choice
is k = 2, whereas for N = 3, the optimal k is 3. One can also
see that there are distances, where it is advantageous to double
the number of segments if one wants to avoid distillation, as,

052315-11



SILVESTRE ABRUZZO et al. PHYSICAL REVIEW A 87, 052315 (2013)

0 200 400 600 800 1000
Distance L (km)

0.001

0.01

0.1

1

10

100

1000

O
pt

im
al

 se
cr

et
 k

ey
 ra

te
 (b

its
 p

er
 se

co
nd

)  N=1, k=0
N=1, k=1
N=1, k=2
N=1, k=3
N=3, k=0
N=3, k=1
N=3, k=3
N=4, k=0
N=4, k=1
N=5, k=0

FIG. 12. (Color online) Hybrid quantum repeater with imperfect
quantum operations (pG = 0.995) and imperfect detectors (ηd =
0.9): Optimal secret key rate Eq. (26) for the BB84 protocol as a
function of the total distance L, for various numbers of segments 2N

and rounds of distillation k. For N = 5, it is not possible to obtain a
secret key when distillation is applied.

for example, for N = 3 and N = 4 at a distance of around
750 km.

V. QUANTUM REPEATERS BASED
ON ATOMIC ENSEMBLES

Probably the most influential proposal for a practical real-
ization of quantum repeaters was made in [12] and it is known
as the DLCZ protocol. These authors suggested to use atomic
ensembles as quantum memories and linear optics combined
with single-photon detection for entanglement distribution,
swapping, and (built-in) distillation. This proposal influenced
experiments and theoretical investigations and led to improved
protocols based on atomic ensembles and linear optics (see
[25] for a recent review).

To our knowledge, the most efficient scheme based on
atomic ensembles and linear optics was proposed very recently
by Minář et al. [23]. These authors suggest to use heralded
qubit amplifiers [58] to produce entanglement on demand
and then to extend it using entanglement swapping based on
two-photon detections. The state produced at the end of the
protocol no longer contains vacuum components and therefore
can be used directly for QKD. This is an improvement over
the original DLCZ protocol in which the final long-distance
pair is still contaminated by a fairly large vacuum term
that accumulates during the imperfect storage and swapping
processes.10

In this section, we first review the protocol proposed in
[23] and then we analyze the role of the parameters and the
performance in relation to QKD.

10Very recently it was shown that in the context of QKD over
continuous variables, an effective suppression of channel losses
and imperfections can also be achieved via a virtual, heralded
amplification on the level of the classical postprocessing [59,60].
In this case, it is not even necessary to physically realize a heralded
amplifier.

A. The setup

The protocol is organized in three logical steps. First,
local entanglement is created in a repeater station, then it is
distributed, and finally it is extended over the entire distance
[23].

As a probabilistic entangled-pair source we consider
spontaneous parametric down-conversion (SPDC) [61] which
produces the state (see [23,62])11

ρpair := (1 − p)
∞∑

m=0

2mpm

(m!)2(m + 1)
(B†)m|0〉〈0|Bm, (27)

where B† := (g†
H in†H + g

†
V in†V )/

√
2. The operator g

†
i (in†i )

denotes a spatial mode with polarization given by i = H,V .
The pump parameter p is related to the probability to have an
n-photon pulse by P (n) = pn(1 − p).

A probabilistic single-photon source with efficiency q

produces states of the form

ρi
single := (1 − q) |0〉 〈0| + qa

†
i |0〉 〈0| ai, (28)

where a
†
i (ai) is the creation (annihilation) operator of a photon

with polarization i = H,V .
We also define by γrep the smallest repetition rate among

the repetition rates of the SPDC source and the single-photon
sources.

1. On-demand entanglement source

The protocol that produces local entangled pairs works as
follows (see Fig. 13 and [23] for additional details).

(1) The state ρpair ⊗ ρH
single ⊗ ρV

single is produced.
(2) The single photons, which are in the same spatial mode,

are sent through a tunable beam splitter of reflectivity R cor-
responding to the transformation ai → √

Rci + √
1 − Routi .

(3) The spatial modes in and c are sent through a linear-
optics network which is part of the heralded qubit amplifiers,
and the following transformations are realized,

cH → d3 + d4 + d2 − d1

2
,

cV → d3 + d4 − d2 + d1

2
,

inH → d2 + d1 + d3 − d4

2
,

inV → d2 + d1 − d3 + d4

2
,

where d1, d2, d3, d4 are four spatial modes, corresponding to
the four detectors.

(4) A twofold coincidence detection between d1 and d3

(or d1 and d4 or d2 and d3 or d2 and d4) projects the modes
g and out onto an entangled state. These are the heralding
events that acknowledge the storage of an entangled pair in the

11In our calculation, similar to [23], we consider only those terms
with m � 2. The reason is that the contribution to the total trace of
the first three terms is given by 1 − p3 and therefore for p < 0.1 the
state obtained by considering only the first three terms differs in a
negligible way from the full state.
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FIG. 13. (Color online) Quantum repeater based on atomic
ensembles: Setup for creation of on-demand entanglement (see also
[23]). The whole setup is situated at one physical location. A pair
source produces the state ρpair. One part of the pair (the mode g) is
stored in an atomic ensemble and the other part (mode in) goes into
a linear-optics network. A single-photon source produces the states
ρH

single and ρV
single which go through a beam splitter of reflectivity R.

