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Protected gates for superconducting qubits

Peter Brooks, Alexei Kitaev, and John Preskill
Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA

(Received 21 February 2013; published 6 May 2013)

We analyze the accuracy of quantum phase gates acting on “0-π qubits” in superconducting circuits, where the
gates are protected against thermal and Hamiltonian noise by continuous-variable quantum error-correcting codes.
The gates are executed by turning on and off a tunable Josephson coupling between an LC oscillator and a qubit or
pair of qubits; assuming perfect qubits, we show that the gate errors are exponentially small when the oscillator’s
impedance

√
L/C is large compared to h̄/4e2 ≈ 1 k�. The protected gates are not computationally universal

by themselves, but a scheme for universal fault-tolerant quantum computation can be constructed by combining
them with unprotected noisy operations. We validate our analytic arguments with numerical simulations.
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I. INTRODUCTION

Building a scalable quantum computer is a formidable
challenge because quantum systems decohere readily and
because their interactions are hard to control accurately,
yet we hope to succeed someday by prudently applying
the principles of quantum error correction and fault-tolerant
quantum computing. In the standard “software” approach to
quantum fault-tolerance [1], the deficiencies of noisy quantum
hardware (if not too noisy) are overcome through clever circuit
design, while in the alternative “topological” approach [2], the
hardware itself is intrinsically resistant to decoherence. Both
approaches exploit the idea that logical qubits can be stored and
processed reliably when suitably encoded in a quantum system
with many degrees of freedom; perhaps both approaches
will be employed together in future quantum computing
systems.

The best known version of the topological approach is based
on non-Abelian anyons, with quantum information stored in
the fusion spaces of the anyons and processed by braiding
the anyons, but it is important to search for other ways
to realize quantum hardware such that intrinsic robustness
results from how the information is physically encoded. One
intriguing possibility is to use superconducting circuits for
this purpose. Specifically, several authors [3–5] have proposed
designs for a superconducting “0-π qubit,” a circuit containing
Josephson junctions. The circuit’s energy is a function of the
superconducting phase difference θ between the two leads
of the circuit, and there are two nearly degenerate ground
states, localized near θ = 0 and θ = π , respectively. The
splitting of this degeneracy is exponentially small as a function
of extensive system parameters, and stable with respect to
weak local perturbations. Thus the 0-π qubit should be highly
resistant to decoherence arising from local noise.

For reliable quantum computing we need not just very
stable qubits, but also the ability to apply very accurate
nontrivial quantum gates to the qubits. A method for achieving
protected single-qubit and two-qubit phase gates acting on
0-π qubits, exploiting the error-correcting properties of a
continuous-variable quantum code [6], was suggested in [5],
and it was claimed that the gate errors can be exponentially
small as a function of extensive system parameters. In this
paper we further develop and explore the ideas behind this
protected gate.

Protected phase gates are executed by turning on and off
a tunable Josephson coupling between an LC oscillator and
a qubit or pair of qubits. Assuming the qubits are perfect,
we show, using analytic arguments validated by numerical
simulations, that the gate errors are exponentially small
when the oscillator’s impedance

√
L/C is large compared

to h̄/4e2 ≈ 1 k�, where L is the inductance and C is the
capacitance of the oscillator. The gates are robust against small
deformations of the device Hamiltonian and against small
thermal fluctuations of the oscillator. The very large inductance
in the superconducting oscillator, which is crucial for the high
gate accuracy, may be quite challenging to achieve in practice,
but the potential rewards are correspondingly substantial.

The internal structure of the 0-π qubit is not relevant to
our analysis, but for completeness we nevertheless explain
in Sec. II the idea behind the qubit design proposed in [5],
which also requires a large inductance in a superconducting
circuit. We describe how a protected phase gate is executed
in Sec. III, and in Sec. IV we outline our strategy for
estimating the gate accuracy. We review the properties of
continuous-variable quantum error-correcting codes in Sec. V,
and explain in Sec. VI how the code provides protection
against imperfect timing in the pulse that executes the gate.
We analyze contributions to the gate error due to diabatic
transitions and squeezing in Sec. VII and Sec. VIII, then
compare our predictions with numerical simulations in Sec. IX.
We discuss robustness with respect to thermal effects in Sec. X
and with respect to Hamiltonian perturbations in Sec. XI. In
Sec. XII we explain how to obtain a complete scheme for
universal fault-tolerant quantum computation by augmenting
the protected phase gates with measurements and unprotected
noisy phase gates. Section XIII contains our conclusions, and
some further details are contained in the Appendixes.

II. THE 0-π QUBIT

For most of this paper we may treat the 0-π qubit as a black
box, disregarding its internal structure. But here we will briefly
explain the concept underlying the proposal in [5].

We consider a two-lead superconducting circuit, whose
energy E(θ ) is a function of the phase difference θ between
the two leads. Here θ is a periodic variable with period 2π , but
for a suitably constructed circuit, E(θ ) will actually be very
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FIG. 1. (Color online) The 0-π qubit. The energy E(θ ) of a
superconducting circuit is a periodic function with period π of the
phase difference θ between its two leads, aside from exponentially
small corrections. The two basis states {|0〉,|1〉} of the qubit, localized
near the minima of the energy at θ = 0 and θ = π , respectively, are
nearly degenerate.

nearly a function with period π , apart from exponentially small
corrections. This function has minima at θ = 0 and θ = π ,
separated by a high barrier, so that there are two well-localized
states centered at θ = 0 and θ = π , respectively, which we
may take to be the basis states |0〉 and |1〉 of an encoded qubit,
as shown in Fig. 1. The high tunneling barrier suppresses
bit-flip errors, but the key feature of the qubit is that the π

periodicity, and hence the degeneracy of the two states, is
robust against generic local perturbations, so that dephasing
of coherent superpositions of |0〉 and |1〉 is also highly
suppressed.

To understand the qubit’s properties, first consider the
four-lead circuit shown in Fig. 2. This circuit has two identical
rungs, connected by a large capacitance C1. Each rung consists
of a Josephson junction, with Josephson energy J and intrinsic
capacitance C, connected in series with an inductance L,
chosen such that

√
L/C is large compared to the natural unit of

impedance h̄/(2e)2 ≈ 1.03 k�, and hence much larger than
its “geometric” value 4π/c ≈ 377� (where c is the speed
of light), the impedance of free space. Achieving such a
“superinductance” may be a serious challenge, but we take
it for granted here that it is possible. The properties of a single
rung, which can operate as an adiabatic switch when J varies,
is discussed in more detail in Appendix A.

We denote the value of the superconducting phase on the
circuit’s four leads as θ1, θ2, θ3, θ4 as shown, and the phase
on either side of the capacitor connecting the rungs by ϕ1,
ϕ2. Then the phase ϕ+ = (ϕ1 + ϕ2)/2 is insensitive to the
value of the capacitance C1, which we assume is much larger
than C. Therefore the sum ϕ+ is a “light” variable with large

FIG. 2. Two-rung superconducting circuit underlying the 0-π
qubit. If

√
L/C is large, C1 is large compared to C, and JC

is not too large, then the circuit’s energy is a function of the
combination of phases (θ2 + θ4) − (θ1 + θ3), aside from corrections
that are exponentially small in

√
L/C.

fluctuations (assuming JC is not too large), while in contrast
the difference ϕ− = ϕ1 − ϕ2, which does feel the effect of the
large capacitance C1, is a well-localized “heavy” variable. We
assume that phase slips through the inductors are suppressed,
so that we may regard ϕ± as real variables rather than periodic
phase variables with period 2π .

A circuit with capacitance Cconv and inductance Lconv has
the Hamiltonian,

H = q2

2Cconv
+ �2

2Lconv
, (1)

where q is the charge on the capacitor and � is the magnetic
flux linking the circuit. We use the subscript “conv” to
indicate that capacitance and inductance are expressed here
in conventional units, while we will find it more convenient to
use rationalized units such that

C = Cconv/(2e)2, L = Lconv/(h̄/2e)2, (2)

so that

H = Q2

2C
+ ϕ2

2L
, (3)

where Q = q/2e is charge expressed in units of the Cooper
pair charge 2e, and ϕ = (2e/h̄)� is the superconducting
phase, such that ϕ = 2π corresponds to the quantum h/2e

of magnetic flux. Then [ϕ,Q] = i, and√
L/C =

√
Lconv/Cconv/(h̄/4e2)

≈
√

Lconv/Cconv/(1.03 k�), (4)

is dimensionless. The ground state of the Hamiltonian Eq. (3),
with energy E0 = 1/2

√
LC, has the Gaussian wave function

ψ(ϕ) such that

|ψ(ϕ)|2 ∝ e−ϕ2/2〈ϕ2〉, (5)

where

〈ϕ2〉 = 1

2

√
L

C
, (6)

and hence

〈cos ϕ〉 = e−〈ϕ2〉/2 = exp

(
− 1

4

√
L

C

)
. (7)

For
√

L/C � 1, the ground-state wave function is very broad
and the wiggles of the cosine nearly average out aside from an
exponentially small correction.

The effective capacitance controlling the phase ϕ+ is Ceff =
2C and the effective inductance is Leff = L/2. Therefore, in
the circuit’s ground state we have

〈ϕ2
+〉 = 1

2

√
Leff

Ceff
= 1

4

√
L

C
. (8)

The dependence of the Josephson energy on the strongly
fluctuating light variable ϕ+ is proportional to

〈cos ϕ+〉 = exp

(
− 1

8

√
L

C

)
, (9)

which is negligible when
√

L/C is large. We therefore
need only consider the dynamics of the well-localized heavy
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FIG. 3. The circuit for the 0-π qubit is obtained from the circuit
in Fig. 2 by twisting one of the rungs and connecting the leads,
thus identifying θ2 with θ4 and θ1 with θ3. In addition, another large
capacitance is added to further suppress tunneling events that change
θ2 − θ1 by π .

variable φ−, which locks to the value,

φ− = (θ4 − θ1) − (θ3 − θ2) = (θ2 + θ4) − (θ1 + θ3), (10)

determined by the phases on the leads, so that the energy stored
in the circuit is

E = f (θ2 + θ4 − θ1 − θ3) + O

(
exp

(
− 1

8

√
L

C

))
, (11)

where f (θ ) is a periodic function with period 2π .
Now, to devise a qubit, we twist the upper rung relative

to the lower one and connect the leads as shown in Fig. 3,
thus identifying θ2 with θ4 and θ1 with θ3. In addition, we
add another large capacitance to ensure that tunneling events
changing θ2 − θ1 by π are heavily suppressed. The energy of
the resulting circuit is

E = f (2(θ2 − θ1)) + · · · , (12)

where the ellipsis represents exponentially small corrections.
Thus the energy is very nearly a periodic function with period
π of the phase difference θ2 − θ1, with two nearly degenerate
minima as in Fig. 1.

This robust degeneracy derives from the “superinducting”
properties of each rung, i.e., the large value of

√
L/C. One

way to achieve a superinductor, suggested in [5], is to construct
a long chain of N Josephson junctions, each with Josephson
coupling J̄ and capacitance C̄. Then the inductance of the
chain is linear in N , and the capacitance is proportional to
1/N , so

√
L/C ∝ N , and the breaking of the degeneracy is

exponentially small in the chain length. This suppression arises
because the correction terms in Eq. (12) that break the π

periodicity are associated with quantum tunneling from one
end to the other in the two-rung ladder. We also require J̄ C̄

to be large, to suppress phase slips due to tunneling across the
chain, thus ensuring that ϕ+ can be regarded as a real variable
rather than a periodic variable with period 2π .

An impedance
√

L/C ≈ 20 has been achieved using long
chains of devices [7–9]. Another possibility for achieving large√

L/C is to use a long wire, thick enough to suppress phase
slips, built from an amorphous superconductor with a large
kinetic inductance. Whatever method is used, reaching, say,√

L/C of order 100 may be quite challenging, but in this paper
we take it for granted that a robust 0-π qubit can be realized.

In fact, our scheme for implementing accurate quantum gates
will also be based on superinducting circuits.

We will need to be able to measure the qubit, in either the
standard {|0〉,|1〉} basis (measurement of the Pauli operator
Z) or in the dual basis {|0〉 ± |1〉} (measurement of the
Pauli operator X). In principle the Z measurement could be
performed by connecting the two leads of the qubit with a
Josephson junction, while inserting 1/4 of a flux quantum
through the loop; then the current through the junction is
proportional to sin(θ2 − θ1 − π/2), with sign dependent on
whether θ2 − θ1 is 0 or π .

For measuring X, we envision “breaking” the connection
between θ1 and θ3 and then measuring the charge conjugate to
the phase difference θ1 − θ3. The energy of the circuit is f (θ1 +
θ3 − 2θ2), so that if θ1 advances adiabatically by 2π with θ3

fixed, then θ2 advances by π ; if X = 1 the wave function
is invariant and if X = −1 the wave function changes sign.
Correspondingly, the dual charge is either an even or odd
multiple of 1/2. In practice, the X and Z measurements are
bound to be noisy, but the limitations on measurement accuracy
can be overcome by repeating the measurements or by using
appropriate coding schemes, as we describe in Sec. XII.

III. PHASE GATE

Following [5], we will explain how to execute with high
fidelity the single-qubit phase gate exp(i π

4 Z) and the two-qubit
phase gate exp(i π

4 Z ⊗ Z). These gates are not sufficient by
themselves for universal quantum computation, but we will
discuss in Sec. XII how they can be used as part of a universal
fault-tolerant scheme.

First, for contrast, consider an example of an unprotected
single-qubit gate implementation. As shown in Fig. 4 we
could close a switch that couples the qubit for time t to
a Josephson junction with Josephson coupling J , in effect
turning on a term J cos θ = JZ in the Hamiltonian, where
θ ∈ {0,π} is the phase difference across the qubit. After time t

the unitary transformation exp(−itJZ) has been applied. Thus
by choosing the time t appropriately we can rotate the qubit
about the z axis by any desired angle. However, this gate is
sensitive to errors in the pulse that closes and opens the switch,
and to other fluctuations in the circuit parameters.

The protected single-qubit phase gate is executed as shown
in Fig. 5 by coupling the qubit to a “superinductive” LC circuit
via a switch that pulses on and off. The switch is actually

FIG. 4. A phase gate can be applied to a qubit by coupling it to a
Josephson junction, but the gate is not protected against pulse errors
and other noise sources.
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FIG. 5. A protected phase gate is executed by coupling a qubit (or
a pair of qubits connected in series) to a “superquantum” LC circuit
with

√
L/C � 1.

a tunable Josephson junction, which can be realized, as in
Fig. 6, by a loop containing two identical junctions, each with
Josephson coupling J , linked by the magnetic flux (η/2π )�0,
where �0 = h/2e is the flux quantum. The Josephson energy
of this tunable junction is

E(θ,η) = −J cos(θ − η/2) − J cos(θ + η/2)

= −2J cos(η/2) cos θ = −Jeff(η) cos θ, (13)

where θ is the phase difference between the two leads on the
loop. Thus the switch is “on” for η = 0 and “off” for η = π .
The “off” setting can be fairly soft—it is good enough for Jeff

to be comparable to 1/L rather than strictly zero—while in the
“on” position we require JeffC to be large. The inductance L

and capacitance C of the circuit are unrelated to the inductance
and capacitance for the 0-π qubit discussed in Sec. II, though
we will again demand that

√
L/C � 1. From now on we will

assume the 0-π qubit is perfect, and will focus on realizing the
robust phase gate under this assumption.

Using the same normalization conventions as in Sec. II, the
Hamiltonian for the circuit can be expressed as

H (t) = Q2

2C
+ ϕ2

2L
− J (t) cos(ϕ − θ ), (14)

where now J (t) is the time-dependent effective Josephson
coupling of the tunable junction, θ is the phase difference
across the qubit, and ϕ is the phase difference across the
inductor. We assume that phase slips through the circuit are
strongly suppressed, so that ϕ can be regarded as a real variable
rather than a periodic phase variable—when ϕ winds by 2π

the flux linking the LC circuit increases by one flux quantum.
Depending on whether the state of the qubit is |0〉 or |1〉,

FIG. 6. An effective Josephson junction can be tuned by adjusting
the flux (η/2π )�0 inserted in a circuit containing two identical
junctions.

