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Realization of holonomic single-qubit operations
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Universal single-qubit operations based on purely geometric phase factors in adiabatic processes are
demonstrated by utilizing a four-level system in a trapped single 40Ca+ ion connected by three oscillating
fields. Robustness against parameter variations is studied. The scheme demonstrated here can be employed as a
building block for large-scale holonomic quantum computations, which may be useful for large qubit systems
with statistical variations in system parameters.
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I. INTRODUCTION

Experimental study of quantum information processing
(QIP) has progressed much in recent years. In studies of
QIP using trapped ions, realization of small-scale computation
and entanglement generation with relatively high fidelity has
been reported [1], which reveals that there is no fundamental
obstacle to scaling a large number of ions. The upcoming
challenges are large-scale operations and high-fidelity gate
operations toward fault-tolerant quantum computation.

As a way to realize high-fidelity gate operations, quantum
gates and quantum computation using geometric phase factors
have recently been studied. This originates from holonomic
quantum computation (HQC), proposed by Zanardi and Rasetti
[2]. In HQC, degenerate multiple quantum states are utilized
and unitary operations are performed by varying the system
Hamiltonian along a closed path in the parameter space.
The final state in the HQC is dependent only on the global
property of the closed path; therefore, HQC is considered to
be robust against certain types of errors. Even when diabatic
evolutions of the system or nondegenerate quantum states
are used, similar advantages can be expected as long as the
unitary operations performed are determined by geometric
phase factors [geometric quantum computation (GQC) [3]].

There have been a number of experiments in different sys-
tems related to GQC [4–8]. It is known that universal quantum
computation can be realized with a combination of single-qubit
and two-qubit operations [9]. As demonstrations of two-qubit
operations in trapped-ion systems, the “geometric-phase gate”
by Leibried et al. [5] and the Mølmer-Sørensen gate [8,10,11]
have been realized. A gate fidelity of 99.3% has been realized
using such a scheme [8].

Single-qubit operations in trapped-ion systems have been
performed to date using a dynamical method with variable
pulse lengths and phases. By replacing such a method with
those that use geometric phases, gate operations that are robust
against variation of parameters such as pulse intensity and
lengths can be expected.

In this work, we report the realization of purely geometric
single-qubit operations using a four-level system in a single
40Ca+ ion. Three transitions in the four-level system are
excited either by three optical fields or by two optical
fields and one rf magnetic field. Rotation operations by
arbitrary angles along two different axes, x and z in the
Bloch sphere for the qubit, are demonstrated by utilizing
stimulated Raman adiabatic passage (STIRAP) in this four-

level system. Robustness against parameter variations is also
demonstrated.

This work is based on proposals using a tripod system
comprising one upper state and three lower states connected
by three oscillating fields [12–15]. There are two dark states in
the system, and those dark states are adiabatically manipulated
with the intensities and phases of the oscillating fields to
perform single-qubit operations.

There was also a proposal and demonstrations of single-
qubit operations using geometric phase factors using a two-
level system and square pulses [6,7]. However, such studies
have not reported an adiabatic (or holonomic) demonstration
of single-qubit operations using dark states.

II. PRINCIPLES FOR HOLONOMIC SINGLE-QUBIT
OPERATIONS

Here the formalization of the scheme is summarized based
on Kis and Renzoni [13] for later reference. A four-level sys-
tem comprising {|0〉,|1〉,|2〉,|u〉} is considered [see Fig. 1(a)].
|0〉 and |1〉 span a qubit manifold, while |u〉 represents an upper
state and |2〉 represents an auxiliary state used in STIRAP.
Three near resonant oscillating fields are applied to this system
between |u〉 and |k〉(k = 0,1,2), and the Hamiltonian in the
interaction picture with the rotating-wave approximation is
given as

H (t) = −h̄δ|u〉〈u| + h̄

2

2∑
k=0

[�k(t)|u〉〈k| + H.c.], (1)

where δ is the detuning of the lasers, which is assumed to be
common to all the three transitions. The Rabi frequencies for
the transitions between |u〉 and the qubit states are �0(t) ≡
�(t) cos θ1 (assumed to be real) and �1(t) ≡ �(t)eiφ1 sin θ1,
where a real quantity �(t) is the common envelope function.
θ1 = tan−1 |�1(t)/�0(t)| and φ1 = arg �1(t) are assumed to
be independent of time. The Rabi frequency between |u〉
and |2〉 is described as �2(t) ≡ |�2(t)|eiφ2(t) with φ2(t) =
arg �2(t).