The output modes of the beam splitter are called c and out . The
mode out is stored in a quantum memory and the mode c goes into a
linear-optics network which is composed of a polarizing beam splitter
in the diagonal basis ±45◦ (square with a circle inside), two polarizing
beam splitters in the rectilinear basis (square with a diagonal line
inside), and four detectors.

quantum memories out and g.The probability of a successful
measurement is given by

P s
0 (p,q,R,ηd)

= 4tr
(
�

(1)
d1

(ηd)�(0)
d2

(ηd)�(1)
d3

(ηd)�(0)
d4

(ηd)ρ ′
g,out,d1,d2,d3,d4

)
,

(29)

where ρ ′
g,out,d1,d2,d3,d4

is the total state obtained at the end of
step (iii) and the superscript s stands for source. The POVM for
the detectors has been defined in Eq. (2). The factor 4 accounts
for the fact that there are four possible twofold coincidences.
The resulting state is

ρs
0(p,q,R,ηd) = 4

P s
0

trd1,d2,d3,d4

(
�

(1)
d1

(ηd)�(0)
d2

(ηd)�(1)
d3

(ηd)

×�
(0)
d4

(ηd)ρ ′
g,out,d1,d2,d3,d4

)
. (30)

This is the locally prepared state that will be distributed
between the repeater stations. In the ideal case with perfect
detectors and perfect single-photon sources, the resulting state
(after a suitable rotation) is ρs

0 = |φ+〉〈φ+|, which can be
obtained with probability P s

0 = pR(1 − R). In the realistic
case, however, additional higher-order excitations are present.
In [23], the explicit form of ρs

0 and P s
0 can be found for the

case when 1 > R 
 p and 1 
 1 − q.
Therefore, we have seen that the protocol proposed in [23]

makes it possible to turn a probabilistic entangled-pair source
(SPDC in our case) into an on-demand entangled photon
source. In this context on-demand means that when a heralding
event is obtained then it is known for sure that an entangled
quantum state is stored in the quantum memories out and g.

FIG. 14. (Color online) Quantum repeater based on atomic
ensembles: Setup used for entanglement distribution (swapping)
(see [23] for additional details). The modes out and out ′ are released
from two quantum memories separated by distance L0 (or located at
the same station for the case of swapping) and sent into a linear-optics
network consisting of one polarizing beam splitter in the rectilinear
basis (square with diagonal line inside), two polarizing beam splitters
in the diagonal basis (square with circle inside), and four detectors.

2. Entanglement distribution and swapping

Once local entangled states are created, it is necessary to
distribute the entanglement over segments of length L0 and
then to perform entanglement swapping. Both procedures are
achieved in a similar way (see Fig. 14), as we describe in
this section. Entanglement distribution is done as follows (see
Fig. 14 and [23] for additional details).

(1) Each of the two adjacent stations create a state of the
form ρs

0. We call g and out the modes belonging to the first
station and g′ and out ′ the modes of the second station.

(2) The modes out and out ′ are read out from the quantum
memories and sent through an optical fiber to a central station
where a linear-optics network is used in order to perform
entanglement swapping. The transformations of the modes
are as follows:

outH → d3 + d4√
2

, outV → d1 − d2√
2

,

out′H → d1 + d2√
2

, out′V → d3 − d4√
2

,

where d1, d2, d3, and d4 are four spatial modes.
(3) A twofold coincidence detection between d1 and d3 (or

d1 and d4 or d2 and d3 or d2 and d4) projects the modes out

and out ′ onto an entangled state. The probability of this event
is given by

P0(p,q,R,ηd,ηmtd ) = 4tr
(
�

(1)
d1

(ηmtd )�(0)
d2

(ηmtd )�(1)
d3

(ηmtd )

×�
(0)
d4

(ηmtd )ρ ′
g,g′,d1,d2,d3,d4

)
, (31)

where ρ ′
g,g′,d1,d2,d3,d4

is the total state obtained at the end of step

(ii) and ηmtd := ηmηt (
L0
2 )ηd, with ηm being the probability that

the quantum memory releases a photon. The factor 4 accounts
for the fact that there are four possible twofold coincidences.
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The resulting state is

ρ0,g,g′ = 4

P0
trd1,d2,d3,d4

(
�

(1)
d1

(ηmtd )�(0)
d2

(ηmtd )

×�
(1)
d3

(ηmtd )�(0)
d4

(ηmtd )ρ ′
g,g′,d1,d2,d3,d4

)
. (32)

The state ρ0,g,g′ is the entangled state shared between
two adjacent stations over distance L0. In order to perform
entanglement swapping, the same steps as described above are
repeated until those two stations separated by distance L are
finally connected. Formally, the probability that entanglement
swapping is successful in the nesting level n is given by

P
(n)
ES (p,q,R,ηd,ηmtd ) = 4tr

(
�

(1)
d1

(ηmd )�(0)
d2

(ηmd )�(1)
d3

(ηmd )

×�
(0)
d4

(ηmd )ρ ′
n−1,g,g′,d1,d2,d3,d4

)
,

(33)

where ρ ′
n−1,g,g′,d1,d2,d3,d4

is the total state resulting from steps
(i) and (ii) described above in this section, and ηmd := ηmηd.

The swapped state is given by

ρk,g,g′ = 4

P
(i)
ES

trd1,d2,d3,d4

(
�

(1)
d1

(ηmd )�(0)
d2

(ηmd )

×�
(1)
d3

(ηmd )�(0)
d4

(ηmd )ρ ′
k−1,g,g′,d1,d2,d3,d4

)
. (34)

The state ρn,g,g′ is the state that will be used for QKD
when n = N . In a regime where higher-order excitations can
be neglected, the state ρn,g,g′ is a maximally entangled Bell
state. In [23] is given the expression of the state ρn,g,g′ under
the same assumptions on the reflectivity R and the efficiency
q of the single-photon sources as discussed regarding ρs

0 in
Eq. (30).