FIG. 7. (Color online) The profile of the tunable Josephson
coupling J (t) in the execution of the protected phase gate.

the phase θ is either 0 or π ; hence, the Hamiltonian can be
expressed as

H0,1(t) = Q2

2C
+ ϕ2

2L
∓ J (t) cos ϕ, (15)

with the ∓ sign conditioned on the qubit’s state.
Suppose for now that the initial state |ψ in〉 of the oscillator

is its ground state, a Gaussian wave function with 〈ϕ2〉 =
1
2

√
L/C and 〈Q2〉 = 1

2

√
C/L. (Other harmonic oscillator

energy eigenstates will be considered in Sec. X.) Because√
L/C � 1, the wave function is broad in ϕ space and narrow

in Q space. Hence when the switch pulses on, the contribution
to the expectation of the energy arising from the cosine
potential is highly suppressed by the factor,

〈cos ϕ〉 = e−〈ϕ2〉/2 = exp

(
− 1

4

√
L

C

)
. (16)

Correspondingly, the energy is very insensitive to the state of
the qubit, which determines the sign of the cosine potential.
This suppression factor determines the characteristic scale of
the error in the phase gate.

Schematically, the tunable Josephson coupling J (t) has the
form shown in Fig. 7—it starts at zero, ramps on smoothly,
maintains the value J0 for a time t ≈ L/π , and then ramps off
smoothly. The characteristic time τJ for the coupling to ramp
on and off is subject to some constraints which we will specify
shortly. With J0 at its steady-state value, phase slips (tunneling
events between successive minima of the cosine potential) are
suppressed by the WKB factor,

exp

(
−

∫ 2π

0
dϕ

√
2J0C(1 − cos ϕ)

)
= exp(−8

√
J0C).

(17)

We assume that
√

J0C is large enough so that phase slips can
be safely neglected. In addition, we assume that J (t) ramps up
slowly enough to prepare adiabatically the ground state in each
local minimum of the cosine potential, yet quickly enough to
prevent the state from collapsing to just a few local minima
with the smallest values of ϕ2/2L. Thus, as J (t) turns on, the
initial state of the oscillator evolves to become a “grid state” as
shown in Fig. 8, a superposition of narrowly peaked functions
governed by a broad envelope function. The width of the broad
envelope is 〈ϕ2〉 ≈ 1

2

√
L/C � 1 as for the oscillator’s initial

state, while the width of each narrow peak is 〈(ϕ − ϕ0)2〉 ≈
1
2

√
1/J0C � 1, the width of the ground state supported near

the local minimum of the cosine potential.
If the state of the 0-π qubit is |0〉 and the coefficient of the

cosine in Eq. (15) is negative, then the narrow peaks occur
where ϕ is an even multiple of π . We denote this grid state of
the oscillator as |0C〉; the subscript stands for “code,” since as
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FIG. 8. (Color online) Coupling the qubit to the oscillator
prepares a grid state in ϕ space, a superposition of narrowly peaked
functions governed by a broad envelope function. The peaks occur
where ϕ is an even multiple of π if the qubit’s state is |0〉, and where
ϕ is an odd multiple of π if the qubit’s state is |1〉.

we will explain latter this state can be regarded as a basis state
for a quantum error-correcting code. If the state of the qubit is
|1〉 and the coefficient of the cosine is positive, then the narrow
peaks occur where ϕ is an odd multiple of π ; in that case we
denote the grid state as |1C〉. Thus, if the initial state of the 0-π
qubit is a|0〉 + b|1〉, then when J (t) turns on the joint state of
the qubit and oscillator evolves according to

(a|0〉 + b|1〉)|ψ in〉 → a|0〉 ⊗ |0C〉 + b|1〉 ⊗ |1C〉. (18)

A diabatic transition that excites the oscillator in the cosine
well is most likely to occur while J (t)C is approximately one
and the frequency of oscillations in the well is approximately
1/C. Landau-Zener theory therefore indicates that the proba-
bility Pdiab of such a transition scales like

Pdiab(τJ ) ∼ exp

(
− (constant)

τJ

C

)
, (19)

where τJ is the characteristic time for J (t) to ramp on. (We will
discuss this error in more detail in Sec. VII.) Since diabatic
effects also contribute to the error in the phase gate, we
require τJ � C. Indeed, the diabatic error is comparable to
the intrinsic error in Eq. (16) for

τJ ∼
√

LC; (20)

that is, when the ramping time is of order the period of
the LC oscillator. During this ramping time, the envelope
function of the Gaussian grid state is squeezed somewhat in
ϕ space (and correspondingly spreads somewhat in Q space),
but stays broad enough for the intrinsic error to remain heavily
suppressed. In Sec. VIII we argue that the error arising from
squeezing scales like

Psq(τJ ) ∼ exp

(
− (constant)

L

τJ

)
; (21)

hence it, too, is comparable to the intrinsic error for τJ ∼√
LC.
After the Gaussian grid state has been prepared, the

Josephson coupling J (t) maintains its steady-state value J0 for
a time t ≡ Lt̃/π , where t̃ is a rescaled time variable. While
the coupling is on, each narrowly peaked function is stabilized
by the strongly confining cosine potential, but the state is
subjected to the Gaussian operation e−itϕ2/2L = e−it̃ϕ2/2π due
to the harmonic potential ϕ2/2L, which alters the relative
phases of the peaks. As t̃ increases the oscillator states |0C〉
and |1C〉 evolve, but when t̃ reaches 1, each returns to its initial
value, apart from a state-dependent geometric phase. For the
grid state |0C〉, the peaks in ϕ space occur at ϕ = 2πn where
n is an integer, and the Gaussian operation,

|ϕ = 2πn〉 → e−2πit̃n2 |ϕ = 2πn〉, (22)

acts trivially. But for the grid state |1C〉, the peaks occur at
ϕ = 2π (n + 1

2 ), and the operation,

|ϕ = 2πn〉 → e−2πit̃(n+ 1
2 )2 ∣∣ϕ = 2π

(
n + 1

2

)〉
, (23)

therefore, modifies the phase of the state by the factor −i.
Hence the joint state of the qubit and oscillator becomes

a|0〉 ⊗ |0C〉 + b|1〉 ⊗ |1C〉 → a|0〉 ⊗ |0C〉 − ib|1〉 ⊗ |1C〉.
(24)

To complete the execution of the phase gate, the tunable
coupling J (t) ramps down from J0 to zero, again with a
characteristic time scale τJ subject to the constraints specified
above. As the coupling turns off, the state |0C〉 of the oscillator
evolves to |ψfin

0 〉 and the state |1C〉 evolves to |ψfin
1 〉; the final

joint state of the qubit and oscillator is

a|0〉 ⊗ |0C〉− ib|1〉 ⊗ |1C〉 → a|0〉 ⊗ ∣∣ψfin
0

〉 − ib|1〉 ⊗ ∣∣ψfin
1

〉
.

(25)

Thus, a perfect phase gate exp(i π
4 Z) has been applied to the

qubit if |ψfin
0 〉 = |ψfin

1 〉. If on the other hand |〈ψfin
1 |ψfin

0 〉| < 1,
then the qubit and oscillator are entangled in the final state,
compromising the gate fidelity. Even if |〈ψfin

1 |ψfin
0 〉| = 1 so

there is no entanglement, the gate may be imperfect because
the phase of 〈ψfin

1 |ψfin
0 〉 deviates from zero.

We will argue that under appropriate conditions
〈ψfin

1 |ψfin
0 〉 ≈ 1 to extremely high accuracy so that the phase

gate is nearly perfect. Note that we need not require the final
state of the oscillator to match the initial state |ψ in〉; noise
terms in the Hamiltonian may excite the oscillator, but the
phase gate is still highly reliable as long as the oscillator’s final
state depends only very weakly on the state of the 0-π qubit,
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i.e., on whether the sign of J (t) is positive or negative. Indeed,
the oscillator serves as a reservoir that absorbs the entropy
introduced by noise. If not too badly damaged, the oscillator
can be reused a few times for the execution of additional
protected gates. Eventually, though, it will become too highly
excited, and will need to be cooled before being employed
again.

A gate error may arise if the coupling between qubit and
oscillator remains on for too long or too short a time, i.e., if t̃ =
1 + ε rather than t̃ = 1. But we will see that such timing errors
do not much compromise the performance of the gate when ε

is small; specifically, the gate error is exp(− 1
4

√
L/C) × O(1)

provided |ε| < 2π (L/C)−3/4. Slightly overrotating or under-
rotating contributes to the damage suffered by the oscillator,
but without much enhancing the sensitivity of the oscillator’s
final state to the qubit’s state, and hence without much
reducing the fidelity of the gate. We study the consequences
of overrotation or underrotation in Sec. VI, and confirm our
findings using numerical simulations in Sec. IX. We also argue,
in Sec. X and Sec. XI, that the phase gate is robust against
a sufficiently small nonzero temperature and against small
perturbations in the Hamiltonian.

The two-qubit phase gate exp(i π
4 Z ⊗ Z) is executed using

a similar procedure, but where now two qubits connected
in series are coupled to the LC oscillator. The total phase
difference across the pair of qubits is either 0 for the states
|0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, in which case the oscillator evolves
to the final |ψfin

0 〉, or π for the states |0〉 ⊗ |1〉 and |1〉 ⊗ |0〉,
in which case the oscillator evolves to the final state |ψfin

1 〉.
Again, the gate is executed perfectly if |ψfin

0 〉 = |ψfin
1 〉.

Let us summarize the sufficient conditions for the phase gate
to be well protected. Just as for the realization of the 0-π qubit
itself, the execution of the protected phase gate relies on the
construction of a “superinducting” circuit with

√
L/C � 1.

This is a daunting challenge as we have already noted at the end
of Sec. II. To ensure high gate accuracy, we also assume that
the steady-state value J0 of the Josephson coupling between
the 0-π qubit and the oscillator satisfies

√
J0C � 1 and that

the characteristic time scale τJ for the coupling to ramp on
and off is O(

√
LC); thus τJ is also small compared to the

time L/π needed to execute the gate. Under these conditions,
the error in the phase gate scales as exp(−O(

√
L/C)), and is

stable with respect to small fluctuations in the implementation
of the gate.

IV. SKETCH OF THE ERROR ESTIMATE

A noisy quantum gate realizes a quantum operation Nactual,
and a useful way to quantify the error in the gate is to specify
the deviation ‖Nactual − Nideal‖� from the ideal gate Nideal in
the “diamond norm” [10]. As explained in Appendix B, for the
protected phase gate this diamond norm distance (assuming
there are no bit flips) is

‖Nactual − Nideal‖� = ∣∣1 − 〈
ψfin

1

∣∣ψfin
0

〉∣∣, (26)

where |ψfin
0,1〉 denotes the final state of the oscillator when

|0〉,|1〉 is the state of the 0-π qubit, as in Eq. (25). Thus
we assess the gate accuracy by estimating the deviation of
〈ψfin

0 |ψfin
1 〉 from 1.

To perform this estimate we track how the oscillator
states |ψ0(t)〉 and |ψ1(t)〉 are related through three stages of
evolution:

|ψ in〉
J (t)

turnson−→ ∣∣ψbegin
0

〉 J (t)=J0−→ ∣∣ψend
0

〉 J (t)
turnsoff−→ ∣∣ψfin

0

〉
,

(27)

|ψ in〉
J (t)

turnson−→ ∣∣ψbegin
1

〉 J (t)=J0−→ −i
∣∣ψend

1

〉 J (t)
turnsoff−→ −i

∣∣ψfin
1

〉
.

In the first stage J (t) ramps on and the grid states are
prepared—the initial state |ψ in〉 evolves to |ψbegin

0 〉 if the 0-π
qubit’s state is |0〉 and to |ψbegin

1 〉 if the qubit’s state is |1〉. In the
second stage J (t) = J0 and the grid state |ψbegin

0 〉 evolves to
|ψend

0 〉 while the grid state |ψbegin
1 〉 evolves to −i|ψend

1 〉, where
ideally |ψend

0,1 〉 = |ψbegin
0,1 〉. In the third stage J (t) ramps off and

the grid states |ψend
0,1 〉 evolve to the final oscillator states |ψfin

0,1〉,
where ideally |ψfin

1 〉 = |ψfin
0 〉.

Consider the first (or third) stage of the evolution, where
the coupling J (t) ramps on (or off) in a time of order τJ . If
τJ is not too large compared to the period 2π

√
LC of the

oscillator, then the harmonic potential term ϕ2/2L may be
treated perturbatively during this evolution stage. Hence, in
first approximation the Hamiltonian is one of

H0 = Q2

2C
− J (t) cos ϕ, H1 = Q2

2C
+ J (t) cos ϕ, (28)

depending on whether the state of the 0-π qubit is |0〉 or |1〉.
This Hamiltonian commutes with the operator e−2πiQ, which
translates ϕ by 2π ; therefore e−2πiQ and the Hamiltonian
can be simultaneously diagonalized. We may express the
eigenvalue of this translation operator as e−2πiq , where q =
Q − [Q] ∈ [− 1

2 , 1
2 ] is the conserved Bloch momentum, and

[Q] denotes the nearest integer to Q; thus [Q] labels the
distinct bands in the Hamiltonian’s spectrum.

A diabatic transition between bands may be excited while
J (t) varies, changing the value of [Q] by an integer, most likely
±1. If such transitions occur with nonnegligible probability,
the final state of the oscillator will contain, in addition to a
primary peak supported near Q = 0, also secondary peaks
supported near Q = ±1; the phases of the secondary peaks
depend on whether the Hamiltonian is H0 or H1, and therefore
diabatic transitions contribute to the gate error. The probability
of a diabatic transition cannot be computed precisely, but as we
will explain in Sec. VII it can be analyzed semiquantitatively,
and is very small if τJ is sufficiently large.

For the purpose of discussing this diabatic error and other
contributions to the deviation of 〈ψfin

1 |ψfin
0 〉 from 1, we will

find it useful to consider the operator,

X̄ ≡ (−1)[Q] = �Q
even − �

Q
odd ≡ 2�Q

even − I ≡ I − 2�
Q
odd.

(29)

Here �Q
even projects onto values of Q such that the nearest

integer value [Q] is even and �
Q
odd projects onto values of Q

such that [Q] is odd. We denote this operator as X̄ because
it can be regarded as the error-corrected Pauli operator σX

acting on a qubit encoded in the Hilbert space of the oscillator,
as we explain in Sec. V. (Note that X̄2 = I .) Another (related)
important property is that, since e∓iϕ translates Q by ±1, X̄
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anticommutes with cos ϕ:

X̄ cos ϕX̄ = − cos ϕ. (30)

Our argument showing that |ψfin
1 〉 ≈ |ψfin

0 〉 has two main
elements. On the one hand we use approximate symmetries
and properties of grid states to see that |ψ1(t)〉 ≈ X̄|ψ0(t)〉 at
each stage of the oscillator’s evolution, so that in particular
|ψfin

1 〉 ≈ X̄|ψfin
0 〉. On the other hand we argue that if the time

scale τJ for J (t) to turn on and off is suitably chosen, then the
oscillator’s final state is mostly supported near Q = 0, so that
in particular X̄|ψfin

0 〉 ≈ |ψfin
0 〉.

