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Anomalous decoherence in a dissipative two-level system
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We study systematically the non-Markovian decoherence dynamics of a dissipative two-level system, i.e., the
so-called spin-boson model. It is interesting to find that the decoherence tends to be inhibited with the increase
of the coupling strength between the system and the reservoir, which is contrary to the common recognition
that a stronger coupling always induces a severer decoherence. This is attributed to the occurrence of a quantum
phase transition (QPT). The relationship between this QPT and conventional delocalized-localized QPT is also
discussed. Our result suggests a useful control method to overcome the detrimental effects of the reservoir to the
system.
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I. INTRODUCTION

The decoherence of a dissipative two-level system (TLS)
as a qubit, described by the spin-boson model (SBM), is
a main obstacle to the practical realization of quantum
information processing [1]. Recently, the quantum phase
transition (QPT), which describes a sudden qualitative change
of the macroscopic properties mapped from the eigenspectrum
of a quantum many-body system [2], of the SBM also is
attracting much attention. One of the motivations is that people
hope that the exploration of the QPT in the SBM will supply
some insight into the decoherence control of the qubit system.
Due to its unsolvability, a variety of approximate analytical
and numerical methods, for example, the path-integral method
under a noninteracting blip approximation [3], variational
method based on unitary transformation [4–6], numerical
renormalization-group method [7,8], quantum Monte Carlo
method [9], and numerical diagonalization in a coherent-state
basis [10], have been developed. A consensus is that the SBM
shows a QPT from delocalization to localization with the
increase of the coupling strength in the case of Ohmic spectral
density, as a consequence of the competition between the
internal transition effect of the TLS and the external dissipation
effect of the reservoir.

Compared with the Ohmic case, the QPT of the SBM
with sub-Ohmic spectral density, which has been used to
model the 1/f noise [11] in quantum dots [12,13] and
superconductor qubit systems [14,15], is more involved.
Different methods from the sub-Ohmic SBM cannot even lead
to a qualitatively consistent result. The path-integral method
under a noninteracting blip approximation predicts that the
QPT from delocalization to localization is absent for the
sub-Ohmic SBM [3]. The numerical renormalization-group
method confirms the occurrence of the QPT in the full range
0 < s < 1 (here, s is the exponent of the spectral density),
while the breakdown of the quantum-to-classical mapping for
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0 < s < 1/2 [16], which means the failure of the classical
mean-field description to the QPT. However, the quantum
Monte Carlo method and the numerical diagonalization in
the coherent-state basis predict the presence of the QPT, the
well-defined quantum-to-classical mapping, and the classical
critical exponents to the sub-Ohmic SBM [9,10].

Due to the rich physics in the SBM, the decoherence
dynamics of the TLS also shows rich behaviors. It was
found that the decoherence dynamics of the TLS of the SBM
under the rotating-wave approximation (RWA) exhibits the
exponential decay under the Born-Markovian approximation
[17], the oscillatory decay in a lossy cavity with Lorentzian
spectral density [18], and even the decoherence suppression
in the engineered reservoir with photonic band-gap structure
[19–21]. If the RWA is relaxed, it was shown that the dynamics
of the spin in the delocalized phase regime changes from the
damped coherent oscillation to incoherent relaxation with the
increase of the coupling strength for both the Ohmic [3] and
the sub-Ohmic [22–24] SBM. This dynamical phenomenon
is named the coherent-incoherent transition [3]. What is the
physical reason for such dynamical transition and these rich
dynamical behaviors?