Given the final state ρAB := ρN,g,g′ it is possible to calculate
Pclick and the QBER, using the formalism of Sec. II B3 and
inserting ηmd for the detector efficiency.

The final secret key rate then reads

RAE
QKD = RREP(L0,p,N,ηd,ηm,γrep,q)Pclick(L0,p,N,ηd,ηm,q)

×Rsiftr
BB84
∞ (L0,p,N,ηd,ηm,q), (35)

where RREP is given by Eq. (8) with β = 1 for the communica-
tion time [see Fig. 2(c)]. As for the QKD protocol, we consider
the asymmetric BB84 protocol (Rsift = 1, see Sec. II B). The
superscript AE stands for atomic ensembles.

Note that even though for the explicit calculations we
used PNRD, the previous formulas hold for any type of
measurement.

B. Performance in the presence of imperfections

As in the previous sections, we shall focus on the secret
key rate. The free parameters are the pump parameter p and
the reflectivity of the beam splitter R. In all plots, we optimize
these parameters in such a way that the secret key rate is
maximized. As all optimizations have been done numerically,
our results may not correspond to the global maximum, but
only to a local maximum. In general, we observed that if
we treat the secret key rate as a function of p (calculated at
the optimal R), the maximum of the secret key rate is rather
narrow. On the other hand, when calculated as a function of R

(at the optimal p), this maximum is quite broad.
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FIG. 15. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the distance
between Alice and Bob. The secret key rate has been obtained by
maximizing over p and R. Ideal setup (solid line) with parameters
ηm = ηd = q = 1,γrep = ∞. More realistic setup (dashed line) with
parameters ηm = 1, ηd = 0.9, q = 0.96, γrep = 50 MHz.

The most favorable scenario (ideal case) is characterized by
perfect detectors (ηd = 1), perfect quantum memories (ηm =
1), and deterministic single-photon sources (q = 1) which can
emit photons at an arbitrarily high rate (γrep = ∞). In this case,
the heralded qubit amplifier is assumed to be able to create
perfect Bell states and the secret fraction therefore becomes
one. The only contribution to the secret key rate is then given
by the repeater rate. In Fig. 15 the optimal secret key rate
versus the distance, obtained by maximizing over p and R, is
shown (see solid lines).

For the calculation of Fig. 15, we have assumed that the
creation of local entanglement, i.e., of state ρs

0, is so fast that
we can neglect the creation time. In the case of SPDC, the
repetition rate of the source is related to the pump parameter
p and, moreover, the single-photon sources also have finite
generation rates that should be taken into account. For this
purpose, we introduce the photon-pair preparation time which
is given by T s

0 = 1
γrepP

s
0

[23]. The formula for the repeater
rate in this case corresponds to Eq. (8) with T0 → T0 + T s

0 .
As shown in Fig. 16, when ηd = 1 the secret key rate is
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FIG. 16. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the basic
repetition rate of the source γrep. The secret key rate has been obtained
by maximizing over p and R (parameters: ηd = ηm = q = 1).
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FIG. 17. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the efficiency
of the detectors ηd. The secret key rate has been obtained by
maximizing over p and R (parameters: ηm = q = 1, γrep = 50 MHz,
L = 600 km).

constant for γrep > 107; however, for realistic detectors with
ηd = 0.9, much higher repetition rates are required in order to
reach the asymptotic value. Nowadays, SPDC sources reach
a rate of about 100 MHz, whereas single-photon sources
have a repetition rate of a few MHz [52]. Recently, a new
single-photon source with repetition rate of 50 MHz has been
realized [63]. In the following, we employ γrep = 50 MHz.

A consequence of imperfect detectors is that multiphoton
pulses contribute to the final state. The protocol we are
considering here is less robust against detector inefficiencies
than the original DLCZ protocol. This is due to the fact that
successful entanglement swapping is conditioned on twofold
detection as compared to one-photon detection of the DLCZ
protocol. However, twofold detections make it possible to
eliminate the vacuum in the memories [25], thus increasing
the final secret key rate. As shown in Fig. 17, the secret key
rate spans four orders of magnitude as ηd increases from 0.7
to 1. Thus, an improvement of the detector efficiency causes a
considerable increase of the secret key rate. For example, for
N = 3, an improvement from ηd = 0.85 to ηd = 0.88 leads to
a threefold increase of the secret key rate. Notice that we have
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FIG. 18. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the probability
to emit a single photon. The secret key rate has been obtained
by maximizing over p and R (parameters: ηm = 1,γrep = 50 MHz,
L = 600 km).
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FIG. 19. (Color online) Quantum repeaters based on atomic
ensembles: Optimal value of p versus the distance between Alice
and Bob. The corresponding secret key rate is shown in Fig. 15
(parameters: ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz, L =
600 km).

considered photon detectors which are able to resolve photon
numbers. Photon detectors with an efficiency as high as 95%
have been realized [64]. These detectors work at the telecom
bandwidth of 1556 nm and they have negligible dark counts.
The drawback is that they need to operate at very low tem-
peratures of 100 mK. The reading efficiency of the quantum
memory ηm plays a similar role as the detector efficiency. In
accordance with [25], intrinsic quantum memory efficiencies
above 80% have been realized [65]; however, total efficiencies
where coupling losses are included are much lower.

A single-photon source is also characterized by its effi-
ciency, i.e., the probability q to emit a photon. As shown
in Fig. 18, we see that it is necessary to have single-photon
sources with high efficiencies, in particular, when detectors
are imperfect. The source proposed in [63] reaches q = 0.96.