We note that the approximate Hamiltonians H0 and H1 in
Eq. (28) are related by

H1 = X̄H0X̄. (31)

By integrating the Schrödinger equation using the Hamiltonian
H0 or H1 during the first stage of evolution while J (t) ramps
on, we obtain the unitary time evolution operators U0, U1,
which are related by

U1 = X̄U0X̄. (32)

Thus the initial oscillator state |ψ in〉 evolves to one of the
states,∣∣ψbegin

0

〉 = U0|ψ in〉, ∣∣ψbegin
1

〉 = U1|ψ in〉 = X̄U0X̄|ψ in〉,
(33)

and, therefore,〈
ψ

begin
1

∣∣X̄∣∣ψbegin
0

〉 = 〈ψ in|X̄|ψ in〉 = 〈ψ in|I − 2�
Q
odd|ψ in〉

= 1 − 2〈ψ in|�Q
odd|ψ in〉. (34)

We conclude that if the initial state is almost fully supported
on even values of [Q] (for example, the oscillator ground state,
a Gaussian in Q space with width much less than 1/2), then
|ψbegin

1 〉 is very close to X̄|ψbegin
0 〉.

So far we have ignored the effects of the quadratic term
ϕ2/2L in the potential. This term can cause the wave function
to broaden in Q space and be squeezed in ϕ space, but we argue
in Sec. VIII that this squeezing is a relatively small effect, so
that the conclusion |ψbegin

1 〉 ≈ X̄|ψbegin
0 〉 still holds accurately.

Specifically, the contribution to the gate error due to squeezing
scales as in Eq. (21), and hence becomes comparable to the
other sources of error when we choose τJ ∼ √

LC.
During the second stage of the evolution, while J (t) = J0

is held constant, distinct peaks in the grid state acquire
relative phases, and the condition |ψ1(t)〉 = X̄|ψ0(t)〉 becomes
badly violated. However, after a time t ≈ L/π , the initial
states |ψbegin

0 〉 and |ψbegin
1 〉 are restored, aside from the state

dependent phase −i, and hence |ψend
1 〉 = X̄|ψend

0 〉 apart from
a small error. Equivalently, the beginning states,

|ψbegin
± 〉 = 1√

2

(∣∣ψbegin
0

〉 ± ∣∣ψbegin
1

〉)
, (35)

are very nearly X̄ eigenstates with eigenvalues ±1, and this
property is preserved by the ending states,

|ψend
± 〉 = 1√

2

(∣∣ψend
0

〉 ± ∣∣ψend
1

〉)
. (36)

The X̄ eigenvalues of these states are highly stable with respect
to timing errors in the gate, in which the coupling is left on

for too short or too long a time, because these states are
approximate code words of a quantum code, well protected
against logical phase errors. We study the errors resulting
from imperfect timing in detail in Sec. VI, because they can
be calculated explicitly and are the dominant errors in some
parameter regimes.

In the third stage of the evolution, as in the first stage, it
is a good first approximation to ignore the harmonic ϕ2/2L

term in the potential as the coupling J (t) ramps off. Using
this approximation, the time evolution operators V0,1 obtained
by integrating the Schrödinger equation during the third stage
when the state of the 0-π qubit is |0〉,|1〉, are related by

V1 = X̄V0X̄; (37)

hence the final oscillator states are∣∣ψfin
0

〉 = V0

∣∣ψend
0

〉
,

∣∣ψfin
1

〉 = X̄V0X̄
∣∣ψend

1

〉
, (38)

and we conclude that〈
ψfin

1

∣∣X̄∣∣ψfin
0

〉 = 〈
ψend

1

∣∣X̄∣∣ψend
0

〉
. (39)

Again, this conclusion is not modified much when the ϕ2/2L

term is properly taken into account, so we may infer that the
condition |ψ0(t)〉 ≈ X̄|ψ1(t)〉 is well preserved during the final
stage of evolution.

We have now seen that |ψfin
1 〉 ≈ X̄|ψfin

0 〉, and it remains
to show that X̄|ψfin

0 〉 ≈ |ψfin
0 〉. This condition will be well

satisfied provided that the final state |ψfin
0 〉 of the oscillator,

like the initial state |ψ in〉, is almost fully supported in the
interval Q ∈ [− 1

2 , 1
2 ]. Logical errors may occur because of

diabatic transitions between bands, which may change Q by
an odd integer, or because of spreading in Q space, which
may enhance the tails of the wave function outside [− 1

2 , 1
2 ].

However, if diabatic transitions are rare and spreading is
modest, as we expect if τJ lies in the appropriate range, then
the gate will be highly accurate.

That our criterion for achieving |ψfin
1 〉 ≈ |ψfin

0 〉 involves
the operator X̄, which has a sharp discontinuity at Q =
1
2 + integer, is really an artifact of an insufficiently careful
treatment of diabatic transitions. The transitions occur with
enhanced probability for Q close to 1

2 + integer, replacing the
sharp edge in Q space by a rounded step with width of order
C/τJ , as we will explain in Sec. VII.

V. ENCODING A QUBIT IN AN OSCILLATOR

A continuous-variable quantum error-correcting code [6]
underlies the robustness of the protected phase gate. The theory
of quantum codes is not really essential for understanding
our estimate of the gate accuracy, but this theory provides
motivation for our construction of the protected gate, as well a
convenient language for explaining how it works. Therefore,
we will now review some of the relevant features of a code
first described in [6].

In the version of the code we will use, a two-dimensional
encoded qubit is embedded in the infinite-dimensional Hilbert
space of a harmonic oscillator with position ϕ and conjugate
momentum Q satisfying [ϕ,Q] = i. The code space can be
specified as the simultaneous eigenspace with eigenvalue 1 of

052306-7



PETER BROOKS, ALEXEI KITAEV, AND JOHN PRESKILL PHYSICAL REVIEW A 87, 052306 (2013)

the two commuting operators,

MZ = e2iϕ, MX = e−2πiQ; (40)

we say that MZ and MX are the generators of the code’s
“stabilizer group.” Using the identify eAeB = e[A,B]eBeA

(where A and B commute with their commutator), we can
easily verify that MX and MZ commute. The logical Pauli
operators acting on the encoded qubit are

Z̄ = eiϕ, X̄ = e−iπQ. (41)

One sees that X̄ and Z̄ commute with the stabilizer generators
MX and MZ , and hence preserve the code space; furthermore
they anticommute with one another, as the logical Pauli
operators should.

The (unnormalizable) state |0C〉ideal is the unique Z̄ eigen-
state with eigenvalue 1 in the code space. The condition Z̄ = 1
requires the variable ϕ to be an integer multiple of 2π , and the
condition MX = 1 requires the code word to be invariant under
translation of ϕ by 2π . Hence |0C〉ideal is represented in ϕ space
as the uniform superposition of delta functions,

|0C〉ideal =
∞∑

n=−∞
|ϕ = 2πn〉; (42)

the Z̄ = −1 eigenstate |1C〉ideal = X̄|0C〉ideal, obtained from
|0C〉ideal by displacing ϕ by π , is

|1C〉ideal =
∞∑

n=−∞

∣∣∣∣ϕ = 2π

(
n + 1

2

)〉
. (43)

Similarly, the X = ±1 eigenstates |±C〉ideal, invariant under
translation of Q by 2, are represented in Q space as

|+C〉ideal =
∞∑

n=−∞
|Q = 2n〉,

(44)

|−C〉ideal =
∞∑

n=−∞

∣∣∣∣Q = 2

(
n + 1

2

)〉
.

See Fig. 9.
Weak noise may displace ϕ slightly, but the code words

|0C〉ideal and |1C〉ideal remain perfectly distinguishable, and the
error is correctable, as long as the value of ϕ shifts by less
than π/2 in either direction. Similarly, a shift in Q by less
than 1/2 is correctable. In principle we could diagnose the
error by measuring MZ to determine the value of ϕ modulo π ,

FIG. 9. (Color online) Ideal code words of the continuous variable
code. The Z̄ = ±1 eigenstates |0C〉,|1C〉, expressed in ϕ space, are
uniform superpositions of position eigenstates with ϕ an even or
odd multiple of π , respectively. The X̄ = ±1 eigenstates |+C〉,|−C〉,
expressed in Q space, are uniform superpositions of momentum
eigenstates with Q an even or odd integer, respectively.

FIG. 10. (Color online) Approximate code words of the contin-
uous variable code. The code word |0C〉, expressed in ϕ space, is
a superposition of Gaussian peaks, each of width �, governed by
a broad Gaussian envelope with width κ−1. The code word |+C〉,
expressed in Q space, is a superposition of Gaussian peaks, each of
width κ , governed by a broad Gaussian envelope with width �−1.

and MX to determine the value of Q modulo 1, then perform
active error correction by applying the minimal shifts in ϕ and
Q that return the damaged code state to the code space. (In
our protected phase gate, however, the error correction will be
passive rather than active.)

The unnormalizable ideal code words, with infinite
〈ϕ〉 and 〈Q〉, are unphysical. But if we coherently apply
Gaussian distributed small shifts in ϕ and Q to the ideal
code words, we obtain the normalizable approximate code
words shown in Fig. 10. The wave function in ϕ space is a
superposition of narrow Gaussians, each of width � � π/2
(i.e., 〈(δϕ)2〉 = 1

2�2, where δϕ denotes the deviation from
the center of the narrow Gaussian), governed by a broad
Gaussian envelope with width κ−1 � 2 (i.e., 〈ϕ2〉 = 1

2κ−2).
The Fourier dual wave function in Q space is a superposition
of narrow Gaussians each of width κ (i.e., 〈(δQ)2〉 = 1

2κ2,
where δQ denotes the deviation from the center of the narrow
Gaussian), governed by a broad Gaussian envelope with width
�−1 (i.e., 〈Q2〉 = 1

2�−2). If � and κ are sufficiently small,
these approximate code words retain good error correction
properties. However, there is now an intrinsic error arising
from the tails of the narrow Gaussians, with the probability of
a logical Z̄ error (a shift in ϕ by more than π/2) suppressed
by e−π2/4�2

, and the probability of a logical X̄ error (a shift
in Q by more than 1/2) suppressed by e−1/4κ2

.
Note that in Sec. IV we used the notation X̄ = (−1)[Q] for

the logical X operator, where [Q] denotes the nearest integer
to the real variable Q. The operator (−1)[Q] acts in the same
way as e−iπQ on ideal code words for which Q is an integer.
By expressing the logical operator as X̄ = (−1)[Q] we are
implicitly correcting phase errors that displace Q. That is, a Q

eigenstate is decoded by shifting Q to the nearest integer value,
and the eigenvalue of X̄ is determined by this ideal shifted
value of Q, rather than the actual value of Q prior to the shift.

The first step in the execution of the protected phase gate
described in Sec. III is the preparation of just such approximate
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code words. If the state of the 0-π qubit is |0〉, then the
approximate Z̄ = 1 eigenstate |0C〉 is prepared, and if the
state of the 0-π qubit is |1〉, then the approximate Z̄ = −1
eigenstate |1C〉 is prepared. The narrowly peaked functions
have width �2 = (J0C)−1/2 in ϕ space (though, because the
potential is a cosine rather than harmonic, the tail of the peaked
function decays more slowly than the tail of a Gaussian), and
width κ2 = (L/C)−1/2 in Q space. Hence the intrinsic logical
X̄ error of the approximate code words, which is central to our
estimate of the error in the phase gate, is suppressed by the
factor exp(− 1

4

√
L/C).

After the approximate code word is prepared, the Gaussian
unitary operator e−itϕ2/2L = e−it̃ϕ2/2π is applied (where t̃ =
πt/L is a rescaled time variable). This unitary operator rotates
the code space, transforming the stabilizer generator MX =
e−2πiQ according to

MX → M ′
X = e−it̃ϕ2/2πe−2πiQeit̃ϕ2/2π

= e−2πi(Q+ϕt̃/π) = MXe−2iϕt̃ e−2πit̃ . (45)

Recalling that M−1
Z = e−2iϕ is also a stabilizer generator,

we see that the state returns to the code space at (rescaled)
time t̃ = 1, but during its excursion the code word acquires a
Berry phase, and thus a nontrivial logical operation is applied.
Specifically, the logical operator X̄ is transformed according
to

X̄ → X̄′ = e−iϕ2/2πe−iπQeiϕ2/2π

= e−iπ(Q+ϕ/π) = X̄e−iϕe−iπ/2

= −iX̄Z̄ = exp

(
i
π

4
Z̄

)
X̄ exp

(
− i

π

4
Z̄

)
, (46)

while Z̄ remains invariant; hence the logical operation acting
on the code space is exp(i π

4 Z̄). An error in the logical gate
arises if the coupling remains on for too long or too short a time
(i.e., if t̃ is not precisely 1). However, this error is correctable
with high probability if the timing error is small. We will study
the consequences of overrotation or underrotation in Sec. VI.

VI. IMPERFECT GRID STATES

Now we will analyze the intrinsic phase errors in approx-
imate code words of the continuous variable code, and in
particular how the phase error is affected by errors in the
timing of the pulse that executes the phase gate.

In Sec. V we considered approximate code words that can
be described as “Gaussian grid states”—the code word is a
superposition of narrow Gaussian peaks governed by a broad
Gaussian envelope. The Fourier transform of such a wave
function is also a Gaussian grid state, so that both logical
bit-flip errors and logical phase errors are suppressed.

But it actually suffices for the approximate code word to
be a superposition of narrow functions with a broad envelope;
neither the peak nor the envelope needs to be Gaussian. Even a
non-Gaussian grid is mapped to a conjugate non-Gaussian
grid by the Fourier transform, so there is good protection
against both X̄ and Z̄ errors. A Gaussian grid state could result
from coherently applying Gaussian-distributed ϕ and Q shifts
to an ideal code word, assuming large shifts are suppressed.
But we can also get a reasonable approximate code word by
applying more general small errors to the ideal code word,

with a distribution that is not necessarily Gaussian. What is
important is that large shifts in both ϕ and Q are improbable,
not the detailed form of the distribution.

This observation will be useful when we consider in Sec. X
the execution of the protected phase gate in the case where
the initial state of the harmonic oscillator is an excited state
rather than the ground state. In that case, the envelope of the
approximate code word in ϕ space is not strictly Gaussian, but
rather Gaussian modulated by a Hermite polynomial, and its
Fourier transform is also Gaussian modulated by a Hermite
polynomial. Thus, in Q space, the narrow functions peaked
at integer values of Q are also oscillator excited states. These
functions have highly suppressed tails, ensuring that encoded
phase errors are rare. In any event, considering more general
kinds of grid states helps to clarify conceptually why the phase
gate is robust.

A. Bit-flip and phase errors

Let f denote a narrow function in ϕ space, and F̃

denote a broad envelope function in ϕ space. We express the
approximate code words as

|0C〉 =
√

2π
∑
neven

F̃ (πn)
∫

dϕf (ϕ − πn)|ϕ〉,
(47)

|1C〉 =
√

2π
∑
nodd

F̃ (πn)
∫

dϕf (ϕ − πn)|ϕ〉.

The function f is normalized so that∫
dϕ|f (ϕ)|2 = 1, (48)

and if the overlap between peaks centered at distinct integer
multiples of π can be neglected, then |0C〉 and |1C〉 are
normalized provided

2π
∑
neven

|F̃ (πn)|2 ≈ 1, 2π
∑
nodd

|F̃ (πn)|2 ≈ 1. (49)

The intrinsic bit-flip error of the approximate code word |0C〉
arises from the probability that ϕ lies closer to an odd multiple
of π than to an even multiple, which can be estimated as

P |0C 〉
error ≈

(
2π

∑
neven

|F̃ (πn)|2
)

×
( ∫ −π/2

−∞
dϕ|f (ϕ)|2 +

∫ ∞

π/2
dϕ|f (ϕ)|2

)
≈

∫ −π/2

−∞
dϕ|f (ϕ)|2 +

∫ ∞

π/2
dϕ|f (ϕ)|2; (50)

the intrinsic error in |1C〉 can be estimated similarly. Thus
logical bit-flip errors are highly suppressed if f (ϕ) is a narrow,
rapidly decaying function supported near zero.