The following states are useful for describing the
Hamiltonian and explaining the gate procedure: in the qubit
manifold, |C1〉 = cos θ1|0〉 + e−iφ1 sin θ1|1〉 and |D1〉 =
− sin θ1|0〉 + e−iφ1 cos θ1|1〉, and, in the total lower-state
manifold spanned by {|0〉,|1〉,|2〉}, |C2〉 = cos θ2(t)|C1〉 +
e−iφ2(t) sin θ2(t)|2〉 and |D2〉 = − sin θ2(t)|C1〉 + e−iφ2(t)
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FIG. 1. (Color online) (a) Level scheme of a four-level system used to implement holonomic single-qubit operations. (b) Pulse sequence
for holonomic single-qubit operations. (c) Level scheme used for 40Ca+ in the experiment. (d) Experimentally used pulse sequence. (e) Level
scheme that implements another four-level system containing one rf and two optical transitions, with qubit levels |0〉,|1〉 separated by an optical
frequency.

cos θ2(t)|2〉, where θ2(t) = tan−1 |�2(t)/�(t)|. Based on
these, the Hamiltonian can be simplified as follows:

H (t) = −h̄δ|u〉〈u| + h̄

2
�total(t)(|u〉〈C2| + H.c.), (2)

where �total(t) ≡ [�2(t) + |�2(t)|2]1/2. When δ = 0, this
Hamiltonian has four eigenvectors {|D1〉,|D2〉,|B+〉,|B−〉}
with eigenvalues of {0,0,h̄�total(t)/2, − h̄�total(t)/2}, respec-
tively, where |B±〉 = (|C2〉 ± |u〉)/√2.

We proof the ability to perform arbitrary single-qubit
operations by first starting from an arbitrary initial state
in the qubit manifold, |ψ0〉 ≡ α|0〉 + β|1〉, which can be
rewritten using |C1〉 and |D1〉 as |ψ0〉 = 〈C1|ψ0〉|C1〉 +
〈D1|ψ0〉|D1〉. This initial state will be transferred in the
first STIRAP sequence that makes use of |D2〉 [the left half
in Fig. 1(b), with θ2(t) : π/2 → 0 and φ2 = arg �2 = 0] to
the intermediate state |ψ1〉 = −〈C1|ψ0〉|2〉 + 〈D1|ψ0〉|D1〉.
This intermediate state will then be transferred using the
second STIRAP sequence [the right half in Fig. 1(b),
with θ2(t) : 0 → π/2 and φ2 = arg �2 = 
] to the final
state |ψ2〉 = ei
〈C1|ψ0〉|C1〉 + 〈D1|ψ0〉|D1〉, which can be
rewritten using the identity operator Î and the Pauli opera-
tors σ̂ = (σ̂x,σ̂y,σ̂z) on the computational manifold {|0〉,|1〉}
as |ψ2〉 = ei
/2[cos(
/2)Î + in · σ̂ sin(
/2)]|ψ0〉 with n =
(sin 2θ1 cos φ1, − sin 2θ1 sin φ1, cos 2θ1). This operation cor-
responds to a rotation by angle −
 around n, which
can be taken arbitrarily by selecting the values for θ1

and φ1; hence, arbitrary single-qubit operations can be
performed.

This scheme is based on adiabatic population transfer using
|D2〉, and diabatic transitions from this state to |B±〉 are
among the possible causes of infidelity in gate operations.
The probability for such diabatic transitions is calculated to be
on the order of max[2 ˙θ2(t)

2
/�2

total] [16], which should be set
to be much smaller than 1 to maintain high fidelity.

III. EXPERIMENTAL SETUP AND PROCEDURES

The experimental setup has been previously described [17],
and only a brief description is given here. A single 40Ca+ is
trapped in vacuum (6 × 10−9 Pa) using a linear Paul trap.
The trap used here is a conventional linear trap with an
operating frequency of 23 MHz and secular frequencies of
(ωx,ωy,ωz)/2π = (2.4,2.2,0.69) MHz. A bias magnetic field
of 2.9 × 10−4 T is applied to define a quantization axis,
which results in a Zeeman splitting of ∼4.9 MHz between
D5/2 sublevels. In experiments that employ three optical
fields, a titanium sapphire laser at 729 nm stabilized to a
high-finesse low-thermal-expansion cavity is used for the
excitation of ions between S1/2 and D5/2. The amplitudes and
frequencies of the three optical fields at 729 nm are changed
by varying the three rf fields that are combined and fed to an
acousto-optic modulator. The rf fields are generated by three
direct-digital synthesis (DDS) boards that are controlled by
a field-programmable gate array. Polarization of the optical
fields is adjusted so that there are polarizations both parallel
and perpendicular to the bias magnetic field; therefore, the
transition to be excited is selected by changing the frequencies
of the DDS boards. In experiments that employ two optical
fields and one rf magnetic field, an rf coil in the vicinity of
the trap is used to generate the rf field. The details of the rf
excitation procedure are similar to that described in [18].