In Fig. 15 we show the secret key rate as a function of
the distance between Alice and Bob for parameters (dashed
lines) which are optimistic in the sense that they could be
possibly reached in the near future. We observe that with an
imperfect setup and for N = 4, the realistic secret key rate
is by one order of magnitude smaller than the ideal value.
This decrease is mainly due to finite detector efficiencies. For
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FIG. 20. (Color online) Quantum repeaters based on atomic
ensembles: Optimal value of the reflectivity R versus the distance
between Alice and Bob. The corresponding secret key rate is shown
in Fig. 15 (parameters: ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz).
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N = 4, the secret key rate scales proportionally to η2
dη

2
dη

2·4
d η2

d
(local creation, distribution, entanglement swapping, and QKD
measurement). For ηd = 0.9, finite detector efficiencies lead
to a decrease of the secret key rate by 78%. Regarding the
optimal pump parameter p, we observe in Fig. 19 that for
large distances (L > 600 km) its value is about 0.15%. The
order of magnitude of this value is in agreement with the results
found in [20] regarding the original DLCZ protocol and the
BB84 protocol.

The optimal reflectivity R is given in Fig. 20. We observe
that as N increases, the optimal value of R has a modest
increase.

VI. CONCLUSIONS AND OUTLOOK

Quantum repeaters represent nowadays the most promising
and advanced approach to create long-distance entanglement.
Quantum key distribution is a developed technology which
has already reached the market. One of the main limitations of
current QKD is that the two parties have a maximal separation
of 150 km, due to losses in optical fibers. In this paper, we
have studied long-distance QKD by using quantum repeaters.

We have studied three of the main protocols for quantum
repeaters, namely, the original protocol, the HQR, and a varia-
tion of the so-called DLCZ protocol. Our analysis differs from
previous treatments, in which only final fidelities have been
investigated, because we maximize the main figure of merit for
QKD, the secret key rate. Such an optimization is nontrivial,
since there is a trade-off between the repeater pair-generation
rate and the secret fraction: The former typically decreases
when the final fidelity grows, whereas the latter increases when
the final fidelity becomes larger. Our analysis makes it possible
to calculate secret key rates under the assumption of a single
repeater chain with at most 2k quantum memories per half
station for respectively k distillation rounds occurring strictly
before the swappings start. The use of additional memories
when parallelizing or even multiplexing several such repeater
chains as well as the use of additional quantum error detection
or even correction will certainly improve these rates, but also
render the experimental realization much more difficult.

The comparison of different protocols is highly subjective,
as there are different experimental requirements and difficul-
ties for each of them; therefore, here we investigated the main
aspects for every protocol separately.

The general type of quantum repeater is a kind of prototype
for a quantum repeater based on the original proposal [7].
We have provided an estimate of the experimental parameters
needed to extract a secret key and showed what the role of each
parameter is. We have found that the requirement on the initial
fidelity is not so strong if distillation is allowed. However,
quantum gates need to be very good (errors of the order of 1%).

Further, we have studied the HQR. This protocol makes it
possible to perform both the initial entanglement distribution
and the entanglement swapping with high efficiencies. The
reason is that bright light sources are used for communication
and cavity quantum electrodynamics (CQED) interactions are
employed for the local quantum gates, making the swapping,
in principle, deterministic. Using PNRDs, we have derived
explicit formulas for the initial fidelity and the probability of
success for entanglement distribution. Furthermore, we have

found the form of the states after entanglement swapping
and entanglement distribution in the presence of gate errors.
We have seen that finite detector efficiencies do not play a
major role regarding the generation probability. This makes it
possible to have high secret key rates in a setup where it is
possible to neglect imperfections of the detectors. By studying
imperfect gates we found that excellent gates are necessary
(errors of the order of 0.1%).

Finally, we have considered repeaters with atomic en-
sembles and linear optics. There exist many experimental
proposals and therefore we have studied the scheme which
is believed to be the fastest [23]. This scheme uses heralded
qubit amplifiers for creating dual-rail encoded entanglement
and entanglement swapping based on twofold detection events.
In contrast to the previous two schemes, the Bell measurement
used for entanglement swapping is not able to distinguish
all four Bell states. We have characterized all common
imperfections and we have seen that using present technology,
the performance of this type of quantum repeater in terms
of secret key rates is only about one order of magnitude
different from the corresponding ideal setup. Thus, this scheme
seems robust against most imperfections. These types of
repeater schemes, as currently being restricted to linear optics,
could still be potentially improved by allowing for additional
nonlinear-optics elements. This may render the entanglement
swapping steps deterministic, similar to the HQR using CQED,
and thus further enhance the secret key rates.

For the protocols considered here, single-qubit rotations
were assumed to be perfect. Obviously, this assumption is
not correct in any realistic situation. However, most of these
single-qubit rotations can be replaced by simple bit flips of the
classical outcomes which are used when the QKD protocol
starts. Therefore, we see that in this case, specifically building
a quantum repeater for QKD applications permits to relax
the requirements on certain operations that otherwise must
be satisfied for a more general quantum application, such as
distributed quantum computation.

As an outlook our analysis can be extended in various
directions: In our work we have considered standard QKD,
in which Alice and Bob trust their measurement devices. To
be more realistic, it is possible to relax this assumption and
to consider device-independent quantum key distribution (DI-
QKD) [1–5]. An analysis of the performance of long-distance
DI-QKD can also be done using the methods that we developed
in this paper.