The approximate code words in the conjugate basis are

|+C〉 = 1√
2

(|0C〉 + |1C〉)

= √
π

∑
n

F̃ (πn)
∫

dϕf (ϕ − πn)|ϕ〉,
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|−C〉 = 1√
2

(|0C〉 − |1C〉)

= √
π

∑
n

F̃ (πn)(−1)n
∫

dϕf (ϕ − πn)|ϕ〉, (51)

where

π
∑

n

|F̃ (πn)|2 ≈ 1. (52)

We show in Appendix C that these code words can be expressed
as

|+C〉 =
√

2
∫

dQf̃ (Q)
∑
meven

F (Q − m)|Q〉,

≈
√

2
∑
meven

f̃ (m)
∫

dQF (Q − m)|Q〉,
(53)

|−C〉 =
√

2
∫

dQf̃ (Q)
∑
modd

F (Q − m)|Q〉,

≈
√

2
∑
modd

f̃ (m)
∫

dQF (Q − m)|Q〉,

where

2
∑
meven

|f̃ (m)|2 ≈
∫

dQ|f̃ (Q)|2 ≈ 1,

(54)
2

∑
modd

|f̃ (m)|2 ≈
∫

dQ|f̃ (Q)|2 ≈ 1.

The intrinsic phase error of the approximate code word |+C〉
arises from the probability that Q lies closer to an odd integer
than an even integer, which can be estimated as

P |+C 〉
error ≈

(
2

∑
meven

|f̃ (m)|2
)

×
( ∫ −1/2

−∞
dQ|F (Q)|2 +

∫ ∞

1/2
dQ|F (Q)|2

)
≈

∫ −1/2

−∞
dQ|F (Q)|2 +

∫ ∞

1/2
dQ|F (Q)|2; (55)

the intrinsic error in |−C〉 is estimated similarly. Thus logical
phase errors are highly suppressed if F (Q) is a narrow, rapidly
decaying function supported near zero.

We see that for a good approximate code word, the
particular form of the narrow function f (ϕ) and the broad
function F̃ (ϕ) is not so important. Instead, what matters
is that the same narrow function f appears at each of the
periodically spaced peaks (apart from the slow modulation in
the normalization, governed by F ). Then when we Fourier
transform, constructive interference occurs for values of Q

that are reciprocally related to the spacing (e.g., even integer
values of Q if the spacing in ϕ space is π ), since for such
Q values the various peaks in ϕ space add together with a
common phase.

B. Gate error estimate

As explained in Sec. IV, the error in the protected phase
gate can be expressed as∣∣1 − 〈

ψfin
1

∣∣ψfin
0

〉∣∣, (56)

where |ψfin
0,1〉 denotes the final state of the oscillator (modulo

the state-dependent phase −i applied by the gate) when the
state of the 0-π qubit is |0〉,|1〉. Under conditions enumerated
in Sec. IV, this quantity can be well approximated by the
modulus of

η ≡ 1 − 〈
ψend

1

∣∣X̄∣∣ψend
0

〉
, (57)

where |ψend
0,1 〉 denotes the state of the oscillator as the coupling

J (t) between oscillator and qubit starts to turn off, and X̄ =
�Q

even − �
Q
odd denotes the error-corrected logical operator.

Let us suppose that the states |ψbegin
0,1 〉 prepared when

the coupling J (t) turns on are the approximate code words
|0C〉,|1C〉 depicted in Eq. (47), where f (ϕ) is a narrow rapidly
decreasing function and F̃ (ϕ) is a broad envelope function.
The coupling remains on for time t = (1 + ε) L

π
, where ε is the

fractional error in the timing of the gate. Then as explained in
Appendix C, the states |ψend

0,1 〉 have the same form as |0C〉,|1C〉,
but with F̃ (ϕ) replaced by the function,

F̃ε(ϕ) = e−iεϕ2/2π F̃ (ϕ). (58)

We define states,

|ψend
± 〉 = 1√

2

(∣∣ψend
0

〉 ± ∣∣ψend
1

〉)
; (59)

note that |ψend
0,1 〉 are normalized, since each is obtained by

applying a unitary time evolution operator to the normalized
state |ψ in〉 of the oscillator, but they are not necessarily
orthogonal and hence the states |ψend

± 〉 are not necessarily
normalized. We may write〈

ψend
1

∣∣X̄∣∣ψend
0

〉 = 1
2 (〈ψend

+ |X̄|ψend
+ 〉 − 〈ψend

− |X̄|ψend
− 〉

+ 〈ψend
+ |X̄|ψend

− 〉 − 〈ψend
− |X̄|ψend

+ 〉),
(60)

which, using Eq. (29), has real part,

Re
〈
ψend

1

∣∣X̄∣∣ψend
0

〉
= 1

2

(〈ψend
+ |I − 2�

Q
odd|ψend

+ 〉 − 〈ψend
− |2�Q

even − I |ψend
− 〉)

= 1 − 〈ψend
+ |�Q

odd|ψend
+ 〉 − 〈ψend

− |�Q
even|ψend

− 〉. (61)

Therefore, using Eq. (57) we may estimate the real part of
the gate error as in Eq. (55):

Reηε ≈ 2

( ∫ −1/2

−∞
dQ|Fε(Q)|2 +

∫ ∞

1/2
dQ|Fε(Q)|2

)
. (62)

To estimate the imaginary part we note that

Imηε = 1

2i
(〈ψend

− |X̄|ψend
+ 〉 − 〈ψend

+ |X̄|ψend
− 〉). (63)
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As in Eq. (53), we express

|ψend
− 〉 ≈

√
2

( ∫
[Q]even

dQ +
∫

[Q]odd
dQ

)
× f̃ (Q)

∑
modd

Fε(Q − m)|Q〉,
(64)

X̄|ψend
+ 〉 ≈

√
2

( ∫
[Q]even

dQ −
∫

[Q]odd
dQ

)
× f̃ (Q)

∑
meven

Fε(Q − m)|Q〉,

and therefore obtain

〈ψend
− |X̄|ψend

+ 〉
≈ 2

∫
[Q]even

dQ|f̃ (Q)|2
∑
meven
nodd

Fε(Q − n)∗Fε(Q − m)

− 2
∫

[Q]odd
dQ|f̃ (Q)|2

∑
meven
nodd

Fε(Q − n)∗Fε(Q − m).

(65)

Thus Imηε is dominated by overlaps between sharply peaked
functions {Fε(Q − m)} centered at neighboring values of m;
we show in Appendix C that

Imηε ≈ 4Im
∫ ∞

0
dQOdd

[
Fε

(
Q + 1

2

)∗
Fε

(
Q − 1

2

)]
, (66)

where Odd[G(Q)] ≡ 1
2 [G(Q) − G(−Q)] denotes the odd part

of the function G(Q).

C. Gaussian case

The gate error estimate in Eqs. (62) and (66) is expressed in
terms of the narrow function Fε(Q), whose Fourier transform
F̃ε(ϕ) is the broad envelope function that governs the grid state
of the oscillator. To be concrete, let us now suppose that this
function is Gaussian, the relevant case where the oscillator’s
initial state |ψ in〉 is the ground state.

The normalized ground-state wave function is

F̃ (ϕ) =
(

κ2

π

)1/4

e−κ2ϕ2/2, F (Q) =
(

1

πκ2

)1/4

e−Q2/2κ2
,

(67)

where

κ−2 =
√

L

C
. (68)

Therefore, for ε = 0 the probability of an intrinsic phase error
in the grid state is

P |+C 〉
error ≈ 2

∫ ∞

1/2
dQ|F (Q)|2 ≈ 2

√
κ2

π
e−1/4κ2

, (69)

using the leading asymptotic approximation to the error
function.

To find the probability of a phase error for ε �= 0, we
evaluate

Fε(Q) = 1√
2π

∫
dϕe−iQϕF̃ε(ϕ)

= 1√
2π

∫
dϕe−iQϕ

(
κ2

π

)1/4

e−κ2ϕ2/2e−iεϕ2/2π

=
(

κ2

πκ ′4

)1/4

exp(−Q2/2κ ′2), (70)

where

κ ′2 = κ2 + iε

π
. (71)

Thus

κ ′−2 = κ−2

(
1 + iε

πκ2

)−1

= κ̄−2

(
1 − iε

πκ2

)
, (72)

where

κ̄2 = κ2

(
1 + ε2

π2κ4

)
; (73)

therefore

|Fε(Q)|2 =
(

κ2

π |κ ′|4
)1/2

exp(−Q2Re(κ ′−2))

= 1√
πκ̄2

e−Q2/κ̄2
. (74)

From Eq. (62), our estimate of the real part of the gate error
becomes

Reηε ≈ 4√
πκ̄2

∫ ∞

1/2
dQe−Q2/κ̄2 ≈ 4

√
κ̄2

π
e−1/4κ̄2

. (75)

For ε small compared to πκ2, we may expand

κ̄−2 = κ−2 − ε2

π2κ6
+ · · · , (76)

so that

Reηε ≈ exp

(
ε2

4π2κ6

)
Reηε=0; (77)

the overrotation of the gate has little effect on the real part
of the gate error for ε � 2πκ3. On the other hand, when ε is
large compared to πκ2, we have

κ̄−2 ≈ π2κ2

ε2
; (78)

thus Reηε = O(1) for ε ≈ πκ .
To see that these results are reasonable, note that

e−iεϕ2/2πQeiεϕ2/2π = Q + ϕε/π. (79)

Thus, crudely speaking, overrotation by ε shifts Q by

δQ ≈ (ε/π )〈ϕ2〉1/2 = ε/(π
√

2κ2). (80)

We expect this shift to have a small effect if the amount of the
shift is small compared to the width 〈Q2〉1/2 =

√
κ2/2 of the

narrow peaks in the Q space, i.e., for ε � πκ2. On the other
hand, for ε ≈ πκ , the shift in Q is O(1), and we expect the
error probability to be large.
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To estimate the imaginary part of the gate error, we note
that

Fε

(
Q + 1

2

)∗
Fε

(
Q − 1

2

)
= 1√

πκ̄2
exp

[
−

(
Q − 1

2

)2

2κ ′2 −
(
Q + 1

2

)2

2κ ′∗2

]
= 1√

πκ̄2
exp

[
−

(
Q2 + 1

4

)
Re(κ ′−2) + iQIm(κ ′−2)

]
= 1√

πκ̄2
e−1/4κ̄2

e−Q2/κ̄2
exp

( −iεQ

πκ̄2κ2

)
, (81)

and from Eq. (66) we obtain

Imηε = − 4√
πκ̄2

e−1/4κ̄2
∫ ∞

0
dQe−Q2/κ̄2

sin(εQ/πκ̄2κ2)

= − 4√
π

e−1/4κ̄2
I

(
ε

πκ̄κ2

)
, (82)

where

I (α) ≡
∫ ∞

0
dxe−x2

sin(αx). (83)

The integral I (α) can be expressed in terms of Gamma
functions with imaginary arguments, but for our purposes it
will suffice to observe some of its properties. For small α it
has the power series expansion,

I (α) = α

2
− α3

12
+ · · · , (84)

for large α it has the asymptotic expansion,

I (α) = 1

α
+ 2

α3
+ · · · , (85)

and it attains its maximum value I = .5410 . . . at α =
1.8483 . . ..

Combining the real part in Eq. (75) with the imaginary part
in Eq. (82), our estimate of the gate error becomes

|ηε| = 4√
π

e−1/4κ̄2

√
κ̄2 +

[
I

(
ε

πκ̄κ2

)]2

. (86)

The ratio of the imaginary and real parts is

Imηε

Reηε

= −κ̄−1I

(
ε

πκ̄κ2

)
≈ − ε

2πκ̄2κ2
, (87)

expanding to linear order in α. Thus the imaginary part of the
error is smaller than the real part when ε is sufficiently small,
but dominates by a factor of order κ−1 for ε ∼ πκ3. The error
|ηε| is bounded above by e−1/4κ̄2 × O(1) for all ε, and hence
by e−1/4κ2 × O(1) for ε < 2πκ3.

In Figs. 11 and 12, we plot the gate error estimate |ηε| as a
function of ε for κ−2 = 40 and κ−2 = 80. Recall that, in the
case where the LC circuit is initially in its ground state, we
can identify κ−2 with

√
L/C.

VII. DIABATIC ERROR

As explained in Sec. IV, the protected phase gate is very
accurate if the final state vector of the oscillator depends

0.3 0.2 0.1 0.0 0.1 0.2 0.3

10 4

0.001

0.01

0.1

1

Overrotation Ε

Gate error Η

FIG. 11. (Color online) The estimated gate error |ηε| (on a log
scale) as a function of the rotation error ε, for κ−2 = 40.

only very weakly on the state of the 0-π qubit: |ψfin
1 〉 ≈

|ψfin
0 〉. Our argument establishing high gate accuracy has two

elements—we show that |ψ1(t)〉 ≈ X̄|ψ0(t)〉 at each stage of
the oscillator’s evolution, and also that X̄|ψfin

0 〉 ≈ |ψfin
0 〉. In

Sec. VI we have seen that the condition |ψ1(t)〉 ≈ X̄|ψ0(t)〉 is
stable with respect to imperfections in the timing of the pulse
that executes the gate. Now we will consider rare diabatic
transitions, occurring as the coupling J (t) ramps on and off,
that contribute to the deviation of X̄|ψfin

0 〉 from |ψfin
0 〉.

While the coupling J (t) turns on or off, the harmonic ϕ2/2L

term in the potential can be treated perturbatively, where in first
approximation the Hamiltonian is given by Eq. (28); we will
consider the consequences of the harmonic term in Sec. VIII.
This Hamiltonian commutes with the operator e−2πiQ, which
translates ϕ by 2π ; therefore e−2πiQ and the Hamiltonian can
be simultaneously diagonalized. We express the eigenvalue
of this translation operator as e−2πiq , where q = Q − [Q] ∈
[− 1

2 , 1
2 ] is the conserved Bloch momentum, and the integer

[Q] labels the distinct bands in the Hamiltonian’s spectrum.

0.3 0.2 0.1 0.0 0.1 0.2 0.3

10 8

10 6

10 4

0.01

1

Overrotation Ε

Gate error Η

FIG. 12. (Color online) The estimated gate error |ηε| (on a log
scale) as a function of the rotation error ε, for κ−2 = 80.
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A diabatic transition between bands may be excited while
J (t) varies, changing the value of [Q] by an integer, typically
±1. If such transitions occur with nonnegligible probability,
the final state of the oscillator will contain, in addition to
a primary peak supported near Q = 0 (where X̄ = 1), also
secondary peaks supported near Q = ±1 (where X̄ = −1).
We will discuss the probability of a transition between bands
while J (t) ramps on; a similar analysis applies to transitions
occurring as J (t) ramps down.

The probability of a diabatic transition can be computed
most reliably for q close to ± 1

2 , since in that case the splitting
between the lowest band and the first excited band is small
when J (t) is small, and the continuous variable system can be
well approximated by a two-level system. For example when
J = 0, the state in the lowest band with Bloch momentum q

slightly less than 1
2 has charge Q = q, while the state in the

first excited band has Q = q − 1. Hence the splitting between
bands is

1

2C
((q − 1)2 − q2) =

1
2 − q

C
. (88)

Since e∓iϕ translates Q by ±1, the perturbation J (t) cos ϕ has
matrix elements,

〈q − 1|J (t) cos ϕ|q〉 = J (t)

2
= 〈q|J (t) cos ϕ|q − 1〉, (89)

and the effective two-level Hamiltonian is

H eff
0,1 = −

1
2 − q

2C
σZ ∓ J (t)

2
σX, (90)

where σZ,X are Pauli matrices. The energy eigenstates are σZ

eigenstates for J (t) → 0 and σX eigenstates for J (t) → ∞.
The time-dependent Schrödinger equation for this effective

Hamiltonian can be solved exactly if J (t) increases exponen-
tially with time, as

J (t) = J0 exp
(
t/τ eff

J

)
; (91)

we show in Appendix E that if the initial state as t → −∞
is the ground state, then the probability that the final state is
excited as t → ∞ is

Pdiab
(
q,τ eff

J

) = 1

2
− 1

2
tanh

(
π

(
1

2
− q

)
τ eff
J

2C

)
≈ exp

(
− π

(
1

2
− q

)
τ eff
J

C

)
, (92)

where the second equality holds when the argument of the tanh
is large and positive.