In the present work, we study the non-Markovian dynamics
of the TLS of the SBM, both with and without the rotating-
wave approximation. Under the RWA, we find analytically that
the decoherence tends to be inhibited with the increase of the
coupling constant between the system and the reservoir, which
is contrary to the common recognition that a stronger coupling
always induces a severer decoherence. We also show that this
anomalous behavior is caused by the occurrence of an intrinsic
quantum phase transition (QPT) of the SBM. When the RWA
is relaxed, using the perturbation approach based on a unitary
transformation, which has been successfully used to capture
the delocalized-localized QPT for the Ohmic [4,5,25] and the
sub-Ohmic [24] SBM, we find that the QPT that happened
explicitly in the conventional delocalized phase regime still
exists. The qualitative compatibility of this QPT with the
coherent-incoherent transition [26] makes us conjecture that
the coherent-incoherent transition occurring in the delocalized
regime is actually caused by an intrinsic QPT. Our analytical
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formulation provides a clear physical picture of this QPT and
a unified description of the QPT in the sub-Ohmic SBM.

This paper is organized as follows. In Sec. II, the SBM
and its simplification under the RWA are introduced. The
anomalous decoherence of the SBM under the RWA and
its essential reason, i.e., the QPT, is revealed in Sec. III by
examining the formation of a bound state. In Sec. IV, the
anomalous decoherence and the QPT of the SBM without the
RWA is investigated by means of the perturbation approach
based on a unitary transformation [4,5]. Finally, a brief
discussion and summary are given in Sec. V.

II. THE MODEL

The SBM, which relates to a variety of physical and
chemical processes [27], describes the interaction of an
effective TLS with a bosonic reservoir. Its Hamiltonian reads

Ĥ = ε

2
σ̂z − �

2
σ̂x +

∑
k

ωkb̂
†
kb̂k +

∑
k

gk

2
σ̂z(b̂k + b̂

†
k), (1)

where ε and �, respectively, are the energy difference and the
transition amplitude between the two levels, and b̂

†
k (b̂k) is the

creation (annihilation) operator of the kth mode of the reservoir
with frequency ωk . The coupling strength between the TLS and
its reservoir is denoted by gk , which is further characterized
by the spectral density J (ω) = π

∑
k |gk|2δ(ω − ωk). In the

continuum limit, the spectral density may have the form

J (ω) = 2παω1−s
c ωs	(ωc − ω), (2)

where α is a dimensionless coupling constant, ωc is a cutoff
frequency, and 	(x) is the usual step function. The reservoir is
classified as Ohmic when s = 1, sub-Ohmic when 0 < s < 1,
and super-Ohmic when s > 1 [3]. In spite of the simplicity
of its formulation, the SBM does not admit an exact solution
in a closed analytical form and one often resorts to numerical
simulations or various approximations for its analysis. Under
a unitary transformation Û1 = exp(−iπσ̂y/4), one can prove
that Eq. (1) is equivalent to

Ĥz = ε

2
σ̂x + �

2
σ̂z +

∑
k

ωkb̂
†
kb̂k +

∑
k

gk

2
σ̂x(b̂k + b̂

†
k), (3)

which corresponds to a π/4 rotation around σ̂y to Eq. (1). In
the following, we assume ε = 0 for simplicity.

The interaction in Eq. (3) contains the counter-rotating
terms, b̂

†
kσ̂+ and b̂kσ̂−. A widely used approximation in

quantum optics and quantum information communities is the
RWA, which is applicable in the weak-coupling limit. Then,
Eq. (3) is reduced to

ĤRWA = �

2
σ̂z +

∑
k

ωkb̂
†
kb̂k +

∑
k

gk

2
(σ̂+b̂k + σ̂−b̂

†
k), (4)

which is analytically solvable because the total excitation num-
ber N̂ = ∑

k b̂
†
kb̂k + σ̂+σ̂− of the whole system is conserved.

III. DECOHERENCE INHABITATION UNDER RWA

The Hamiltonian (4) under the RWA is widely used to
characterize decoherence of a qubit in quantum optics and
quantum information communities [1]. In this section, starting

from Eq. (4), we investigate analytically and numerically the
decoherence dynamics of the TLS and reveal that an anoma-
lous decoherence phenomenon, i.e., decoherence inhabitation,
exists in the model. It is essentially caused by an intrinsic QPT
of the whole system.