A possible continuation of our work is the analysis of
multiplexing [25,46]. It has been shown that this technique has
significant advantage in terms of the decoherence time required
by the quantum memories. On the other hand, it produces
only a moderate increase of the repeater rate [25,66,67].
Possible future analyses include the effect on the secret key
rate by distilling in all nesting levels [24] or by optimizing
the repeater protocol as done in Refs. [68,69]. Moreover, other
repeater protocols which are based on quantum error correction
codes [70–72] may help to increase the secret key rate.
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APPENDIX A: ADDITIONAL MATERIAL FOR THE
GENERAL FRAMEWORK

1. Generation rate with probabilistic entanglement swapping
and distillation

In this Appendix, we give the derivation of Eq. (8) in
Sec. II A2, which describes the generation rate of entangled
pairs per time unit T0 with probabilistic entanglement swap-
ping and distillation; i.e.,

R
prob
REP = 1

T0

(
2

3a

)N+k

P0P
(1)
ESP

(2)
ES · · ·P (N)

ES

k∏
i=1

PD[i]. (A1)

In [25] the formula has been derived only for the case without
distillation and there it reads as

R
prob
REP = 1

T0

(
2

3

)N

P0P
(1)
ESP

(2)
ES · · · P (N)

ES , (A2)

where P0 is the probability to generate a pair for entanglement
swapping. This formula was derived for small P0.

In order to incorporate distillation into Eq. (A2) we use the
definition of the recursive probability PL0 [k] given in Eq. (6);
see [35]. It describes the generation probability of an entangled
pair after k rounds of purification. If we choose an appropriate
a < 1 such that Z1(x) = 3−2x

x(2−x) � 3
2x

a, we can rewrite PL0 [k],

PL0 [k] = PD[k]

Z1(PL0 [k − 1])
� 2

3a
PD[k]PL0 [k − 1]

= 2

3a
PD[k]

PD[k − 1]

Z1(PL0 [k − 2])

� · · · �
(

2

3a

)k

P0

k∏
i=1

PD[i], (A3)

where in the last line PL0 [k] is a recursive formula. For deriving
Eq. (A1), we replace in Eq. (A2) P0 with PL0 and we use
Eq. (A3).

For the plots we have L = 600 km and usually ηd = 0.9,
which leads to PL0 [k] � 0.037 and a � 0.994.

APPENDIX B: ADDITIONAL MATERIAL FOR THE
ORIGINAL QUANTUM REPEATER

1. Entanglement swapping

In this Appendix we present the formulas of the state
after entanglement swapping and the distillation protocol.
Moreover, we bound also the role of dark counts in the
entanglement swapping probability.

(a) The protocol

We consider the total state ρab ⊗ ρcd . The entanglement
swapping algorithm consists of the following steps.

(1) A CNOT is applied on system b as source and c as target.

(2) One output system is measured in the computational
basis and the other one in the basis {|+〉 := |H 〉+|V 〉√

2
, |−〉 =

|H 〉−|V 〉√
2

}, obtained by applying a Hadamard gate.
(3) In the standard entanglement swapping algorithm,

a single qubit rotation depending on the outcome of the
measurement is performed. However, for the purpose of QKD
it is not necessary to do this single-qubit rotation.12 We
propose that Bob collects the results of the Bell measurements,
performs the standard QKD measurement and then he can
apply a classical bit flip depending on the QKD measurement
basis and on the Bell measurement outcomes.

(b) Formulas in the presence of imperfections

We consider a setup with two detectors d1 and d2.
We associate the detection pattern of these two detectors
with a two-dimensional Hilbert space, e.g., d1 = click, d2 =
noclick ⇒ |H 〉 = |1d1 ,0d2〉 and d1 = no click, d2 = click ⇒
|V 〉 = |0d1 ,1d2〉, where {|H 〉,|V 〉} are a basis of a two-
dimensional Hilbert space which can be, for example, identi-
fied with horizontal and vertical polarizations of a qubit. We
discard those events where there are no clicks or when both
detectors click. If the detectors are imperfect, we may have an
error in the detection of the quantum state. The POVM consists
of two elements �H (�V ) which detect mode |H 〉 (|V 〉):

�H := γ |H 〉 〈H | + (1 − γ ) |V 〉 〈V | , (B1)

�V := γ |V 〉 〈V | + (1 − γ ) |H 〉 〈H | , (B2)

with

γ := ηd + pdark(1 − ηd)

ηd + 2pdark(1 − ηd)
, (B3)

where pdark is the dark count probability of the detectors and
ηd is their efficiency.13

The POVM above has been used also in [7,73]; however,
the connection with the imperfections of the detectors was not
made.

12Note that this step is different from [7], where the single-qubit
rotations were explicitly included.
13The coefficient γ can be calculated as follows. The POVM for

having a click under the assumption of single-photon sources and
imperfect detectors is given by

E(click) = pdark |0〉 〈0| + (1 − (1 − pdark)(1 − ηd)) |1〉 〈1|
and that for no click is given by

E(noclick) = (1 − pdark) |0〉 〈0| + (1 − pdark)(1 − ηd) |1〉 〈1|.
When we say that the detector a clicked, and b did not click and we
discard the vacuum events, and those where both detectors clicked,
the POVM looks as follows:

E(click)
a ⊗ E

(noclick)
b

= [1 − (1 − pdark)(1 − ηd)] (1 − pdark) |1a,0b〉 〈1a,0b|
+ pdark(1 − pdark)(1 − ηd) |0a,1b〉 〈0a,1b| .

The trace is (1 − pdark)[ηd + 2pdark(1 − ηd)], which is exactly the
probability that we have this measurement. If we normalize this
measurement and relate it to the POVM in Eq. (B1), we get γ .