We recall that if the initial state of the oscillator is the
ground state or a low-lying excited state, then the probability
distribution for q decays as

P (q) ∼ exp

(
−

√
L

C
q2

)
; (93)

hence expanding in δ = 1
2 − q we find

P (q)Pdiab
(
q,τ eff

J

) ∼ exp

((
δ − 1

4

)√
L

C

)
exp

(
− πδ

τ eff
J

C

)
.

(94)

Therefore, if

τ eff
J >

1

π

√
LC, (95)

the most likely diabatic transitions occur for q ≈ 1
2 , where the

two-level approximation is reasonable; we conclude in that
case that the probability of a diabatic transition is suppressed
by the factor exp(− 1

4

√
L/C). If on the other hand τ eff

J <
1
π

√
LC, then the most likely diabatic transitions occur for q far

from ± 1
2 and the two-level approximation cannot be justified.

If J (t) does not ramp on exponentially, then the exact
solution in Appendix E does not apply directly. To estimate
roughly the probability of a diabatic transition for more general
pulse shapes, we note that the transition typically occurs when
σZ and σX in the effective Hamiltonian have comparable
coefficients, so that

τ eff
J ≈

(
J

J̇

)
JC≈1−2q

. (96)

If J (t) turns on like an error function with width τJ , then

J (t) = J0√
π

∫ t/τJ

−∞
dxe−x2 ≈ τJ J0

2|t |√π
e−t2/τ 2

J , (97)

asymptotically for t/τJ → −∞, and we have

J/J̇ ≈ τ 2
J /2|t |. (98)

Combining Eqs. (96), (97), and (98) we obtain

2τ eff
J

τJ

=
(

ln

(
J0C

1 − 2q

)
− O

(
ln ln

(
J0C

1 − 2q

)))−1/2

; (99)

though τ eff
J given by Eq. (99) does not satisfy Eq. (95) when

q is very close to 1
2 , the dominant diabatic transitions may

still occur for q ≈ 1
2 , where the two-level approximation is

applicable, provided τJ − 1
π

√
LC is positive and sufficiently

large. Otherwise, if the dominant value of q is far from
1
2 , we can anticipate that typical diabatic transitions occur
for J (t)C = O(1), where the band gap is O(1/C) and the
transition probability is

Pdiab(τJ ) = exp

(
− O

(
τJ

C

))
. (100)

In the two-level approximation, which applies for |Q| ≈ 1
2 ,

the probability of a jump from the lowest band (|Q| < 1
2 )

to the first excited band (|Q| > 1
2 ) matches the probability

of a jump from the first excited band to the lowest band.
Therefore, neglecting transitions to other bands and the higher-
order probability of multiple transitions, and also ignoring
other sources of error aside from diabatic jumps, we infer
from Eq. (92) that the probability of X̄ = 1 (i.e., |Q| < 1

2 ) in
the final state of the oscillator can be expressed as

P

(
|Qfin| <

1

2

)
≈

∫
dQinP (Qin) tanh

(
π

(
1

2
− |Qin|

)
τ eff
J

2C

)
;

(101)

a factor of two has been included to take into account that the
transition could occur during either the ramping-up phase or
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the ramping-down phase. Because of the enhanced probability
of a transition for |Q| ≈ 1

2 , the Qin integral has support
extending beyond the range [− 1

2 , 1
2 ]; the tanh function smooths

out the sharp edges at Q = ± 1
2 , replacing them by rounded

steps with width of order C/τ eff
J .

VIII. SQUEEZING ERROR

In Sec. IV we discussed how the state of the oscillator
evolves as the coupling J (t) ramps on and off. There we used
the idea that, because the oscillator’s period is long compared
to the time scale τJ for the coupling to turn on and off, we may
as a first approximation ignore the ϕ2/2L term in the potential
as in Eq. (28). Under that assumption we concluded that〈

ψ
begin
1

∣∣X̄∣∣ψbegin
0

〉 = 〈
ψ in

∣∣X̄∣∣ψ in〉 ≈ 1, (102)

where |ψ in〉 is the oscillator’s initial state, and |ψbegin
0,1 〉 denotes

the state just after the coupling turns on, where |0〉,|1〉 is the
state of the 0-π qubit. The second equality follows if the initial
state of the oscillator has negligible support outside the interval
Q ∈ [− 1

2 , 1
2 ].

How is this conclusion affected when the quadratic term
ϕ2/2L is included? If the coupling turns on slowly enough,
this term can cause some squeezing of the wave function in
ϕ space and correspondingly some spreading in Q space. To
model crudely the effect of the spreading, consider first turning
on J (t) using H0 or H1 in Eq. (28), then applying the operator
e−iαϕ (which shifts Q by an amount α that does not depend
on the state of the 0-π qubit). Denoting the time evolution
operator as J (t) turns on by U0 or U1 = X̄U0X̄ as in Sec. IV,
we then have∣∣ψbegin

0

〉 = e−iαϕU0|ψ in〉, ∣∣ψbegin
1

〉 = e−iαϕX̄U0X̄|ψ in〉,
(103)

and therefore〈
ψ

begin
1

∣∣X̄∣∣ψbegin
0

〉 = 〈ψ in|X̄U−1
0 X̄eiαϕX̄e−iαϕU0|ψ in〉.

(104)

Now we note that

X̄eiαϕX̄e−iαϕ = (−1)−[Q]eiαϕ(−1)[Q]e−iαϕ

= (−1)−[Q](−1)[Q−α] = (−1)[Q−α]−[Q];

(105)

furthermore, [Q − α] − [Q] commutes with cos ϕ and hence
with U0, because e−iϕ acting by conjugation increases both
[Q − α] and [Q] by 1 (while eiϕ decreases both by 1). Hence
we find 〈

ψ
begin
1

∣∣X̄∣∣ψbegin
0

〉 = 〈ψ in|eiαϕX̄e−iαϕ |ψ in〉
= 〈ψ in|(−1)[Q−α]|ψ in〉; (106)

in particular if |ψ in〉 is almost fully supported in the inter-
val Q ∈ [−1/2 + |α|,1/2 − |α|], then |ψbegin

1 〉 is very close
to X̄|ψbegin

0 〉. If |ψ in〉 is the Gaussian ground state with
〈Q2〉 = 1

2

√
C/L, the deviation of 〈ψbegin

1 |X̄|ψbegin
0 〉 from 1

is suppressed by the exponential factor,∣∣1 − 〈
ψ

begin
1

∣∣X̄∣∣ψbegin
0

〉∣∣ ∼ exp

((
1

2
− |α|

)2
√

L

C

)
≈ exp

(
|α|

√
L

C

)
exp

(
− 1

4

√
L

C

)
. (107)

How much spreading in Q space should be expected? To
make a crude estimate of how the harmonic term affects the
distribution in Q space, we note that

e−iβϕ2
Qeiβϕ2 = Q + 2βϕ, (108)

and choose β ≈ τJ /2L where τJ is the time scale for the
coupling to turn on; using 〈ϕ2〉 = 1

2

√
L/C in the Gaussian

ground state we infer Q is shifted by an amount of order,

α ∼ τJ

L

(
L

C

)1/4

. (109)

Assuming τJ ∼ √
LC in order to suppress the diabatic error,

we find that squeezing enhances the gate error by a factor,

exp

(
(constant)

(
L

C

)1/4)
; (110)

that is, it contributes a subleading correction to the logarithm
of the gate error.

More realistically, treating the harmonic term as a pertur-
bative correction to the zeroth-order Hamiltonian which has
ϕ → ϕ + 2π periodicity, the dynamics is governed by the
effective Hamiltonian,

Heff = εJ,C(q) + ϕ2

2L
, (111)

where q ∈ [− 1
2 , 1

2 ] is the Bloch momentum and εJ,C(q) is the
energy of the lowest band. Expanding this band energy to
quadratic order, we have

εJ,C(q) ≈ q2

2Ceff
. (112)

The effective capacitance Ceff is approximately C for J small,
but for JC ≈ 1, the band curvature begins to flatten rapidly;
correspondingly Ceff increases sharply, as does the oscillator’s
period 2π

√
LCeff . The oscillator evolves adiabatically for J

small, but its evolution freezes when its period becomes com-
parable to τJ , the characteristic time scale for the variation of
the Hamiltonian. Therefore, the squeezing error is determined
by the wave function’s width in q space at the time when the
oscillator freezes; hence,

Psq ∼ exp

(
− (constant)

√
L

Ceff

)

∼ exp

(
− (constant)

L

τJ

)
∼ exp

(
− (constant)

√
L

C

)
,

(113)

where we obtain the last equality by choosing τJ ∼ √
LC to

suppress the diabatic error. Thus the contribution to the gate
error due to squeezing is comparable to the other sources of
error. We can use a similar argument to conclude that the
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squeezing error arising as the coupling J (t) turns off is also of
the same order.

IX. SIMULATIONS

We have compared the predictions from Secs. VI and
IV to numerical simulations of the single-qubit phase gate
exp(i π

4 Z). We solved the time-dependent Schrödinger equa-
tion for the Hamiltonians H0,1 in Eq. (15), assuming the
oscillator starts in the ground state (excited states will be
considered in Sec. X). These simulations were done in MATLAB

using the fourth-order split-operator method, which is based
on the identity,

eit(A+B) = ei
γ

2 tAeiγ tBei
1−γ

2 tAei(1−2γ )tBei
1−γ

2 tAeiγ tB

× ei
γ

2 tA + O(t4), (114)

where γ = 1
2− 3√2

, and A, B are the portions of the Hamiltonian
that are diagonal in the position, momentum eigenbases,
respectively. The full time evolution is broken up into many
small steps with the Hamiltonian alternating between A and
B and the Fourier transform or its inverse applied between
successive steps.

We assume that the coupling ∓J (t) cos ϕ between the
oscillator and the 0-π qubit turns on with an error-function
profile,

J (t) = J0
(

1
2 + 1

2 erf(t/τJ )
)
, (115)

and that the coupling turns off after the time delay τ ≈ L/π

according to the time-reversed function J (τ − t); the time
scale τJ for turning the coupling on and off and the time delay
τ were chosen to optimize the gate accuracy. Then we varied
the time delay τ = τ0(1 + ε), where τ0 is the optimal value,
to study the effect of overrotation or underrotation on the gate
accuracy.

Figure 13 shows the results for a series of simulations with√
L/C = 80,

√
J0C = 8, and τJ = √

LC, plotted together
with the analytic prediction Eq. (86) arising from the over-
rotation error alone. For small ε, the gate error is

|ηε| ≈ 2 × 10−8 ≈ 10 exp

(
− 1

4

√
L

C

)
, (116)

substantially larger than the analytic prediction |ηε| ≈ 5 ×
10−10, but roughly compatible with our expectations for the
scale of the error due to diabatic transitions and squeezing, the
dominant errors in this regime, when we choose τJ ≈ √

LC.
For larger values of ε the overrotation error dominates and the
numerical results agree well with the analytic prediction.

The simulations verify that the protected phase gate is much
more robust than an unprotected gate. For an unprotected gate,
executed by coupling the 0-π qubit to a Josephson junction as
described in Sec. III, achieving a gate error less 10−4 in the
diamond norm requires pulse timing accuracy of order 10−4.
In contrast, for a protected gate with the parameters specified
above, 4% accuracy in the pulse timing suffices for achieving
a gate error less than 10−4. When the pulse timing accuracy is
better than 1%, the gate error is below 4 × 10−8.
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FIG. 13. (Color online) Blue diamonds show on a logarithmic
scale the numerically computed diamond-norm deviation from the
ideal phase gate, for κ−2 = √

L/C = 80, �−2 = √
J0C = 8, and

τJ /C = 80, as a function of the overrotation parameter ε. The solid
green line is the analytic prediction from Eq. (86) for the overrotation
error alone. The discrepancy for small ε arises from corrections due
to diabatic transitions and squeezing.

X. NONZERO TEMPERATURE

Our estimate of the intrinsic gate error in Eqs. (62) and (66)
applies to any gridlike state of the form Eq. (53). In Eqs. (75)
and (82) we treated the specific case of a Gaussian grid state,
which is what arises during the execution of the protected phase
gate in the case where the initial state |ψin〉 of the harmonic os-
cillator is the ground state. Let us now consider the case where
the initial state is excited, as occurs with nonzero probability at
any nonzero temperature. To keep things simple, we will ignore
the effects of overrotation, setting ε = 0. In that case, Imηε = 0
because Fε(Q) is real, so we only need to worry about the
real part of the gate error. In this section we also neglect the
corrections due to diabatic transitions and squeezing.

When the coupling to the 0-π qubit is turned off, the
harmonic oscillator Hamiltonian is

H = Q2

2C
+ ϕ2

2L
, (117)

and its ground state |ψ0〉 obeys

〈ϕ|ψ0〉 =
(

1

π

√
C

L

)1/4

e− 1
2

√
C
L

ϕ2
,

(118)

〈Q|ψ0〉 =
(

1

π

√
L

C

)1/4

e− 1
2

√
L
C

Q2
.

Our estimate diamond norm deviation from the ideal gate
becomes

|η(0)| ≈ 4
∫ ∞

1/2
dQ|〈Q|ψ0〉|2

= 4

(
1

π

√
L

C

)1/2 ∫ ∞

1/2
dQe−

√
L
C

Q2

≈ 4√
π

(
L

C

)−1/4

e− 1
4

√
L
C . (119)
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Numerically, we have, e.g., |η(0)| ≈ 1.6 × 10−5 for
√

L/C =
40 and |η(0)| ≈ 5.2 × 10−10 for

√
L/C = 80.

The oscillator’s nth excited state is

|ψn〉 = (a†)n√
n!

|ψ0〉, (120)

where

a† =
(

C

4L

)1/4

ϕ − i

(
L

4C

)1/4

Q, (121)

which becomes

a† = i

(
C

4L

)1/4
d

dQ
− i

(
L

4C

)1/4

Q (122)

in the Q representation. Therefore, the nth harmonic oscillator
excited state can be expressed in Q space as

〈Q|ψn〉 = 1√
n!

(
−

(
C

4L

)1/4
d

dQ
+

(
L

4C

)1/4

Q

)n

〈Q|ψ0〉

= 2n/2π−1/4

√
n!

(√
L

C

) n
2 + 1

4

(Qn + · · ·)e− 1
2

√
L
C

Q2
,

(123)

where in the second line we have retained only the leading
power of Q in the prefactor of the exponential. To estimate
the probability of a logical phase error, we assume that this
leading power dominates, and we also use the leading term in
the asymptotic expansion,∫ ∞

x

dtt2ne−αt2 =
(

x2n−1

2α

)
e−αx2

(1 − O(1/x2)), (124)

to calculate

|η(n)| ≈ 4
∫ ∞

1/2
dQ|〈Q|ψn〉|2

≈ 2n+2

n!
√

π

(
L

C

) n
2 + 1

4
∫ ∞

1/2
dQQ2ne−

√
L
C

Q2

≈ 1

2n−2n!
√

π

(
L

C

) n
2 − 1

4

e− 1
4

√
L
C

= 1

2nn!