We have chosen the S1/2–D5/2 electric-quadrupole tran-
sition of 40Ca+ for realizing the geometric phase gate. The
encoding of the tripod system to the sublevels in S1/2 and D5/2

is as follows: S1/2(mj = −1/2) as the “upper” state |u〉 and
three Zeeman sublevels in D5/2 (mj = −3/2,1/2, − 5/2) as
the lower states |0〉, |1〉, and |2〉, respectively [see Fig. 1(c)].
The reason that a level in S1/2 is adopted instead of one in
P3/2 as |u〉 is to avoid the effects of spontaneous emissions
when all the fields are resonant. However, unwanted couplings
between S1/2(mj = 1/2) and |0〉, |1〉, and |2〉 must still be
considered. Since these couplings are off resonance, varying
θ2(t) leads to time-dependent ac-Stark shifts that disturb
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the null eigenenergies of the qubit states. This effect was
numerically evaluated with realistic parameters, and the phase
accumulated during the gate operation was confirmed to be
smaller than 0.5 rad under typical experimental conditions in
the present work.

We essentially do not compensate such ac-Stark shifts for
the present work. In the experiments in Sec. IV and of rotations
by angle π in Sec. V, we adjust one of the detunings (one for
|u〉–|0〉) so that fringe shifts resulting from ac-Stark shifts are
apparently canceled. This cancellation depends on the details
of the STIRAP pulses, including such conditions as peak Rabi
frequencies, pulse shapes, and total time (it may not depend
on such conditions as input states or rotation angles, since
ac-Stark shifts do not depend on these). We also evaluate gate
performances without cancellation of this type by examining
rotations by angle π/2 with relatively low Rabi frequencies in
Secs. V and VIII.

The procedure for gate operations is as follows. First,
the ion is cooled to near the motional ground state with
Doppler cooling by 397 and 866 nm and with sideband
cooling of the axial motion by lasers at 729 and 854 nm. The
average motional quantum number along the axial direction
after sideband cooling is n̄z = 0.06. Optical pumping using
a 397-nm σ− transition is then performed to initialize the
ion in S1/2(mj = −1/2) (|u〉). The ion is transferred from
|u〉 to the computational manifold spanned by {|0〉,|1〉} using
square π pulses, and then a gate STIRAP pulse sequence
is applied between |0〉 and |1〉. The pulse shape of the gate
consists of partially overlapping sinusoidal curves and constant
values, as in Fig. 1(d). A step variation of φ2(t) by 
, which
brings a geometric phase factor, is given at the middle of the
gate sequence where |�2(t)| = 0. After the gate sequence,
a square π pulse is applied to map the state of |0〉 to |u〉. An
additional pulse may also be applied, depending on the element
of the density matrix to be observed. State discrimination
is performed by detecting fluorescence from the ion with a
photomultiplier tube during a period of 7 ms when 397- and
866-nm fields are applied [19].

The time dependence of the optical pulses is chosen as
follows [t1 = 0 = (1 − α)T , t2 = T , and t3 = (2 − α)T where
0 � α � 1]:

�2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (t < t0)

�2
max(1 − cos2 πt/2T ) (t0 � t < t2)

�2
max (t2 � t < t3)

0 (t � t3)

, (3)

|�2(t)|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (t < t0)

�2
2,max (t0 � t < t1)

�2
2,max cos2 π (t − t1)/2T (t1 � t < t3)

0 (t � t3)

, (4)

where �2
max and �2

2,max are the maximum values for �2(t)
and |�2(t)|2, respectively. In the experimental results given in
this article, the values of α were empirically chosen to be in
between 0.55 and 0.85 so that effective population transfer
was attained in experiments and/or numerical simulations.
It is noted that the values of α used in this article are not
thoroughly optimized ones but those that give relatively good
performances among the tested values.

IV. RESULTS FOR x AND z ROTATIONS

We show that arbitrary one-qubit operations can be realized
with the geometric method introduced here. This can be
accomplished by showing x and z rotations independently, be-
cause arbitrary operations can be decomposed into sequences
of such rotations.