A. Decoherence dynamics

Assume initially that the whole system is in

|
1(0)〉 = |+,{0k}〉, (5)

which, in the Ĥz [Eq. (3)] representation, takes the
form |
z(0)〉 = Û1|
1(0)〉 = |+x,{0k}〉, with |+x〉 satisfying
σ̂x |+x〉 = |+x〉. The time evolution of |
z(0)〉 is governed by
Eq. (4) under the RWA. Therefore, the time-dependent solution
can be expanded as

|
z(t)〉 = e
i�t

2

[
1√
2
|−,0k〉 + c(t)|+,0k〉

+
∑

k

dk(t)|−,1k〉
]
. (6)

From the Schrödinger equation, we can get the probability
amplitude c(t) satisfying

ċ(t) + i�c(t) +
∫ t

0
f (t − τ )c(τ )dτ = 0, (7)

where the kernel function f (t − τ ) ≡
1

4π

∫ +∞
0 J (ω)e−iω(t−τ )dω and the initial condition

c(0) = 1/
√

2. With this result in hand, we can calculate
Pz ≡ 〈
(0)|eiĤ t σ̂ze

−iĤ t |ψ(0)〉 under the RWA as

Pz(t) = 〈
z(t)|σ̂x |
z(t)〉 =
√

2Re[c(t)]. (8)

In Fig. 1, we plot Pz(t) of Eq. (8) in different coupling
constants. We can see that Pz(t) decays to zero after transient
oscillations in the weak-coupling limit. We refer to the
character of the dynamics in this region as the complete
decoherence. With the increasing of the coupling constant,
the decay is surprisingly suppressed, which is dramatically
different from one’s expectation that a stronger coupling
always induces a severer decoherence. When α = 0.028,
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FIG. 1. (Color online) The nonequilibrium dynamics of Pz(t)
of the SBM with the RWA under the initial condition given by
Eq. (5). Here the parameters s = 0.7 and � = 0.02ωc have been
used. Consequently, the critical point is αC,RWA = 0.028.
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the coherence does not decay to zero and a finite quantum
coherence is preserved in the steady state. With the further
increasing of α, the oscillation is totally stabilized and the
decoherence is inhibited. We call the character of the dynamics
in the region α � αC,RWA as the decoherence suppression.

B. QPT under the RWA

The physical mechanism of this anomalous decoherence
behavior can be understood from the eigenspectrum of the
whole system. Since N̂ is conserved, the Hilbert space is
split into the direct sum of the subspaces with definite
quantum number N . In this situation, one can naively deem
that the eigenstate |ϕ0〉 = |−,{0k}〉, i.e., a tensor product
of the respective ground states of the two subsystems in
zero-excitation subspace with eigenvalue E0 = −�/2 is the
ground state of the whole system. Is this always true? To
verify this, let us examine the eigensolution of ĤRWA in
the single-excitation subspace, which can be expanded as
|ϕ1〉 = c0|+,{0k}〉 + ∑∞

k=0 ck|−,1k〉. From the eigenequation
governed by Eq. (4), we can obtain a transcendental equation
of E1,

y(E1) ≡ �

2
− 1

4π

∫ ∞

0

J (ω)

ω − (E1 + �
2 )

dω = E1. (9)

A bound state is an eigenstate with real (discrete) eigenvalue in
a quantum many-body system. So if Eq. (9) has a real root, then
we can claim that the system possesses a bound state [28–31].
We can easily find that y(E1) decreases monotonically with
the increase of E1 in the regime of E1 < −�

2 . Therefore, if the
condition

y

(
−�

2

)
� −�

2
(10)

is satisfied, then y(E1) always has one and only one intersec-
tion with the function on the right-hand side of Eq. (9). This
root just corresponds to the eigenvalue of the formed bound
state in the Hilbert space of the system plus its reservoir. On
the other hand, in the regime of E1 > −�

2 , we can see that
y(E1) is divergent, which means that no real root E1 can make
Eq. (9) well defined. Consequently, Eq. (9) does not have a
real root to support the existence of a further bound state in
this regime. The excited-state population in the bound state,
as a stationary state of the whole system, is constant in time.
This means that the formation of the bound state can result in
decoherence suppression.