(
L

C

)n/2

|η(0)|. (125)

Thus, for example, the intrinsic gate error for the first excited
(n = 1) state is enhanced relative to the ground state by the
factor 1

2

√
L/C. This approximation is applicable when n is

not too large, so that the leading power of Q dominates the
prefactor of the exponential in the tail of the wave function at
|Q| > 1/2; in particular we require that

〈Q2〉n = n〈Q2〉0 = n

2

(
L

C

)−1/2

� 1

2
, (126)

or

n �
√

L/C. (127)

The energy of the nth oscillator state is En = n/
√

LC;
therefore, in the thermal ensemble with inverse temperature β,
the probability that the oscillator is in the nth state is

Pn = (1 − e−β/
√

LC)e−nβ/
√

LC. (128)

Thus, if the oscillator is in a thermal state, while the intrinsic
phase error probability for the nth state is enhanced by the
factor (L/C)n/2/2nn!, it is also suppressed by the Boltzmann
factor e−nβ/

√
LC . Summing up the error probabilities for all

oscillator states, with the appropriate Boltzmann weights, we
find

|η(β)| = (1 − e−β/
√

LC)
∞∑

n=0

e−nβ/
√

LC |η(n)|

≈ (1 − e−β/
√

LC)|η(0)|
∞∑

n=0

e−nβ/
√

LC 1

2nn!

(
L

C

)n/2

= (1 − e−β/
√

LC) exp

(
1

2

√
L

C
e−β/

√
LC

)
|η(0)|;

(129)

the real part of η (and in the case we are considering there is
no imaginary part) is essentially the probability of a logical
phase error in the grid state, and hence to compute the gate
error we need only compute this logical error probability for
the thermal ensemble. Thus, the error at finite temperature is
comparable to the zero-temperature error, provided that√

L

C
e−β/

√
LC � 1. (130)

If, for example, β/
√

LC ≈ 3, then compared to the zero-
temperature case, thermal effects enhance the phase error
probability by the factor 2.6 for

√
L/C = 40 and 7.0 for√

L/C = 80. We expect, then, that the protected phase gate
remains reasonably robust provided the temperature is smaller
than or comparable to the frequency of the superinductive LC

circuit.
Numerical results, plotted in Fig. 14, show that the gate

performance remains robust for excited eigenstates. In addition
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FIG. 14. (Color online) The minimum diamond-norm deviation
of the protected phase gate from the ideal gate, as a function of
the initial oscillator eigenstate n, for

√
L/C = 80 and

√
J0C = 8.

Results from numerical simulations are shown in blue, and the
analytic prediction Eq. (125) is shown in red. The discrepancy arises
from corrections due to diabatic effects and squeezing, which are
neglected in the derivation of Eq. (125).
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to the enhancement of the intrinsic phase error predicted by
Eq. (125), there is also a contribution to the gate error arising
from diabatic transitions and squeezing, which becomes less
important for more highly excited eigenstates.

Up until now we have addressed how the accuracy of the
phase gate is affected if, due to thermal fluctuations, the initial
state of the LC oscillator is not the ground state, but we have
not considered thermally excited transitions that might occur
while the qubit and oscillator are coupled during the execution
of the gate. A thermally activated transition between bands,
like a diabatic transition, could flip the value of X̄ = (−1)[Q]

and cause the gate to fail. But as in Sec. VII, the relevant band
gap is of order 1/C, so such transitions are suppressed by a
Boltzmann factor,

Pthermal(β) = exp

(
− O

(
β

C

))
= exp

(
− O

(
β√
LC

√
L

C

))
, (131)

exponentially small in
√

L/C if β/
√

LC = O(1). On the other
hand, spontaneous decay of the oscillator during the execution
of the gate is not likely to flip the value of X̄, and hence has
little impact on the gate accuracy.

XI. PERTURBATIVE STABILITY

Aside from its stability with respect to pulse timing errors
and thermal effects, we also expect the protected phase gate
to be robust against small deformations in the Hamiltonian of
the LC oscillator and of the switch coupling the oscillator to
the qubit. Suppose, for example, that the oscillator’s potential
energy V includes a small anharmonic term so that

V = ϕ2

2L
+ λϕ4. (132)

Over time t , the effect of the anharmonic term on the charge
Q is

e−iλϕ4tQeiλϕ4t = Q + 4λtϕ3; (133)

thus the charge spreads by an amount,

δQ ≈ 4λt〈ϕ6〉1/2 = 4λt
√

15〈ϕ2〉3/2. (134)

Comparing to the contribution in Eq. (80) to δQ arising from
overrotating the gate, and choosing t ≈ L/π , we see that the
effect of the anharmonic term is roughly comparable to the
effect of an overrotation error,

ε ≈ 4
√

15λL〈ϕ2〉 = 2
√

15λL
√

L/C ≈ 7.75α, (135)

where α ≡ λL
√

L/C is a dimensionless parameter character-
izing the strength of the anharmonic correction. For

√
L/C =

80 and
√

J0C = 8 as in Sec. IX, numerical results plotted in
Fig. 15 confirm that the gate accuracy is not much affected
by the anharmonic term for α � 10−3, as expected. In these
simulations, we assumed that the initial state of the oscillator
is the ground state of the unperturbed oscillator Hamiltonian,
which for α small has a large overlap with the ground state of
the perturbed Hamiltonian.

The Josephson coupling between the 0-π qubit and the
oscillator is a periodic function of ϕ with period 2π , but need
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FIG. 15. The minimum diamond-norm deviation of the protected
phase gate from the ideal gate, as a function of the oscillator’s anhar-
monicity parameter α = λL

√
L/C. Here, as in Fig. 13,

√
L/C = 80

and
√

J0C = 8.

not be a pure cosine potential. If we include a next-to-leading
harmonic correction, the time-dependent Hamiltonian has the
form,

H0,1(t) = Q2

2C
+ ϕ2

2L
∓ f (t)J0[cos ϕ ± β cos 2ϕ], (136)

where f (t) varies between 0 and 1 as the coupling turns on
or off, and β is a dimensionless parameter characterizing the
strength of the perturbation. (Note that shifting ϕ by π changes
the sign of cos ϕ but not the sign of cos 2ϕ.) For

√
J0C � 1

and β � 1, we expect the wave function to be well localized
near even or odd integer multiples of π in ϕ space (depending
on whether the Hamiltonian is H0 or H1) while the coupling is
turned on; hence it should be a good approximation to expand
the potential in a power series about these local minima, and
therefore the perturbation is roughly equivalent to rescaling J0

according to

J0 → J0(1 + 4β). (137)

The precise value of J0 does not strongly influence the phase
error probability, as long as it is large enough to allow discrete
peaks to form in ϕ space (i.e., to strongly suppress phase slips);
it instead determines the probability of an intrinsic bit-flip
error, as in Eq. (50).

Numerical simulations confirm that the phase gate accuracy
is insensitive to the perturbation in Eq. (136) when β is small.
For

√
L/C = 80 and

√
J0C = 8, we find that the effect on the

gate error is negligible for |β| � 0.05.

XII. UNIVERSALITY

We have focused so far on performing the single-qubit gate
exp(i π

4 Z) and the two-qubit gate exp(i π
4 Z ⊗ Z); in principle

these can be executed with very high fidelity by coupling a 0-π
qubit or a pair of such qubits to a superinductive LC circuit.
But unfortunately these gates are not adequate by themselves
for universal quantum computing.
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One way to obtain a universal gate set is to augment
these gates by the following operations [5]: (1) preparation
of the single-qubit states |0〉 and |+〉 (the Z = 1 and X =
1 eigenstates); (2) measurement of the single-qubit Pauli
operators Z and X; (3) the single-qubit gate exp(i π

8 Z). [In
fact (1) need not be regarded as independent of (2), since
repeated noncommuting measurements can be used to achieve
the state preparation, but we list these operations separately
for clarity and completeness.]

The operation exp(i π
8 Z) could be executed by coupling the

0-π qubit to a Josephson junction for a specified time, as in
Fig. 4. This unprotected gate might be fairly noisy. However,
if all the other operations in the universal set were perfect, then
scalable quantum computing would be possible provided the
noisy exp(i π

8 Z) gate meets the loose fidelity criterion F > .93
[11]. Therefore if the gates exp(i π

4 Z) and exp(i π
4 Z ⊗ Z)

are well protected, it follows that highly reliable universal
quantum computation can be achieved provided that the
measurements, like these gates, have a very low error rate.

In practice, the measurements are likely to be noisy.
However, if they can be performed nondestructively (with only
a very low probability of changing the eigenvalue of measured
operator), then they can be repeated multiple times to improve
reliability.

We note that the CPHASE gate, the two-qubit gate, diagonal
in the computational basis, with eigenvalues {1,1,1, − 1}, can
be constructed from protected gates using the decomposition

CPHASE = exp

(
i
π

4
(Z − I ) ⊗ (Z − I )

)
= exp

(
i
π

4
Z ⊗ Z

)
exp

(
− i

π

4
Z ⊗ I

)
× exp

(
− i

π

4
I ⊗ Z

)
(138)

(up to an overall phase). One way to perform a nondestructive
measurement of Z is to use the property,

CPHASE : |0〉 ⊗ |+〉 → |0〉 ⊗ |+〉,
|1〉 ⊗ |+〉 → |1〉 ⊗ |−〉; (139)

we may apply CPHASE to the target qubit (the one to be
measured) and an ancilla qubit prepared in the state |+〉, then
perform X measurement on the ancilla qubit. If the CPHASE

gate is not likely to induce a bit flip on the target qubit, this
procedure can be repeated many times, then the measurement
result determined by a majority vote of the outcomes.

If we are limited to using our protected gates, we cannot
use the same trick to amplify an X measurement. Perhaps
the charge measurement described in Sec. II, though the
outcome is noisy, can be done fault tolerantly, meaning that the
measurement procedure is not likely to flip the eigenvalue of
X. In that case, amplification by repetition and majority voting
will work. Otherwise, there are alternative ways to boost the
measurement accuracy, using repetition coding.

For example, Refs. [12–14] describe a scheme for universal
fault-tolerant quantum computing built from the CPHASE gate,
|+〉 preparation, X measurement, and, in addition, preparation

|+ • • • • • • MX

|+ •
|+ •
|+ •

• • MX

• • MX

• • MX

• MX

• MX

• MX

|+ •
|+ •
|+ •

|+ • • • • • • • • • MX

FIG. 16. Logical CNOT gate acting on two blocks of the repetition
code, shown here for code length n = 3. Ancilla qubits are prepared
in the X = 1 eigenstate |+〉, interact via CPHASE gates with the
data qubits, then are measured in the X basis. (These preparations,
gates, and measurements are repeated several times, and the result
is determined by a majority vote; the measurement repetition is not
shown.) Finally, each qubit in the two input blocks is measured in the
X basis, the results are decoded by a majority vote in each block, and
logical Pauli errors in the output blocks are inferred from the results.

of the single-qubit states,

|−i〉 = 1√
2

(|0〉 − i|1〉), |e−iπ/4〉 = 1√
2

(|0〉 + e−iπ/4|1〉),

which can be achieved by applying exp(i π
4 Z) or exp(i π

8 Z)
to |+〉. The main point of [12–14] is that this scheme works
effectively when the noise in the CPHASE gate is highly biased,
i.e., when Z errors are much more common than X errors. The
point we wish to emphasize here is that the scheme remains
effective when the X measurement error rate is much higher
than the CPHASE gate error rate.

The crucial element of the construction in [12,13] is a
“teleported” encoded CNOT gate acting on blocks of a repetition
code, shown in Fig. 16. (In [14] this construction is extended
to Bacon-Shor codes.) The probability of a logical error in the
CNOT gate can be bounded above as [12]

εCNOT � 4

(
n

n+1
2

)
(3nεg + 2εm)(n+1)/2 + 7n2ε′

g

�
√

8

πn
(12nεg + 8εm)(n+1)/2 + 7n2ε′

g, (140)
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where εg is the probability of a dephasing error and ε′
g is the

probability of a bit-flip error in the CPHASE gate, and εm is the
error probability in a |+〉 preparation or an X measurement.
Here n is the length of the repetition code, and we assume
that each measurement is repeated n times; the prefactor of 4
arises because the CNOT gadget contains four measurements
decoded by majority vote, any of which might fail, and the
factor 3nεg + 2εm is an upper bound on the probability of
error for each bit in each decoded block, neglecting the bit-flip
errors. (The second inequality is obtained from the Stirling
approximation.) The term 7n2ε′

g is an upper bound on the
probability that one or more CPHASE gates in the CNOT gadget
have bit-flip errors.

Just to illustrate the robustness of the CNOT gadget with
respect to measurement and preparation errors (assuming bit
flips are highly suppressed), note that for εm = .01, εg = 10−5,
and ε′

g = 10−9, by choosing n = 11 we find εCNOT < 10−6.
The analysis in [12] then shows that, by applying the state
distillation ideas from [11], scalable quantum computing can
be achieved by augmenting the CNOT gadget with | − i〉 and
|e−iπ/4〉 preparations having the relatively high error rate εm.
This example indicates one possible way in which noisy
measurements can be tolerated if appropriate gates are highly
reliable.

XIII. CONCLUSIONS

A “0-π qubit” is a two-lead superconducting device
whose energy is minimized when the superconducting phase
difference between the leads is either 0 or π . This qubit, if
properly designed, can be very robust with respect to weak
local noise [3–5]. In this paper, we have taken it for granted
that near-perfect 0-π qubits are attainable, and have asked
whether quantum information encoded in such qubits can
be processed fault tolerantly. Our conclusion, fleshing out a
suggestion in [5], is that highly accurate nontrivial quantum
gates can be executed by coupling one or two qubits to a
superconducting LC oscillator with very large inductance. In
principle the gate error becomes exponentially small when√

L/C is large compared to h̄/4e2 ≈ 1.03 k�, where L is the
inductance and C is the capacitance of the oscillator.

We have estimated the gate accuracy using both analytic
arguments and numerical simulations. The analytic arguments
use approximations, in particular for the analysis of errors due
to diabatic transitions and squeezing, that are validated by the
simulations. The point of the simulations is not necessarily
to capture fully the behavior of realistic devices, but rather
to verify that the analytic arguments are on solid ground. The
analysis applies to any sufficiently robust 0-π qubit, regardless
of its internal structure.

The protected gates are the single-qubit phase gate
exp(i π

4 Z) and the two-qubit phase gate exp(i π
4 Z ⊗ Z). In both

cases, the oscillator starts out in a low-lying energy state; then
turning on a tunable Josephson coupling between the qubit(s)
and the oscillator prepares a state of the oscillator protected
by a continuous variable quantum error-correcting code. The
coupling is kept on for a specified time, during which the code
state acquires a nontrivial Berry phase, inducing a nontrivial
encoded operation, with error probability exponentially small

in
√

L/C. Then the coupling turns off, returning the oscillator
to a low-lying state slightly different from the initial one.

The ramping of the coupling on and off takes place over
a time scale τJ = O(

√
LC), chosen to achieve an optimal

compromise between errors due to diabatic transitions (which
favor large τJ ) and errors due to squeezing (which favor
small τJ ). The gates are robust against generic small errors
in the Hamiltonian and thermal effects, due to the good
error-correcting properties of the quantum code. Entropy due
to noise is mostly absorbed by the oscillator, inflicting little
damage on the 0-π qubit. These protected phase gates are not a
universal gate set by themselves, but a universal fault-tolerant
scheme can be built from the protected gates together with
single-qubit measurements and noisy unprotected phase gates.

We do not know whether a very robust 0-π qubit, and/or
the superinductive LC circuit needed for protected phase gates,
will prove to be feasible in superconducting devices. We hope
that other settings will be found in which highly reliable
quantum gates can be realized by using tunable couplings
between qubits and oscillators.
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APPENDIX A: ADIABATIC SWITCH

Here we describe the static properties of a single rung of the
two-rung circuit depicted in Fig. 2. This single-rung circuit is
of independent interest; because its effective Josephson energy
depends sensitively on circuit parameters, it can serve as an
“adiabatic switch” which turns on and off the coupling between
superconducting qubits.