The procedure for x rotations is as follows. The ion is
first prepared in |u〉 by sideband cooling and optical pumping,
then initialized to |0〉, and a STIRAP sequence is applied to
perform a geometric gate. After this, the populations of the
final states are analyzed by mapping the qubit states to the
optical transition using a rectangular π pulse on |i〉 ↔ |u〉
(i = 0,1,2). The populations in |2〉 and |u〉 are also measured
to verify that the gate operation is closed to the manifold
spanned by the qubit states {|0〉,|1〉}. �0 and �1 are adjusted
to be equivalent, and the peak values for (�0,�1,�2)/2π are
∼(125,125,170) kHz. The total time for the STIRAP sequence
is set to be ∼120 μs by taking appropriate account of the
adiabaticity. α = 0.85 is used for the results given in this
section.

Figure 2(a) shows the results for x rotations. A sinusoidal
oscillation of population between |0〉 and |1〉 is observed. The
sum of populations in the other states |2〉 and |u〉 is below
0.05 over the entire region, with which we confirm that the
rotation operations are almost limited to the computational
manifold spanned by {|0〉,|1〉}. The contrasts of the populations
of |0〉 and |1〉 are obtained by fitting to 0.951 ± 0.009 and
0.975 ± 0.008, respectively.

The procedure for observation of z rotations is similar to
Ramsey interferometry. A superposition of the qubit states
|0〉 and |1〉 is first prepared by application of a π/2 pulse
on |u〉–|1〉 and a π pulse on |u〉–|0〉. A z rotation is then
performed with STIRAP, which is followed by a π pulse on
|u〉–|0〉 and a π/2 pulse on |u〉–|1〉. The last pulse causes
an interference between |u〉 and |1〉, which is detected by
a projection measurement using fluorescence. Here the peak
values for (�0,�1,�2)/2π are set to be ∼(200,0,170) kHz and
the total time for the STIRAP sequence is ∼120 μs. Figure 2(b)
represents the results for z rotations, which shows a population
oscillation against 
 with an almost unit contrast. From a
least-squares fit, the contrast is obtained to be 0.937 ± 0.010.

V. EVALUATION OF FIDELITY

In order to investigate the action of gate operations more
quantitatively, we also performed estimation of gate fidelities
by using quantum state tomography. We performed fidelity
estimation in the following three cases: (1) x rotation by angle
π , (2) z rotation by angle π , and (3) Hadamard gate [rotation
around n = (1/

√
2,0, − 1/

√
2) in the Bloch sphere by angle

π ]. As explained before, general operations of the STIRAP
gate can be described as the following unitary operator:

ÛSTIRAP(θ1,φ1,
) ≡ ei
/2

[
cos




2
Î + in(θ1,φ1) · σ̂ sin




2

]
,

(5)

where n(θ1,φ1) ≡ (sin 2θ1 cos φ1,− sin 2θ1 sin φ1,cos 2θ1).
Using this general expression, the unitary operators for
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FIG. 2. (Color online) Results of single-qubit rotations (x and z rotations). Variations of population are plotted against the phase shift in
the middle of the gate pulse. The number of experiments per data points is (a and b) 200 for experiments using three optical transitions and (c
and d) 100 for those using one rf and two optical transitions. The error bars represent errors in projection measurements, which are derived as
standard deviations in binomial distributions with numbers of samples as given above. (a) Results for x rotations using three optical transitions.
Blue hollow circles, red filled circles, magenta crosses, and black asterisks represent the populations in |0〉; |1〉, |2〉; and |u〉; respectively. (b)
Results for z rotations using three optical transitions. The population in |0〉 is plotted. (c) Results for x rotations using one rf and two optical
transitions. Red filled circles (blue hollow circles) represent the populations in |1〉 and |2〉 when |0〉 (|1〉) is initially prepared. (d) Results for z

rotations using one rf and two optical transitions. The population in |1〉 and |2〉 is plotted.

the three cases given above are, respectively, written
as follows:

Ûx ≡ ÛSTIRAP(π/4,0,π ), (6)

Ûz ≡ ÛSTIRAP(0,0,π ), (7)

ÛH ≡ ÛSTIRAP(3π/8,0,π ). (8)