The formation of a bound state in the SBM is reminiscent
of the study in the Friedrichs model [31–33], where a similar
bound state was revealed and the corresponding dynamics
was studied. Here we argue further that accompanying the
ground state changing from |ϕ0〉 to the bound state |ϕ1〉 (due to
E1 < E0), the formation of the bound state actually corre-
sponds to a quantum phase transition. We can verify that the
eigenstates of ĤRWA in the subspaces N � 2 actually have
larger eigenvalues than E1. This implies that the higher-boson
states may not become the ground state. One may also
observe that the two states are orthogonal, i.e., 〈−,{0k}|ϕ1〉 =
0. Therefore, the energy-level crossing accompanying the
formation of the bound state signals clearly that the system
undergoes a QPT. From the criterion (10), it is straightforward

FIG. 2. (Color online) (a) Ground-state energy Eg and (b) its
first derivative E′

g = ∂Eg

∂α
as a function of the coupling constant α

and power index s of the spectrum. The parameter used here is
� = 0.02ωc. According to Eq. (11), the first-order QPT occurs at
αC,RWA = 0.04s, which has been confirmed by the discontinuousness
of the first derivative of the ground-state energy.

to evaluate that the QPT happens at the critical point

αC,RWA = 2s�

ωc

(11)

for the spectral density (2). Experimentally, the bound-state-
induced decoherence suppression has been observed [34–36].

To verify the existence of QPT in the model quantitatively,
in the following we study numerically the ground-state energy
and its derivative, fidelity and entanglement entropy of the
ground state near the critical point with the change of the
coupling constant of the system.

At zero temperature, the nonanalyticity of the ground-state
energy is directly connected to the QPT. The first (or nth) order
QPT is characterized by the discontinuity in the first (or nth)
derivative of the ground-state energy. In Fig. 2, we plot the
ground-state energy and its first derivative. It can be seen that
the first derivative is discontinuous at the critical point (11),
which means that it is a first-order QPT.

The QPT can be further verified by the fidelity F and
entanglement entropy E between the TLS and the reservoir
of the ground state. The ground-state fidelity is defined as the
overlap of two ground states corresponding to two slightly dif-
ferent control parameters [37], i.e., F = 〈ϕg(α)|ϕg(ϕ + δα)〉.
The entanglement entropy can be obtained by calculating the
entropy of the reduced density matrix of the TLS after tracing
out the reservoir degrees of freedom. In Fig. 3(a), we plot F

near the critical point. The singularity in the plot evidences
clearly the existence of QPT in this model. Because of the

FIG. 3. (Color online) (a) Ground-state fidelity and (b) entangle-
ment entropy as a function of the coupling constant α and power
index s of the spectrum. Here, δα = 0.0005; other parameters used
here are the same as Fig. 2. The singularity near the critical point
αC,RWA of forming the bound state shows the existence of QPT in this
model.
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totally orthogonal property of the ground state, the fidelity
completely drops to zero at the critical point. In Fig. 3(b), we
plot E of the ground state. Near the critical point, we find a
sudden birth of the ground-state entanglement, which can be
seen as a result of the changing of the ground-state structure.
This discontinuity in the ground-state entanglement entropy
also evidences the existence of QPT.