The circuit shown in Fig. 17 is described by the Hamilto-
nian,

H = Q2

2C
+ ϕ2

2L
− J cos(ϕ − θ ), where Q = −i

∂

∂ϕ
.

(A1)

The dynamical variable is the superconducting phase ϕ at the
indicated point, and the phase difference θ between the leads is
fixed; Q is the electric charge operator in units of 2e. While θ

is defined modulo 2π , the variable ϕ is a real number because
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FIG. 17. Adiabatic switch. For
√

L/C � 1, the effective Joseph-
son energy Jeff of the switch depends sensitively on circuit parameters.

the states |ϕ〉 and |ϕ + 2π〉 differ by the phase winding in
the inductor. We choose units such that h̄ = 1 and express
the capacitance and inductance in rationalized units such that
C−1 and L−1 have dimensions of energy (or inverse time).
Specifically,

C = Cconv

(2e)2
, L = Lconv

(h̄/2e)2
, (A2)

where the subscript “conv” refers to conventional units. We
can also relate the parameters J , C to the commonly used
charging energy EC and Josephson energy EJ :

EC = e2

2Cconv
= 1

8C
, EJ = Jconv = J. (A3)

In the main text of the paper we have studied this same
Hamiltonian, where θ = 0 or π and J pulses on and off during
the execution of a quantum gate. But here we focus on the case
where J is time independent.

In the dc regime, the whole device behaves like an effective
Josephson element—its ground-state energy E(θ ) depends
on the phase difference θ between the leads. The effective
Josephson energy can be characterized by

Jeff = E′′(0) = ∂2E

∂θ2

∣∣∣∣
θ=0

. (A4)

We will see that this number varies by orders of magnitude
when the circuit parameters change in a much narrower range.

Suppose that C and L are fixed, while J may vary from
very small to very large values. In the limit J → 0, we may
treat the Josephson energy as a small perturbation of the LC

oscillator, obtaining

E(θ ) = −Jeff cos θ + const, (A5)

where

Jeff = J 〈cos ϕ〉, = Je−〈ϕ2〉/2 = J exp

(
− 1

4

√
L/C

)
. (A6)

In the opposite limit J → ∞, the dynamical phase is locked:
ϕ ≡ θ (mod 2π ), and therefore,

E(θ ) = min
n

(θ + 2πn)2

2L
+ const, Jeff = L−1. (A7)

If L is large, the effective Josephson coupling is suppressed in
both limits, but the suppression is exponential only in the limit
J → 0.

We say that the circuit is superinducting if the dimen-
sionless characteristic impedance is large, or equivalently
if the impedance in conventional units is large compared
to the superconducting impedance quantum RQ = h̄/(2e)2 ≈
1.03 k�. Reaching this superinducting regime is a significant
experimental challenge, quite hard to achieve using geometric
inductance (except perhaps by constructing a coil with a very
large number of turns). Indeed, the inductance of a loop of

wire is accompanied by a parasitic capacitance such that√
Lconv/Cconv ∼ 4π/c ≈ 377 � (where c is the speed of light).

This is the impedance of the free space, smaller than RQ by
the factor 16πα where α = e2/h̄c ≈ 1/137 is the fine structure
constant. One possible way to realize a superinductor is to build
a long chain of Josephson junctions [7–9]. Another is to use a
long wire, thick enough to suppress phase slips, built from a
material with large kinetic inductance.

In the case where
√

L/C � 1, we can compute the ground-
state energy of the Hamiltonian Eq. (A1) semianalytically.
First we note that in the limit L → ∞ the problem reduces to
particle moving in a periodic potential:

H ′ = Q2

2C
− J cos ϕ̃, where ϕ̃ = ϕ − θ. (A8)

This approximate Hamiltonian H ′ preserves the quasimomen-
tum q = Q mod 1, and therefore can be solved using Bloch
wave functions. In the lowest Bloch band, the energy can be
expressed as a function of the quasimomentum q ∈ [− 1

2 , 1
2 ] in

two different limits:

JC � 1: ε(q) = q2

2C
, (A9)

JC � 1: ε(q) = −J + ω

2
− 2λ cos(2πq), (A10)

where

ω =
√

J/C, λ = 4√
π

J 3/4C−1/4 e−8
√

JC. (A11)

In the case JC � 1, the system stays near a minimum of
the cosine potential at ϕ̃ = 2πn and occasionally tunnels
to an adjacent minimum through the potential barrier. In
Eq. (A11), ω is the angular frequency for small oscillations
about the potential minimum, and λ is the amplitude tunneling
amplitude.

To compute λ we recall the semiclassical analysis [15] for a
particle of mass m tunneling through a symmetric double-well
potential V (x) with minima at x = a,b, which yields

λ = ω√
π

e−S+ωτ/2, (A12)

where

S =
∫ b

a

dx
√

2mV (x), τ =
∫ b−�x

a+�x

dx

√
m

2V (x)
; (A13)

here ω = √
V ′′(a)/m and �x = (V ′′(a) m)−1/4 is the width of

the ground state localized around the potential minimum. We
obtain Eq. (A10) using m = C and V (ϕ̃) = J (1 − cos ϕ̃).

Defining the effective capacitance Ceff by

1

Ceff
= ε′′(0), (A14)

we obtain from Eqs. (A10) and (A11) the asymptotic values,

C

Ceff
=

{
1, if JC � 1,

32π3/2(JC)3/4e−8
√

JC, if JC � 1.
(A15)

The numerically computed value of Ceff as a function of JC

is plotted in Fig. 18.
Now we return to the original Hamiltonian H in Eq. (A1).

For small but nonzero L−1, the quasimomentum q, though
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FIG. 18. (Color online) The inverse effective capacitance of a
Josephson junction as a function of JC.

not exactly conserved, is a slow variable which can be treated
using the adiabatic approximation. We obtain the effective
Hamiltonian,

Heff = ϕ2

2L
+ ε(q), where ϕ = i

∂

∂q
+ θ. (A16)

This problem is similar to the one we have just solved,
Eq. (A8); now the variable q is periodic (defined modulo 1),
and the parameter θ plays the role of quasimomentum.

If
√

L/Ceff � 1, i.e., JC � ln(L/C), the ground-state
energy is given by the formula E(θ ) = −Jeff cos θ + const,
where Jeff is twice the tunneling amplitude. This expression is
analogous to Eq. (A10), except that now we consider tunneling
through the periodic “potential” ε(q) from an integer value of
q to an adjacent integer value. From Eq. (A12) we find

Jeff = ν C
−3/4
eff L−1/4 exp(−μ

√
L/Ceff), (A17)

where

μ = 2
∫ 1/2

0

√
2Ceff(ε(q) − ε(0)) dq, (A18)

ν = 1√
π

exp

( ∫ 1/2

0
((2Ceff(ε(q) − ε(0)))−1/2 − q−1)dq

)
.

(A19)

The parameters μ and ν are numbers of order 1: As JC

increases from zero to infinity, μ changes from 1/4 = 0.25
to 2/π2 ≈ 0.2026, and ν changes from 1/

√
π ≈ 0.564 to

4/π3/2 ≈ 0.718.
For Eq. (A17) to apply we also need that J not be too small:

JC � (L/C)−1/4. For smaller J , the adiabatic approximation
breaks down near the point q = ±1/2 where two branches
of the parabola ε(q) = q2/(2C) meet each other. However,
the exponential factor e−S is still correct and coincides with
〈cos ϕ〉 from Eq. (A6).
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FIG. 19. (Color online) The effective Josephson parameter of the
adiabatic switch as a function of JC for

√
L/C = 40.

To summarize, we have calculated the effective Josephson
coupling in three different regimes, finding

JC � (L/C)−1/4 : Jeff = J exp
( − 1

4

√
L/C

)
, (A20)

(L/C)−1/4 � JC � ln(L/C) :
(A21)

Jeff = ν C
−3/4
eff L−1/4 exp(−μ

√
L/Ceff),

JC � ln(L/C) : Jeff = L−1. (A22)

The numerical results for
√

L/C = 40, together with plots of
Eqs. (A20) and (A22), are shown in Fig. 19.

APPENDIX B: QUANTIFYING THE GATE ERROR

The protected phase gate is executed by coupling the qubit
to an oscillator for a prescribed time interval. We assume
that the initial state of qubit and oscillator is a product
state |ψ〉 ⊗ |ψin〉, where |ψ〉 = a|0〉 + ib|1〉 is the initial
(normalized) state of the qubit and |ψinit〉 is the initial state of
the oscillator. After the coupling between qubit and oscillator
is switched off, the joint state of qubit and oscillator becomes

|ψ ′〉 = a|0〉 ⊗ |ψ0〉 + b|1〉 ⊗ |ψ1〉, (B1)

where 〈ψ0|ψ0〉 = 〈ψ1|ψ1〉 = 1. We assume that there are no
bit-flip errors, but there may be a phase error. If the gate is ideal,
then 〈ψ0|ψ1〉 = 1, and the gate rotates the phase of |1〉 by the
angle −π/2 relative to the phase of |0〉. We wish to quantify
the error, using some appropriate measure of the deviation of
〈ψ0|ψ1〉 from 1.

1. Fidelity

One way to quantify the error is to use the fidelity of the
actual state with the ideal state. Tracing out the oscillator, we
obtain the final density operator for the qubit,

ρ = trosc|ψ ′〉〈ψ ′| =
(

〈ψ0|ψ0〉|a|2 〈ψ1|ψ0〉ab∗

〈ψ0|ψ1〉a∗b 〈ψ1|ψ1〉|b|2
)

=
(

|a|2 Ce−iφab∗

Ceiφa∗b |b|2
)

, (B2)
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where

〈ψ0|ψ1〉 = Ceiφ, (B3)

and C = |〈ψ0|ψ1〉| is real and nonnegative. The fidelity F with
the ideal state |ψideal〉 = a|0〉 + b|1〉 is

F = 〈ψideal|ρ|ψideal〉
= |a|4 + |a|2|b|2(Ceiφ + Ce−iφ) + |b|4
= (|a|2 + |b|2)2 − 2(1 − C cos φ)|a|2|b|2. (B4)

Thus the “infidelity” (the deviation of F from 1) is maximal
when |a|2 = |b|2 = 1/2, and we conclude that

1 − F � 1
2 (1 − C cos φ). (B5)

Denoting δ = 1 − C, we have

1 − F ≈ 1
2δ + 1

4φ2, (B6)

assuming δ,φ � 1.

2. Trace norm

Another useful measure is the deviation of ρ from the ideal
density operator ρideal = |ψideal〉〈ψideal| in the trace norm. We
see that

ρideal − ρ =
(

0 (1 − Ce−iφ)ab∗

(1 − Ceiφ)a∗b 0

)
, (B7)

whose eigenvalues,

±|a||b|
√

1 + C2 − 2C cos φ, (B8)

have maximal absolute value for |a| = |b| = 1/
√

2. Hence the
trace norm satisfies

‖ρideal − ρ‖1 �
√

1 + C2 − 2C cos φ

= |1 − 〈ψ0|ψ1〉|. (B9)

Denoting δ = 1 − C, we have

‖ρideal − ρ‖1 �
√

(1 − C)2 + 2C(1 − cos φ)

≈
√

δ2 + φ2, (B10)

assuming δ,φ � 1.

3. Kraus operators

It is also useful to have a Kraus operator decomposition of
the noise process. We may define states |ψ ′

0〉 and |ψ ′
1〉 such

that

|ψ0〉 = e−iφ/2|ψ ′
0〉, |ψ1〉 = eiφ/2|ψ ′

1〉, (B11)

and, therefore,

〈ψ ′
0|ψ ′

1〉 = C � 0. (B12)

In terms of these states,

|ψ ′〉 = a|0〉 ⊗ |ψ0〉 + b|1〉 ⊗ |ψ1〉
= (e−iφ/2a|0〉 + beiφ/2|1〉) ⊗ 1

2 (|ψ ′
0〉 + |ψ ′

1〉)
+ (e−iφ/2a|0〉 − beiφ/2|1〉) ⊗ 1

2 (|ψ ′
0〉 − |ψ ′

1〉),
(B13)

where ∥∥ 1
2 (|ψ ′

0〉 ± |ψ ′
1〉)

∥∥ =
√

1
2 (1 ± C),

(B14)
(〈ψ ′

0| + 〈ψ ′
1|)(|ψ ′

0〉 − |ψ ′
1〉) = 0.

Therefore,

ρ = N (ρideal) = M0ρidealM
†
0 + M1ρidealM

†
1, (B15)

where

M0 =
√

1

2
(1 + C)

(
e−iφ/2 0

0 eiφ/2

)
,

(B16)

M1 =
√

1

2
(1 − C)

(
e−iφ/2 0

0 −eiφ/2

)
.

Note that we have rotated away the ideal phase gate in our
definition of the noise operationN , so thatN = I corresponds
to the ideal gate.

4. Diamond norm

In some versions of the quantum accuracy threshold
theorem, the strength of Markovian noise is characterized by
the deviation,

ε = ‖N − U‖�, (B17)

of a noisy gate N from the corresponding ideal gate U in the
“diamond norm” [10]. The advantage of the diamond norm is
that it quantifies the damage inflicted by an operation that acts
on a subsystem that might be entangled with a complementary
subsystem, e.g., a noisy gate acting on a qubit or pair of qubits
that is entangled with the rest of the qubits in a quantum
computer. The diamond norm ‖E‖� is defined as the L1 norm
of the extended operator E ⊗ I ; that is,

‖E‖� = max
σ

‖E ⊗ I (σ )‖1. (B18)

If E acts on a Hilbert space H of dimension d, then I denotes
the identity operator acting on another Hilbert space H′ of
dimension d, and σ is a state on H ⊗ H′.

For the operation defined by Eq. (B15), the two-qubit state
σ that maximizes the L1 distance between (N ⊗ I )(σ ) and σ

is a maximally entangled pure state, which we may choose to
be |φ+〉 = 1√

2
(|00〉 + |11〉). Letting N act on the first qubit,

we obtain an ensemble of two pure states,

1√
2

(e−iφ/2|00〉 + eiφ/2|11〉), prob = 1

2
(1 + C),

(B19)
1√
2

(e−iφ/2|00〉 − eiφ/2|11〉), prob = 1

2
(1 − C),

and the density operator can be expressed as a 2 × 2 matrix
acting on the span of |00〉 and |11〉:

N ⊗ I (|φ+〉〈φ+|) =
(

1
2

1
2Ce−iφ

1
2Ceiφ 1

2

)
,

(N ⊗ I − I ⊗ I )(|φ+〉〈φ+|)
=

(
0 1

2 (Ce−iφ − 1)
1
2 (Ceiφ − 1) 0

)
. (B20)
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Comparing with Eq. (B7) in the case a = b = 1√
2
, we find

‖N − I‖� = max ‖ρideal − ρ‖1

=
√

1 + C2 − 2C cos φ = |1 − 〈ψ0|ψ1〉|. (B21)

Evidently, extending E to E ⊗ I does not increase its maximal
L1 norm; hence the noisy gate’s deviation from the ideal gate in
the diamond norm coincides with the maximal trace distance
deviation of the density operator ρ from the ideal density
operator ρideal.

The accuracy of the two-qubit phase gate can be analyzed in
the same way. Now the final state of the oscillator depends on
the total phase difference across a pair of 0-π qubits; it is |ψ0〉
for the two-qubit states |00〉 and |11〉, and |ψ1〉 for the two-
qubit states |01〉 and |10〉. The eigenvalues of ρideal − ρ become
doubly degenerate, and hence the diamond norm deviation
from the ideal gate is twice as large as for the single-qubit
phase gate.