052315-17



SILVESTRE ABRUZZO et al. PHYSICAL REVIEW A 87, 052315 (2013)

If we start with the states ρab = ρcd = A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, the resulting state after
entanglement swapping between a and d is still a Bell diagonal state with coefficients of the form [74]

A′ = 1 − pG

4
+ pG[γ 2(A2 + B2 + C2 + D2) + 2(1 − γ )2(AD + BC) + 2γ (1 − γ )(A + D)(C + B)],

B ′ = 1 − pG

4
+ pG[2γ 2(AB + CD) + 2(1 − γ )2(AC + BD) + γ (1 − γ )(A2 + B2 + C2 + D2 + 2AD + 2BC)],

(B4)
C ′ = 1 − pG

4
+ pG[2γ 2(AC + BD) + 2(1 − γ )2(AB + CD) + γ (1 − γ )(A2 + B2 + C2 + D2 + 2AD + 2BC)],

D′ = 1 − pG

4
+ pG[2γ 2(AD + BC) + (1 − γ )2(A2 + B2 + C2 + D2) + 2γ (1 − γ )(A + D)(B + C)],

and the probability to obtain the state above is equal to

PES(ηd,pdark) := {[1 − pdark][ηd + 2pdark(1 − ηd)]}2 , (B5)

which can be interpreted as the probability that entanglement
swapping is successful.14 Note that P (η,0) = η2 and P (1,0) =
1 as we expect. When we consider dark counts pdark < 10−5,
then these are negligible as (PES(0.1,10−5)/(PES(0.1,0)))N <

1.03N , so the impact on the secret key rate is minimal. Note
that we open the gates only for a short time window, which
is the interval of time where we expect the arrival of a photon.
The dark count probability pdark represents the probability
that in the involved time window the detector gets a dark
count.

2. Distillation

(a) The protocol

We assume that Alice and Bob hold two Bell diagonal states
ρa1,b1 and ρa2,b2 . The algorithm is as follows.

(1) In the computational basis, Alice rotates her particles
by π

2 about the X-axis, whereas Bob applies the inverse rotation
(−π

2 ) on his particles.
(2) Then they apply on both sides a CNOT operation, where

the states a1 (b1) serve as source and a2 (b2) as target.
(3) The states corresponding to the target are measured in

the computational basis. If the measurement results coincide,
the resulting state ρa1,b1 is a purified state; otherwise, the
resulting state is discarded. Therefore, this entanglement
distillation scheme is probabilistic.

(b) Formulas in the presence of imperfections

Given a Bell diagonal state with the coefficients

ρab = A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+|
+D|ψ−〉〈ψ−|, (B6)

the coefficients transform according to the map [30]

A′ = 1

PD

(A2 + D2), (B7)

B ′ = 1

PD

(2AD) , (B8)

14This probability was derived by taking the probability of the
measurement in the preceding footnote squared, as we need two
coincident clicks for the Bell measurement.

C ′ = 1

PD

(B2 + C2), (B9)

D′ = 1

PD

(2BC) , (B10)

where PD is the probability that the measurement outcomes
are both the same for Alice and Bob, and thus the probability
of successful distillation is

PD[k] = (Ak−1 + Dk−1)2 + (Bk−1 + Ck−1)2 . (B11)

Including the gate quality pG, these formulas change to [74]

PD[k] = 1
2

{
1 + p2

G (−1 + 2Ak−1 + 2Dk−1)2
}
, (B12)

with

A′ = {
1 + p2

G

[
(A − B − C + D)(3A + B

+C + 3D) + 4(A − D)2
]}/

(8PD),

B ′ = {
1 − p2

G

[
A2 + 2A(B + C − 7D)

+ (B + C + D)2
]} /

(8PD),

C ′ = {
1 + p2

G

[
4(B − C)2 − (A − B

− C + D)(A + 3(B + C) + D)
]} /

(8PD),

D′ = {
1 − p2

G

[
A2 + 2A(B + C + D) + B2

+ 2B(D − 7C) + (C + D)2
]} /

(8PD).

APPENDIX C: ADDITIONAL MATERIAL FOR THE
HYBRID QUANTUM REPEATER

In this Appendix we derive the formula for successful
entanglement generation when PNRD are used for the mea-
surements. Moreover, we present the formulas for the states
after entanglement swapping and entanglement distillation.

1. Entanglement generation

The total state before the detector measurements is de-
scribed by [55]

ρAB,b3,b5 = p{[|0〉b3 (|00〉AB |β〉b5 + |11〉AB |−β〉b5 )/2

+ |0〉b5 (|01〉AB |−β〉b3 + |10〉AB |β〉b3 )/2] × H.c.}
+ (1 − p){[|0〉b3 (|00〉AB |β〉b5 − |11〉AB |−β〉b5 )/2

+ |0〉b5 (|01〉AB |−β〉b3 − |10〉AB |β〉b3 )/2] × H.c.},
(C1)
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where H.c. stays for the Hermitian conjugate of the previous
term, A (B) represents the qubit at Alice’s (Bob’s) side,
b3 is the coherent-state mode arriving at the detector D1,
b5 is the coherent-state mode arriving at the detector D2,
and β = i

√
2ηt sin (θ/2) [see Eq. (8)]. The probability of

error caused by photon losses in the transmission channel
is given by (1 − p), with p = (1 + e−2(1−ηt )α2 sin2 (θ/2))/2. It
is possible to observe from Eq. (C1) that whenever Bob
detects a click in either one of the detectors D1 or D2,
an entangled state has been distributed between qubits A

and B.
We discuss in the following the case that D1 and D2

are imperfect PNRD [see Eq. (2)]. When detector D1 does
not click and D2 clicks, the resulting state ρAB is then
given by

ρAB = trb3b5

(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5

)
tr
(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5

) , (C2)

with n > 0. The same result up to local operations can be
obtained in the opposite case (a click in detector D1 and no
click in detector D2).