With this QPT in hand, the dynamics in Fig. 1 can be
easily understood. According to Eq. (11), the QPT for the
parameters there occurs at αC,RWA = 0.028. If α < αC,RWA,
then the dynamics reduces the oscillatory damping to zero. It is
understandable from the fact that the bound state in this region
is absent and all of the quantum coherence decays to zero.
When α = αC,RWA, the bound state |ϕ1〉 with the eigenvalue
being just E1 = −�/2, which is equal to E0, is formed. As
a stationary state, the quantum coherence contributed from
the component |ϕ1〉 to Eq. (5) does not change during the
time evolution. Therefore, we get a finite asymptotical Pz(t).
With the further increase of α, the dynamics shows lossless
oscillation. The bound state with smaller eigenvalue than E0

is present. In this region, the components of |ϕ0〉 and |ϕ1〉 in
Eq. (5) have different time dependence. The difference of the
two eigenvalues, i.e., E0 − E1, contributes to the frequency of
this lossless oscillation. A larger α induces a smaller E1 and
a faster oscillation of Pz(t). All of this analysis matches well
with the numerical results in Fig. 1.

IV. THE ANOMALOUS DECOHERENCE
WITHOUT THE RWA

In the following, we evaluate the correctness of the counter-
rotating terms to the dynamics and the QPT. We first recover
the conventional delocalized-localized QPT. Then, using the
perturbation approach based on unitary transformation [4,5],
we study the anomalous decoherence in the delocalized phase
regime and its intrinsic mechanism, i.e., the existence of a
further QPT in this conventional phase regime.

A. The conventional delocalized-localized QPT

A unitary transformation Û2 = exp[
∑

k
gkξk

2ωk
(b̂†k − b̂k)σ̂x]

can recast Eq. (3) into Ĥ ′ = Ĥ ′
0 + V̂ ′, where

Ĥ ′
0 = η�

2
σ̂z +

∑
k

ωkb̂
†
kb̂k + C,

V̂ ′ =
∑

k

gk(1 − ξk)

2
(b̂k + b̂

†
k)σ̂x − i

�

2
σ̂y sinh χ̂

+�

2
σ̂z(cosh χ̂ − η), (12)

with C = ∑
k

g2
k

4ωk
ξk(ξk − 2), χ̂ = ∑

k
gkξk

ωk
(b̂†k − b̂k), and

η = 〈{0k}| cosh χ̂ |{0k}〉 = exp

[
−

∑
k

g2
k ξ

2
k

2ω2
k

]
. (13)

We can see from Eqs. (12) that, to the zero-order approxima-
tion, the spin-boson interactions can be eliminated to generate
an effective noninteracting Hamiltonian characterized by a
renormalized transition amplitude �eff ≡ η�, with η as the
renormalized factor.

With the separation of Eqs. (12), we can readily calculate
the Bogoliubov-Peierls bound on the free energy FB of the
system [38]. The free energy F of the system is related to FB

by F � FB with

FB = −β−1 ln Tr exp(−βĤ′
0) + 〈V̂′〉Ĥ0

, (14)

where β = 1
kBT

, 〈·〉Ĥ ′
0

denotes the thermal expectation value

calculated with respect to Ĥ ′
0, and the trace is calculated using

the eigenstates of Ĥ ′
0. It is easy to find 〈V̂ ′〉H0 = 0. Therefore,

FB = FBoson − ln
[
2 cosh β�η

2

]
β

+ C. (15)

The parameters ξk are determined by minimizing FB with
respect to ξk , that is, ∂FB

∂ξk
= 0. We find, in our zero-temperature

case (i.e., β → ∞),

ξk = ωk

ωk + η�
. (16)

By now, the parameters ξk as well as the renormalized factor
η have been determined. The renormalized factor η has been
used successfully to characterize the delocalized-localized
QPT in the SBM [4,5,24]. If the transition amplitude is
renormalized to zero, then the system is in the localized phase
and the dynamics is trivial. In contrast, if the renormalized
transition amplitude is nonzero, then the system is in the
delocalized phase.