Both the fidelity and the diamond norm are useful measures
of the gate error. The significant difference is that the diamond
norm deviation (≈

√
(1 − C)2 + φ2) is linear in φ (for φ small

and C ≈ 1), while the infidelity is quadratic in φ. The threshold
theorem establishes a sufficient condition for scalable quantum
computing, expressed as an upper bound on the diamond norm,
and it applies under the pessimistic assumption that phase
errors accumulate linearly with the circuit size. But if the
phase errors are actually random, we might expect them to
add in quadrature, and in that case the infidelity may be a more
appropriate way to quantify the gate error.

APPENDIX C: GRID STATES

Here we provide additional details concerning the proper-
ties of grid states, which were omitted from the discussion in
Sec. VI.

1. Approximate code words in ϕ space and Q space

Let f denote a narrow function in the ϕ space, and F̃

denote a broad envelope function in the ϕ space. We express
the approximate code words of the continuous variable code
as

|0C〉 =
√

2π
∑
neven

F̃ (πn)T (πn)
∫

dϕf (ϕ)|ϕ〉,
(C1)

|1C〉 =
√

2π
∑
nodd

F̃ (πn)T (πn)
∫

dϕf (ϕ)|ϕ〉,

where T (a) denotes the ϕ translation operator whose action is
T (a)|ϕ〉 = |ϕ + a〉. The function f is normalized so that∫

dϕ|f (ϕ)|2 = 1, (C2)

and if the overlap between peaks centered at distinct integer
multiples of π can be neglected, then |0C〉 and |1C〉 are
normalized, provided

2π
∑
neven

|F̃ (πn)|2 ≈ 1, 2π
∑
nodd

|F̃ (πn)|2 ≈ 1. (C3)

The approximate code words in the conjugate basis are

|+C〉 = 1√
2

(|0C〉 + |1C〉)

= √
π

∑
n

F̃ (πn)T (πn)
∫

dϕf (ϕ)|ϕ〉,

|−C〉 = 1√
2

(|0C〉 − |1C〉)

= √
π

∑
n

F̃ (πn)(−1)nT (πn)
∫

dϕf (ϕ)|ϕ〉,

where

π
∑

n

|F̃ (πn)|2 ≈ 1. (C5)

To express these states in the Q basis we use∫
dϕf (ϕ)|ϕ〉 =

∫
dQ

∫
dϕf (ϕ)|Q〉〈Q|ϕ〉

=
∫

dQf̃ (Q)|Q〉, (C6)

where

f̃ (Q) = 1√
2π

∫
dϕe−iQϕf (ϕ),

(C7)

f (ϕ) = 1√
2π

∫
dQeiQϕf̃ (Q);

since the function f is narrow in ϕ space, its Fourier transform
f̃ is broad in Q space. The translation operator is represented
in Q space as T (a) = exp(−iQa), and, therefore,

|+C〉 = √
π

∑
n

F̃ (πn)T (πn)
∫

dϕf (ϕ)|ϕ〉

= √
π

∑
n

F̃ (πn)
∫

dQe−iπnQf̃ (Q)|Q〉,
(C8)

|−C〉 = √
π

∑
n

F̃ (πn)(−1)nT (πn)
∫

dϕf (ϕ)|ϕ〉

= √
π

∑
n

F̃ (πn)
∫

dQe−iπn(Q−1)f̃ (Q)|Q〉.

Now we reverse the order of the summation and integration,
and use the Poisson summation formula, in the form (see
Appendix D):

√
π

∑
n

e−iπnQF̃ (πn) =
√

2
∑
m

F (Q − 2m), (C9)

where

F (Q) = 1√
2π

∫
dϕe−iQϕF̃ (ϕ),

(C10)

F̃ (ϕ) = 1√
2π

∫
dQeiQϕF (Q).
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The code words |+C〉 and |−C〉 can now be expressed as

|+C〉 =
√

2
∫

dQf̃ (Q)
∑
meven

F (Q − m)|Q〉,
(C11)

|−C〉 =
√

2
∫

dQf̃ (Q)
∑
modd

F (Q − m)|Q〉.

Here F is a narrow function centered at zero in Q space, so
that |+C〉 has support near even integer values of Q, and |−C〉
has support near odd integer values of Q. Because f̃ (Q) is
slowly varying, it is nearly constant within each peak, and the
code words can be well approximated as

|+C〉 ≈
√

2
∑
meven

f̃ (m)
∫

dQF (Q − m)|Q〉,
(C12)

|−C〉 ≈
√

2
∑
modd

f̃ (m)
∫

dQF (Q − m)|Q〉,

where

2
∑
meven

|f̃ (m)|2 ≈
∫

dQ|f̃ (Q)|2 ≈ 1,

(C13)
2

∑
modd

|f̃ (m)|2 ≈
∫

dQ|f̃ (Q)|2 ≈ 1.

2. Phase gate overrotation

We wish to study the performance of the encoded phase
gate, which rotates the relative phase of |0C〉 and |1C〉 by
−π/2. For ideal code words, this gate is achieved by applying
the unitary operator e−iϕ2/2π , which has the value 1 when ϕ

is an even multiple of π , and has the value −i when ϕ is
an odd multiple of π . Loosely speaking, this operation arises
from the harmonic potential of the superinductor, turned on
for a specified time interval. An error could occur because the
timing is not precisely correct, so that e−iϕ2(1+ε)/2π is applied
instead, where ε � 1.

In ϕ space, each narrow peak in the approximate code word
is stabilized by the cosine potential, but when the phase gate is

overrotated, the relative phases of the peaks are modified, with
the peak localized near ϕ = nπ acquiring the phase e−iεπn2/2.
Thus, instead of Eq. (C8), the approximate X̄ eigenstates
become

|±C〉ε = √
π

∑
n

(±1)ne−iεπn2/2F̃ (nπ )

×
∫

dQe−iπnQf̃ (Q)|Q〉. (C14)

We again use the Poisson summation formula,
√

π
∑

n

e−iπnQF̃ε(πn) =
√

2
∑
m

Fε(Q − 2m), (C15)

but now applied to the modified function,

F̃ε(ϕ) = e−iεϕ2/2π F̃ (ϕ), (C16)

such that

F̃ε(nπ ) = e−iεπn2/2F̃ (nπ ). (C17)

Therefore, as in Eq. (53), the approximate code words |±C〉ε
can be expressed as

|+C〉ε ≈
√

2
∑
meven

f̃ (m)
∫

dQFε(Q − m)|Q〉,
(C18)

|−C〉ε ≈
√

2
∑
modd

f̃ (m)
∫

dQFε(Q − m)|Q〉,

where

Fε(Q) = 1√
2π

∫
dϕe−iQϕF̃ε(ϕ). (C19)

3. Imaginary part of overrotation error

As explained in Sec. VI B, the imaginary part of the gate
error due to overrotation is estimated as

Imηε = Im〈ψend
− |X̄|ψend

+ 〉, (C20)

where

〈ψend
− |X̄|ψend

+ 〉 ≈ 2
∫

[Q]even
dQ|f̃ (Q)|2

∑
meven
nodd

F (Q − n)∗F (Q − m) − 2
∫

[Q]odd
dQ|f̃ (Q)|2

∑
meven
nodd

F (Q − n)∗F (Q − m). (C21)

We evaluate this expression as follows:

〈ψend
− |X̄|ψend

+ 〉 ≈ 2
∑
meven

|f̃ (m)|2
∫ m+ 1

2

m− 1
2

dQ(F (Q − m − 1)∗ + F (Q − m + 1)∗)F (Q − m)

− 2
∑
nodd

|f̃ (n)|2
∫ n+ 1

2

n− 1
2

dQF (Q − n)∗(F (Q − n − 1) + F (Q − n + 1))

≈
(

2
∑
meven

|f̃ (m)|2
)( ∫ 0

−1
dQF

(
Q − 1

2

)∗
F

(
Q + 1

2

)
+

∫ 1

0
dQF

(
Q + 1

2

)∗
F

(
Q − 1

2

))

−
(

2
∑
nodd

|f̃ (n)|2
)(∫ 0

−1
dQF

(
Q + 1

2

)∗
F

(
Q − 1

2

)
+

∫ 1

0
dQF

(
Q − 1

2

)∗
F

(
Q + 1

2

))
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≈ 2
∫ 1

0
dQ

(
Odd

[
F

(
Q + 1

2

)∗
F

(
Q − 1

2

)]
− c.c.

)
≈ 2

∫ ∞

0
dQ

(
Odd

[
F

(
Q + 1

2

)∗
F

(
Q − 1

2

)]
− c.c.

)
. (C22)

To obtain the first equality we suppose that the integral is
dominated by the overlaps of peaked functions {F (Q − m)}
centered at neighboring integer values of m, and approximate
the slowly varying function f̃ (Q) by a constant in each
integral. We obtain the second equality by shifting the
integration variable in each integral, and the third equality
by using the normalization condition 2

∑
meven |f̃ (m)|2 ≈ 1 ≈

2
∑

nodd |f̃ (n)|2, while noting that the integral of the even part
of F (Q + 1

2 )∗F (Q − 1
2 ) cancels between the integrals over

[−1,0] and [0,1]. (Odd[G(Q)] ≡ 1
2 [G(Q) − G(−Q)] denotes

the odd part of the function G(Q), and c.c. denotes the
complex conjugate.) Finally, because the integrand decays
rapidly we make a negligible error by extending the upper
limit of integration from 1 to infinity. Thus we conclude that

Imηε ≈ 4Im
∫ ∞

0
dQOdd

[
F

(
Q + 1

2

)∗
F

(
Q − 1

2

)]
.

(C23)

APPENDIX D: POISSON SUMMATION FORMULA

To derive Eq. (C9), we note that

G(Q) ≡
∑
m

F (Q − 2m) (D1)

is a periodic function of Q with period two, and therefore has
a Fourier series expansion,

G(Q) =
∑

n

e−iπnQG̃n, (D2)

where

G̃n = 1

2

∫ 2

0
dQeiπnQG(Q)

= 1

2

∫ 2

0
dQ

∑
m

F (Q − 2m)eiπnQe−i2πmn (D3)

(in the last equality we have inserted e−i2πmn = 1). Now we
can combine the integral over Q from 0 to 2 and the sum over
m, obtaining an integral over Q from −∞ to ∞; therefore,

G̃n = 1

2

∫ ∞

−∞
dQF (Q)eiπQn =

√
π

2
F̃ (πn), (D4)

and combining Eq. (D1) with Eq. (D2) yields

G(Q) =
∑
m

F (Q − 2m) =
√

π

2

∑
n

e−iπnQF̃ (πn). (D5)

A more general formula is also sometimes useful:∑
m

F (Q − 2m)eiπ(Q−2m)α =
√

π

2

∑
n

e−iπQnF̃ (π (n + α)).

(D6)

We may obtain Eq. (D6) from Eq. (D5) by observing that
multiplying F (Q) by eiπQα is equivalent to shifting the
argument of its Fourier transform F̃ (ϕ) by πα.

APPENDIX E: DIABATIC TRANSITIONS
IN A TWO-LEVEL SYSTEM

Here we derive a formula for the probability of a diabatic
transition in a time-dependent two-level system, used in
Sec. VII to estimate the probability of a transition in the
oscillator as the coupling between the oscillator and the 0-π
qubit ramps on or off.

We consider the Schrödinger equation,

d

dt
|ψ(t)〉 = −iH (t)|ψ(t)〉 (E1)

(with h̄ = 1) for the two-level time-dependent Hamiltonian,

H (t) = −�σZ − V0e
t/τ σX, (E2)

where σZ ,σX are the Pauli matrices. If we express the time t

in units of τ , and absorb V0 by shifting the time variable, the
Hamiltonian becomes (assuming V0 > 0)

H (t) = −uσZ − etσX, (E3)

where

u = τ�. (E4)

In the limit t → −∞, the second term is negligible, and the
general solution becomes

|ψ(t)〉 = c0e
iut

(
1

0

)
+ c1e

−iut

(
0

1

)
, (E5)

while in the limit t → ∞ the first term is negligible and the
solution is

|ψ(t)〉 = c+eiet 1√
2

(
1

1

)
+ c−e−iet 1√

2

(
1

−1

)
. (E6)

Our goal is to find the S matrix relating these two asymptotic
solutions: (

c+
c−

)
= S

(
c0

c1

)
. (E7)

Defining

|ψ(t)〉 ≡
(

c0(t)

c1(t)

)
=

(
eiut c̃0(t)

e−iut c̃1(t)

)
, (E8)

the Schrödinger equation becomes

dc̃0

dt
= ie(1−2iu)t c̃1,

dc̃1

dt
= ie(1+2iu)t c̃0. (E9)

Assuming u > 0, the solution |ψ (0)(t)〉 that starts out in the
ground state obeys the initial conditions c̃0 → 1 and c̃1 → 0
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as t → −∞; expanded as a power series in et , this solution
is

c̃0(t) =
∞∑

n=0

(−1)n

n!

�
(

1
2 + iu

)
�

(
1
2 + iu + n

)(
et

2

)2n

,

c̃1(t) =
(

i

2

)
e(1+2iu)t

∞∑
n=0

(−1)n

n!

�
(

1
2 + iu

)
�

(
3
2 + iu + n

)(
et

2

)2n

.

(E10)

Matching this formula to the power series expansion for the
Bessel function,

Jν(x) =
∞∑

n=0

1

n!�(ν + 1 + n)

(
x

2

)ν+2n

, (E11)

we find

c̃0(t) = �

(
1

2
+ iu

)(
et

2

) 1
2 −iu

J− 1
2 +iu(et ),

(E12)

c̃1(t) = i

2
e(1+2iu)t�

(
1

2
+ iu

)(
et

2

)− 1
2 −iu

J 1
2 +iu(et ),

and, therefore,

|ψ (0)(t)〉 = 2− 1
2 +iuet/2�

(
1

2
+ iu

) (
J− 1

2 +iu(et )

iJ 1
2 +iu(et )

)
. (E13)

To find the solution |ψ (1)(t)〉 that starts out in the excited state,
it suffices to change the sign of u and interchange c0, c1; hence

|ψ (1)(t)〉 = 2− 1
2 −iuet/2�

(
1

2
− iu

) (
iJ 1

2 −iu(et )

J− 1
2 −iu(et )

)
. (E14)

From the asymptotic behavior,

Jν(x) ≈
√

2

πx
cos

(
x −

(
ν + 1

2

)
π

2

)
, (E15)

of the Bessel function as x → ∞, we find how the solutions
|ψ (0,1)(t)〉 behave for t → ∞:

|ψ (0)(t)〉 ≈ 2iu�
(

1
2 + iu

)
√

2π

(
e

π
2 ueiet 1√

2

(
1
1

)
+ e− π

2 ue−iet 1√
2

(
1

−1

) )
,

|ψ (1)(t)〉 ≈ 2−iu�
(

1
2 − iu

)
√

2π

(
e− π

2 ueiet 1√
2

(
1
1

)
+ e

π
2 ue−iet 1√

2

(−1
1

))
. (E16)

Hence we conclude that the S matrix is(
f (u) f (−u)

f (−u)∗ −f (u)∗

)
, (E17)

where

f (u) = 1√
2π

2iu�

(
1

2
+ iu

)
e

π
2 u. (E18)

The probability of a transition from the ground state |0〉 to
the excited state |−〉, or from the excited state to the ground
state, is

P (0 → −) = |f (−u)|2 = 1

2π
�

(
1

2
+iu

)
�

(
1

2
− iu

)
e−πu;

(E19)

from the identity �(x)�(1 − x) = π
sin πx

, we obtain

P (0 → −) = P (1 → +) = e−πu

2 cos(iπu)

= e−πu

eπu + e−πu
= 1

2
(1 − tanh πu). (E20)

(The probability that no transition occurs is given by the same
formula, but with u replaced by −u.) For u large, i.e., when the
initial energy splitting 2� is large compared to the time scale
τ for the perturbation to turn on, the transition probability is
exponentially suppressed:

P (0 → −) = P (1 → +) ≈ e−2πu = e−2πτ�. (E21)
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