The initial states in the three cases are, respectively,
prepared as follows: (1) |ψ0x〉 ≡ |0〉, (2)|ψ0z〉 ≡ (−i|0〉 +
|1〉)/√2, and (3)|ψ0H 〉 ≡ |0〉. In order to take into account
imperfect preparation of these initial states, we performed
measurement of these states using the technique of quantum
state tomography. In the encoding adopted here, both the
two states |0〉 and |1〉 in the computational subspace are in the
same electronic state D5/2. In order to discriminate these two
states, we applied a mapping pulse between |0〉 and |u〉 before
performing fluorescence detection. The population out of the
computational manifold (population in |1〉 and |u〉) before
application of the mapping pulse, which is typically below
0.05 as described before, is ignored here for simplicity. The
mapping pulse itself produces a geometric phase relative to the
other states (|1〉 and |2〉), which should be taken into account

properly in the fidelity analysis. The mapping operation can
be described as follows:

R̂SWAP,0u ≡ −i|0〉〈u| − i|u〉〈0| + |1〉〈1| + |2〉〈2|. (9)

This corresponds to a rotation by angle π around the x axis in
the Bloch sphere of the two-level system {|0〉,|u〉}.

The density matrix after application of the mapping pulse
was reconstructed (using linear reconstruction) by fluores-
cence detection and an optional π/2 pulse prior to that.
The populations along three orthogonal axes in the Bloch
sphere, Px1i , Py1i , and Pz1i , are measured, where Px1i (Py1i)
is the population in D5/2 after the mapping pulse and a π/2
pulse with the phase −3π/2 (0) on |u〉–|1〉 and Pz1i is the
population in the D5/2 state immediately after the mapping
pulse. Using the Bloch vector r = (rx,ry,rz)= (1 − 2Px1i ,1 −
2Py1i ,1 − 2Pz1i), the density operator after the mapping pulse
is expressed as

ρ̂i,obs ≡ 1

2
Î + rx

2
(|u〉〈1| + |1〉〈u|) + ry

2
(−i|u〉〈1| + i|1〉〈u|)

+ rz

2
(|u〉〈u| − |1〉〈1|), (10)
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and by using this the initial density operator is described as
follows:

ρ̂i ≡ R̂
†
SWAP,0uρ̂i,obsR̂SWAP,0u. (11)

In a similar way, the final density operator just after STIRAP
gate operations, ρ̂f , is obtained in terms of populations Px1f ,
Py1f , and Pz1f (defined in the same way as above) after a
mapping pulse that follows the gate operation.

The gate fidelities in the three cases can be described using
the density operators and the unitary operators, as follows:

Fx ≡ tr(ρ̂f Ûxρ̂iÛ
†
x ), (12)

Fz ≡ tr(ρ̂f Ûzρ̂i Û
†
z ), (13)

FH ≡ tr(ρ̂f ÛH ρ̂iÛ
†
H ). (14)

The fidelities are explicitly written in terms of the initial and
final populations, as follows:

Fx = Px1i + Px1f − 2Px1iPx1f − Py1i − Py1f + 2Py1iPy1f

+Pz1i + Pz1f − 2Pz1iPz1f , (15)

Fz = Px1i + Px1f − 2Px1iPx1f + Py1i + Py1f − 2Py1iPy1f

−Pz1i − Pz1f + 2Pz1iPz1f , (16)

FH = Px1i + Px1f − 2Px1iPx1f + Py1i + Pz1f + 2Py1iPz1f

+Pz1i + Py1f − 2Pz1iPy1f − 1. (17)

In order to determine the confidence intervals of the fidelities,
we obtained variances of the fidelities considering propagation
of uncertainty based on the above expression, as follows:

V (Fx) = V (Px1i) + V (Px1f ) + 4P 2
x1iV (Px1f )

+ 4P 2
x1f V (Px1i)V (Py1i) + V (Py1f ) + 4P 2

y1iV (Py1f )

+ 4P 2
y1f V (Py1i)V (Pz1i) + V (Pz1f ) + 4P 2

z1iV (Pz1f )

+ 4P 2
z1f V (Pz1i),

V (Fz) = V (Fx),

V (FH ) = V (Px1i) + V (Px1f ) + 4P 2
x1iV (Px1f )

+ 4P 2
x1f V (Px1i)V (Py1i) + V (Pz1f ) + 4P 2

y1iV (Pz1f )

+ 4P 2
z1f V (Py1i)V (Pz1i) + V (Py1f ) + 4P 2

z1iV (Py1f )

+ 4P 2
y1f V (Pz1i),

where V (...) represents the variance of each quantity. The
variances of the populations [such as V (Px1i)] are simply
determined here as the variances in binomial distributions,
e.g., V (Px1i) = Px1i(1 − Px1i)/N , where N is the number of
experiments per one measurement condition. The confidence
intervals (68%) for the fidelities are determined as the square
roots of the variances of the fidelities.