Depending on the outcome of the detector, a local op-
eration maybe applied to change the resulting state into
the desired state. In this way, if the outcome is an even
number, nothing should be done; otherwise, a Z operation
should be applied. Following this, the resulting state can be
written as

ρ = F0|φ+〉〈φ+| + (1 − F0)|φ−〉〈φ−|,
where

F0 = [〈00|AB + (−1)n〈11|AB]√
2

ρA,B

[|00〉AB + (−1)n|11〉AB]√
2

= 1 + e−2[1+ηt (1−2ηd )]α2 sin2(θ/2)

2
. (C3)

The probability of success is calculated by adding all success-
ful events, and is given by

P0 =
∞∑

n=1

tr
(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5 + �
(0)
b5

�
(n)
b3

ρAB,b3,b5

)
. (C4)

Combining Eqs. (C1) and (2) we obtain Eq. (23).

2. Entanglement swapping

The initial states used in the swapping operation are a full rank mixture of the Bell states, ρ0 := A|φ+〉〈φ+| + B|φ−〉〈φ−| +
C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|. After the connection, the resulting state will remain in the same form, A′|φ+〉〈φ+| + B ′|φ−〉〈φ−| +
C ′|ψ+〉〈ψ+| + D′|ψ−〉〈ψ−|, but with new coefficients:

A′ = 2BC + 2AD + 2[−2BC + A(B + C − 2D) + (B + C)D]pG + (A − B − C + D)2p2
G,

B ′ = 2AC + 2BD + [A2 + (B + C)2 − 4BD + D2 + 2A(−2C + D)]pG − (A − B − C + D)2p2
G,

(C5)
C ′ = 2AB + 2CD + [A2 + (B + C)2 − 4CD + D2 + 2A(−2B + D)]pG − (A − B − C + D)2p2

G,

D′ = A2 + B2 + C2 + D2 − 2[A2 + B2 + C2 − A(B + C) − (B + C)D + D2]pG + (A − B − C + D)2p2
G.

It is possible to see that A′ + B ′ + C ′ + D′ = 1, such that even for the case of imperfect connection operations, the swapping
occurs deterministically.

3. Entanglement distillation

We calculated also the effect of the gate error in the distillation step. Starting with two copies of states in the form of
ρ0 := A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, the resulting state after one round of distillation is given by
A′|φ+〉〈φ+| + B ′|φ−〉〈φ−| + C ′|ψ+〉〈ψ+| + D′|ψ−〉〈ψ−|, where

A′ = 1

PD

(
D2 + A2[1 + 2(−1 + pG)pG]2 − 2A(−1 + pG)pG

[
C + 2D + 2(B − C − 2D)pG + 2(−B + C + 2D)p2

G

]
−2D(−1 + pG)pG{−2D − 2(C + D)(−1 + pG)pG + B[1 + 2(−1 + pG)pG]}) ,

B ′ = 1

PD

[−2
(
D(−1 + pG)pG

(
C + D + 2BpG − 2CpG − 2DpG − 2Bp2

G + 2Cp2
G + 2Dp2

G

)+ A2pG

(−1 + 3pG − 4p2
G + 2p3

G

)

−A
{
D

(
1 − 2pG + 2p2

G

)2 − (−1 + pG)pG

[ − 2C(−1 + pG)pG + B
(
1 − 2pG + 2p2

G

)]})]
,

C ′ = 1

PD

(
B2

(
1 − 2pG + 2p2

G

)2 − 2B(−1 + pG)pG

[ − 2A(−1 + pG)pG + D
(
1 − 2pG + 2p2

G

) + C
(
2 − 4pG + 4p2

G

)]

+C
{
C

(
1 − 2pG + 2p2

G

)2 − 2(−1 + pG)pG

[ − 2D(−1 + pG)pG + A
(
1 − 2pG + 2p2

G

)]})
,

D′ = 1

PD

{−2
(
C(−1 + pG)pG(C + D + 2ApG − 2CpG − 2DpG − 2Ap2

G + 2Cp2
G + 2Dp2

G

)+ B2pG

(−1 + 3pG − 4p2
G + 2p3

G

)

−B
{
C

(
1 − 2pG + 2p2

G

)2 − (−1 + pG)pG

[ − 2D(−1 + pG)pG + A
(
1 − 2pG + 2p2

G

)]})}
. (C6)
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PD is the distillation probability of success and is given by

PD = (B + C)2 + (A + D)2 − 2(A − B − C + D)2pG + 2(A − B − C + D)2p2
G. (C7)

For the case of pG = 1, Eqs. (C6) and (C7) are in accordance with [30].

[1] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[2] D. Pitkanen, X. Ma, R. Wickert, P. van Loock, and

N. Lütkenhaus, Phys. Rev. A 84, 022325 (2011).
[3] M. Curty and T. Moroder, Phys. Rev. A 84, 010304 (2011).
[4] N. Gisin, S. Pironio, and N. Sangouard, Phys. Rev. Lett. 105,

070501 (2010).
[5] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[6] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
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[31] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys.

Rev. Lett. 71, 4287 (1993).
[32] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger,

Phys. Rev. Lett. 80, 3891 (1998).
[33] C. Cabrillo, J. I. Cirac, P. Garcı́a-Fernández, and P. Zoller, Phys.