Table I shows the results for the initial and final population
measurements. The measurements were performed in essen-
tially the same conditions as used in the previous section.
Using the measured populations, the fidelities are estimated
and shown in Table II. The second column in Table II shows
the fidelities reflecting both initial and final populations. We
should note that these values are largely affected by imperfect
initialization and analysis and therefore should be rather taken
as the lower limits for the fidelities.

TABLE I. Results of population measurements for fidelity es-
timation. The initial ({Px1i ,Py1i ,Pz1i}) and final ({Px1f ,Py1f ,Pz1f })
populations in the different three bases are measured for three
different types of gate operations (see the text for details). Each result
is obtained as the average of 1500 experiments.

Gate type Px1i Py1i Pz1i Px1f Py1f Pz1f

x-π 0.510 0.549 0.026 0.463 0.555 0.985
z-π 0.509 0.045 0.502 0.472 0.973 0.499
Hadamard 0.497 0.515 0.025 0.485 0.989 0.488

For the purpose of reference, we also estimated the fidelities
when ideal initial or final states are assumed (the third and
fourth columns in Table II, respectively). The fidelities for
ideal initial states (the third column) represent the goodness of
the generated states without considering initialization errors.
These values that are better than those in the second column
can be considered as the upper limits for the fidelities (when all
operations other than the gates are assumed to be perfect). The
fidelities for ideal final states (the fourth column) represent
the goodness of the initialization process. These values
support the observation that the values in the second column
are largely affected by imperfect initialization (and possibly
imperfect analysis).

We also performed fidelity analysis for STIRAP gates with
rotation angles of π/2, which are more sensitive to coherence
between STIRAP and square-pulse operations and hence to
ac-Stark shifts. Table III shows the results for the initial
and final population measurements for x and z gates. Either
| + x〉 ≡ (|0〉 + |1〉)/√2 or | + z〉 ≡ |0〉 as specified is used as
the initial state. It should be noted that this time ac-Stark shifts
are not compensated at all, and relatively small values of the
Rabi frequencies are used to suppress their effect. The peak
values for (�0,�1,�2)/2π are set to be ∼(33.5,33.7,47.0)
kHz for x gates and ∼(47.3,0,47.2) kHz for z gates. The total
time for the STIRAP sequence is ∼290 μs, and α = 0.75
is used. The results of population measurements are shown
in Table III. Using these populations, the fidelities and their
confidence intervals are estimated in the same way as above
and shown in Table IV.

It should be noted that the fidelities in the case of ideal final
states in Table IV are higher than what are given in Table II.
When taking the results in Table III, we used a noise eater
with a sample and hold capability to reduce fluctuations in the

TABLE II. Estimated fidelities. The confidence intervals are for
68% confidence level. The second column shows fidelities calculated
from the measured initial and final populations. The third and fourth
columns show estimated fidelities when ideal initial or final states are
assumed, respectively, for the purpose of reference (see the text for
details).

Fidelity Fidelity
(ideal initial (ideal final

Gate type Fidelity states) states)

x-π 0.965 ± 0.038 0.985 ± 0.026 0.974 ± 0.027
z-π 0.931 ± 0.038 0.973 ± 0.036 0.955 ± 0.039
Hadamard 0.965 ± 0.038 0.989 ± 0.026 0.975 ± 0.027
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TABLE III. Results of population measurements for fidelity
estimation of x and z gates with π/2 rotations. Either | + x〉 ≡
(|0〉 + |1〉)/√2 or | + z〉 ≡ |0〉 as specified is used as the initial state.
Each result is obtained as the average of 1500 experiments. Note that
the same results are used as the initial populations for x and z gates.

Gate type Px1i Py1i Pz1i Px1f Py1f Pz1f

x-π/2(| + x〉 prep.) 0.009 0.505 0.515 0.029 0.611 0.622
x-π/2(| + z〉 prep.) 0.526 0.540 0.006 0.595 0.916 0.363
z-π/2(| + x〉 prep.) 0.009 0.505 0.515 0.592 0.055 0.515
z-π/2(| + z〉 prep.) 0.526 0.540 0.006 0.546 0.534 0.041

amplitudes of the square pulses. We speculate that this helped
improve the operational fidelity of the initialization.