Rev. A 59, 1025 (1999).
[34] X.-L. Feng, Z.-M. Zhang, X.-D. Li, S.-Q. Gong, and Z.-Z. Xu,

Phys. Rev. Lett. 90, 217902 (2003).
[35] N. K. Bernardes, L. Praxmeyer, and P. van Loock, Phys. Rev. A

83, 012323 (2011).
[36] R. Renner, Int. J. Quantum Inf. 6, 1 (2008).
[37] C. H. Bennett and G. Brassard, in Proceedings of IEEE

International Conference on Computers, Systems and Signal
Processing (IEEE, New York, 1984), p. 175.

[38] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.
68, 557 (1992).

[39] D. Bruß, Phys. Rev. Lett. 81, 3018 (1998).
[40] H. Bechmann-Pasquinucci and N. Gisin, Phys. Rev. A 59, 4238

(1999).
[41] Chi-Hang Fred Fung, H. F. Chau, and H.-K. Lo, Phys. Rev. A

84, 020303 (2011).
[42] N. J. Beaudry, T. Moroder, and N. Lütkenhaus, Phys. Rev. Lett.

101, 093601 (2008).
[43] R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332

(2005).
[44] B. Kraus, N. Gisin, and R. Renner, Phys. Rev. Lett. 95, 080501

(2005).
[45] H. K. Lo, H. Chau, and M. Ardehali, J. Cryptol. 18, 133

(2005).
[46] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy,

Phys. Rev. Lett. 98, 060502 (2007).
[47] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and

J. Oppenheim, in Theory of Cryptography, edited by J. Kilian,
Lecture Notes in Computer Science Vol. 3378 (Springer,
Berlin/Heidelberg, 2005), pp. 386–406.

[48] R. Renner and R. König, in Theory of Cryptography Conference
(TCC) (Springer, Berlin, 2005), Vol. 3378, p. 407.

[49] J. Müller-Quade and R. Renner, New J. Phys. 11, 085006
(2009).

[50] I. Wolfram Research, Mathematica Edition: Version 8.0
(Wolfram Research, Champaign, IL, 2010).

052315-20

http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevA.84.022325
http://dx.doi.org/10.1103/PhysRevA.84.010304
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1080/09500340412331283633
http://dx.doi.org/10.1080/09500340412331283633
http://dx.doi.org/10.1103/PhysRevLett.92.047904
http://dx.doi.org/10.1103/PhysRevA.65.052310
http://dx.doi.org/10.1103/PhysRevA.65.052310
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1103/PhysRevLett.96.240501
http://dx.doi.org/10.1103/PhysRevLett.96.240501
http://dx.doi.org/10.1103/PhysRevA.79.042340
http://dx.doi.org/10.1103/PhysRevA.79.042340
http://dx.doi.org/10.1103/PhysRevA.81.052329
http://dx.doi.org/10.1103/PhysRevA.81.052329
http://dx.doi.org/10.1103/PhysRevA.81.052311
http://dx.doi.org/10.1103/PhysRevA.81.052311
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1364/OE.19.003004
http://dx.doi.org/10.1364/OE.19.003004
http://dx.doi.org/10.1103/PhysRevA.82.032304
http://dx.doi.org/10.1103/PhysRevA.82.032304
http://arXiv.org/abs/arXiv:1210.8042v1
http://dx.doi.org/10.1103/PhysRevA.76.050301
http://dx.doi.org/10.1103/PhysRevA.85.032313
http://dx.doi.org/10.1103/PhysRevA.85.032313
http://arXiv.org/abs/arXiv:1303.3456v1
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1140/epjd/e2010-00103-y
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.80.3891
http://dx.doi.org/10.1103/PhysRevA.59.1025
http://dx.doi.org/10.1103/PhysRevA.59.1025
http://dx.doi.org/10.1103/PhysRevLett.90.217902
http://dx.doi.org/10.1103/PhysRevA.83.012323
http://dx.doi.org/10.1103/PhysRevA.83.012323
http://dx.doi.org/10.1142/S0219749908003256
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevLett.81.3018
http://dx.doi.org/10.1103/PhysRevA.59.4238
http://dx.doi.org/10.1103/PhysRevA.59.4238
http://dx.doi.org/10.1103/PhysRevA.84.020303
http://dx.doi.org/10.1103/PhysRevA.84.020303
http://dx.doi.org/10.1103/PhysRevLett.101.093601
http://dx.doi.org/10.1103/PhysRevLett.101.093601
http://dx.doi.org/10.1103/PhysRevA.72.012332
http://dx.doi.org/10.1103/PhysRevA.72.012332
http://dx.doi.org/10.1103/PhysRevLett.95.080501
http://dx.doi.org/10.1103/PhysRevLett.95.080501
http://dx.doi.org/10.1007/s00145-004-0142-y
http://dx.doi.org/10.1007/s00145-004-0142-y
http://dx.doi.org/10.1103/PhysRevLett.98.060502
http://dx.doi.org/10.1088/1367-2630/11/8/085006
http://dx.doi.org/10.1088/1367-2630/11/8/085006


QUANTUM REPEATERS AND QUANTUM KEY . . . PHYSICAL REVIEW A 87, 052315 (2013)

[51] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[52] M. Eisaman, J. Fan, A. Migdall, and S. Polyakov, Rev. Sci.
Instrum. 82, 071101 (2011).

[53] T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and
Y. Yamamoto, New J. Phys. 8, 184 (2006).

[54] P. van Loock, N. Lütkenhaus, W. J. Munro, and K. Nemoto,
Phys. Rev. A 78, 062319 (2008).

[55] K. Azuma, N. Sota, R. Namiki, Ş. K. Özdemir, T. Yamamoto,
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