VI. RESULTS FOR QUBIT ENCODING TO OPTICALLY
SEPARATED LEVELS

We have also attempted encoding of the qubit into op-
tically separated levels. Use of optically separated levels
may be advantageous when considering a combination with
optical two-qubit gate schemes [8,10,11] and use of less
magnetic-field-sensitive transitions, such as S1/2(mJ = 1/2)–
D5/2(mJ = 1/2). This encoding uses an rf transition between
the ground Zeeman sublevels [18]. Figure 1(e) shows the
levels used for this encoding. {|0〉,|1〉,|2〉,|u〉} are encoded
into S1/2(mJ = 1/2), D5/2(mJ = −3/2), D5/2(mJ = −5/2),
and S1/2(mJ = −1/2), respectively.

Figure 2(c) shows the results for x rotations with qubit
encoding to optically separated levels. Blue hollow circles
(red filled circles) represent the populations in |0〉 when
|0〉 (|1〉) is initially prepared. The contrasts are 0.967 ±
0.012 and 0.916 ± 0.014 for the preparation of |0〉 and |1〉,
respectively. Figure 2(d) shows the result for z rotations,
with a contrast of 0.886 ± 0.022. In these results, the peak
values of (�0,�1,�2)/2π are set to be ∼(130,100,100) and
∼(130,0,100) kHz for x and z rotations, respectively. The total
time for the STIRAP sequence is approximately 128 μs.

In ideal cases of x rotations, the peak values of �0

and �1 should be equal, which is not the case in the
experiment described above. For a technical reason concerning
the difference in the amplitude modulation of rf and optical
fields, the temporal shapes of �0 and �1 are not proportional
to each other in the present setup. The peak values given above
are determined empirically so that they give correct x rotations.

TABLE IV. Fidelities for gates with π/2 rotations estimated from
measured populations in the previous table.

Fidelity Fidelity
(ideal initial (ideal final

Gate type Fidelity states) states)

x-π/2(| + x〉 prep.) 0.960 ± 0.039 0.971 ± 0.025 0.991 ± 0.026
x-π/2(| + z〉 prep.) 0.905 ± 0.037 0.916 ± 0.026 0.994 ± 0.026
z-π/2(| + x〉 prep.) 0.936 ± 0.038 0.945 ± 0.026 0.991 ± 0.026
z-π/2(| + z〉 prep.) 0.952 ± 0.038 0.959 ± 0.026 0.994 ± 0.026

This imperfection may be avoided by simply calibrating the
amplitude modulation process for either the rf or optical field
so that �0 and �1 give exactly the same time dependency.

VII. DEMONSTRATION OF ROBUSTNESS

The feature of the geometric phase gate is that it is expected
to be robust against variations in the pulse area, namely, the
Rabi frequency and the pulse length. To study this feature,
two experiments were conducted. One is the measurement
of x rotations with variation of the peak Rabi frequency and
the illumination period. The other is the measurement of z

rotations with variation of the peak Rabi frequency, while the
illumination period is held constant. The ratios of the peak Rabi
frequencies are held constant in each case. Both experiments
are performed by measuring population oscillations as the
rotation angle φ2 is varied.

The results for the former experiment are shown in
Figs. 3(a) and 3(b) for three values of the illumination period,
with fringe contrasts and shifts, respectively. The ratios of the
Rabi frequencies are held constant, and the peak values of
�0/2π are shown in the horizontal axes as representatives of
the Rabi frequencies. α = 0.55 was used for the results given
in Fig. 3, which gave relatively high contrasts for the case of
�2/2π ∼ 20 kHz. There is a region (above 10–30 kHz) over
which the absolute values of the fringe contrasts are almost
independent of the Rabi frequency, which demonstrates the
robustness. The fringe shifts are expected to start from zero
and increase quadratically as the Rabi frequency is increased
due to the increase of ac-Stark shifts. The observed shifts
shown in Fig. 3(b) basically follow this expectation.

The results for the latter experiment are shown in Figs. 3(c)
and 3(d) with fringe contrasts and shifts, respectively. The
fringe contrasts do not change appreciably as the peak Rabi
frequency is varied in the region above 20 kHz.

We have performed numerical simulations trying to explain
the loss of fringe contrasts and the shifts. Simulations are
performed using a Liouville equation with decay terms rep-
resenting laser-frequency and magnetic-field fluctuations. We
fully take into account ac-Stark shifts due to different Zeeman
components and electric-dipole-allowed transitions (S1/2–
P1/2, S1/2–P3/2, and D5/2–P3/2) as time-dependent variations
of the detunings. The results are shown as curves in Fig. 3,
where overall qualitative and partial quantitative agreements
between experimental and numerical results are obtained.

VIII. DISCUSSIONS

The possible factors for loss of fidelity in the previously
described results include laser frequency and magnetic-field
fluctuations. The laser linewidth in the current setup is
∼300 Hz, and the magnetic-field fluctuations correspond to
fluctuations of resonance frequencies of up to ∼30 Hz. The
effects of thermal distribution of motional quantum numbers
and intensity fluctuations are negligible, because the scheme
used here is robust against variations in Rabi frequencies.

We performed numerical simulations (similar to what is
described in the previous section) to evaluate the fidelity of
some of the gates given in Sec. V. For x rotation by angle π

and z rotation by angle π , the dominant infidelity factor was the
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FIG. 3. (Color online) Demonstration of the robustness of single-qubit operations. Each point represents the fringe contrast and shift of
the population oscillation obtained by varying the rotation angle of a certain gate operation. Here the rotation angle is varied from 0 to 2π in
17 steps, and the number of experiments per angle step is 50. The errors in the population measurements are estimated in the same way as in
Fig. 2, and the fringe contrasts and shifts are obtained through weighted fits considering those errors. The error bars in the figure represent
errors in the fitted parameters. α = 0.55 is used here. (a) Fringe contrasts and (b) shifts for x rotations as the peak Rabi frequencies are varied.
Here the ratios of the peak values are fixed. The horizontal axis represents the peak value of �2, and the blue circles, red triangles, and green
squares represent the results for pulse durations of 145, 290, and 435 μs, respectively. Numerically calculated results for pulse durations of
145, 290, and 435 μs are also plotted as blue solid curves, red dashed curves, and green dotted curves, respectively. (c) Fringe contrasts and
(d) shifts for z rotations as the peak Rabi frequencies are varied. The ratios of the peak values are fixed. Numerically calculated results are also
plotted as a blue solid curve.

effect of magnetic field fluctuations (∼1%). Infidelity due to
diabaticity was estimated to be ∼0.2%. The contribution from
laser-frequency fluctuations in this case was below 0.1%. This
can be explained by the fact that the scheme is not sensitive
to one-photon detunings but only to two-photon detunings (as
will be described later in this section). The contribution from
laser-frequency fluctuations may be larger when the encoding
as in Sec. VI is used. We compensated ac-Stark shifts in this
case by detuning one of the beams as described before. The
possible fidelity loss from not performing compensation would
amount to 20–30% in our simulation.

For the results of x and z rotations by angle π/2, the largest
infidelity factor was diabaticity (2–5%), and the effect of
magnetic-field fluctuations was 1–3%. Although no ac-Stark-
shifts compensation was performed in this case, infidelity due
to ac-Stark shifts was as small as 0–1%, and the effect of
laser-frequency fluctuations was 0.2–0.3%.

The scheme demonstrated here is useful not only for
atomic systems (neutral or ionic) but also for other systems,
including solid-state systems. The scheme is effective for
those systems where the coherence time is relatively long,

but inhomogeneities of the excitation field intensities cannot
be avoided, or for those where slow intensity fluctuations
of excitation fields occur. It can also be used effectively in
assuring equal operations in a large ensemble of particles. The
requirements for the scheme are that a sufficient number of
levels are available for implementation and that energy shifts
due to excitation fields (such as ac-Stark shifts) can be avoided.

Elimination of ac-Stark shifts is not a straightforward task
for the scheme presented here, since a number of fields with
time-dependent amplitudes are used. It can be confirmed from
numerical simulations that the operations of the STIRAP
gates are not sensitive to one-photon detunings (i.e., detunings
for |i〉–|u〉 where i = 0,1, and 2) but to every two-photon
detuning, and hence all relative shifts between two of |0〉,
|1〉, and |2〉 should be minimized. This might be relatively
complicated for, e.g., 40Ca+, since, in addition to adjacent
Zeeman components in S1/2–D5/2, dipole-allowed transitions
such as S1/2–P1/2, S1/2–P3/2, and D5/2–P3/2 also give rise to
appreciable ac-Stark shifts [20].

The scheme demonstrated here realizes single-qubit opera-
tions that are in general noncommutable to each other by using

052307-7



K. TOYODA, K. UCHIDA, A. NOGUCHI, S. HAZE, AND S. URABE PHYSICAL REVIEW A 87, 052307 (2013)

adiabatic manipulation of dark states. These amount to im-
plementations of noncommutable (non-Abelian) holonomies,
which can be building blocks of HQC by Zanardi and
Rasetti [2] and lead to application in other fields, including
neutral-atom systems [21].

Note added in proof. Recently we became aware of related
experimental reports on nonadiabatic implementations of non-
Abelian holonomic gates [22,23].
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