In Fig. 4, we plot the numerical results on this conventional
QPT characterized by η, which can be calculated by solving
Eqs. (13) and (16) self-consistently. We can see that the system
is in the delocalized phase regime when α is small, where η

takes a finite value. With the increase of α, η drops suddenly
to zero and the system enters into the localized phase regime.
Such delocalized-localized QPT is present in the whole range
of the power index s of the sub-Ohmic spectral density. This
is coincident with the results under the quantum Monte Carlo
method and the numerical diagonalization method [9,10]. The

FIG. 4. (Color online) The conventional delocalized-localized
QPT characterized by the renormalized factor η as a function of
the coupling constant α and the power index s of the spectrum. The
red dashed line depicts the critical point. � = 0.02ωc has been used
in the numerical calculation.
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critical point of this QPT tends to αC = 1 with the increase of
s to the Ohmic case. This is consistent with the well-known
results that the delocalized-localized phase transition occurs
at αC = 1 in the small � limit for the Ohmic SBM [3].

B. The anomalous decoherence in the delocalized phase regime

Focusing on the delocalized phase regime, which occurs
in the weak-coupling limit, we further separate the first-order
perturbation term from V̂ ′ = Ĥ ′

1 + Ĥ ′
2 with

Ĥ ′
1 =

∑
k

νk(b̂kσ̂+ + b̂
†
kσ̂−),

(17)
Ĥ ′

2 = �

2
σ̂z(cosh χ̂ − η) − i

�

2
σ̂y(sinh χ̂ − ηχ̂),

where νk = η�gkξk/ωk and σ̂± = (σx ± iσy)/2. Combining
with Eq. (12), we arrive at the transformed SBM as Ĥ ′ =
Ĥ ′

0 + Ĥ ′
1 + Ĥ ′

2, where Ĥ ′
0 collects all the renormalized non-

interacting terms, Ĥ ′
1 collects all the first-order perturbation

terms, and Ĥ ′
2 collects all the higher-order ones. It has

been proved that in zero-temperature and weak-coupling (i.e.,
the delocalized) regimes, the higher-order perturbation terms
Ĥ ′

2 can be neglected [5], which also can be proved self-
consistently by our following results. Then the transformed
Hamiltonian has the form Ĥ ′ ≈ Ĥ ′

0 + Ĥ ′
1 ≡ Ĥeff ,

Ĥeff = �η

2
σ̂z +

∑
k

[ωkb̂
†
kb̂k + νk(b̂†kσ̂− + b̂kσ̂+)] + C, (18)

which shares the formal similarity with the rotating-wave
approximate Hamiltonian (4).

Next, we study the dynamics when the RWA is relaxed. To
make the dynamics manifest the effect of the formed bound
state exclusively, we choose the initial state as

|
2(0)〉 = |+〉 ⊗ Û
†
2 |{0k}〉. (19)

It is noted that this state is different from Eq. (5), under
which it has been shown that the dynamics of the SBM
without the RWA exhibits the coherent-incoherent transition.
The merit of choosing this state as the initial state is that it
takes the form |
(0)〉 = Û2Û1|
2(0)〉 = | +x ,{0k}〉 in the Ĥeff

representation. Therefore, besides the zero excitation, only the
single-excitation subspace where the bound state is formed is
involved in the dynamics. In the same manner as the above
RWA case, we can calculate Pz(t) = √

2Re[h(t)], where h(t)
satisfies

ḣ(t) + iη�h(t) +
∫ t

0
f ′(t − τ )h(τ )dτ = 0, (20)

with the initial condition being h(0) = 1√
2

and the kernel

function f ′(t − τ ) ≡ 1
4π

∫ ∞
0 J ′(ω)e−iω(t−τ )dω connecting to

the renormalized spectral density J ′(ω) = ∑
k ν2

k δ(ω − ωk).
Figure 5 portrays Pz(t) under the initial condition (19) when

the RWA is relaxed. We can see that the similar behavior
as Fig. 1 is present. When α is small, the dynamics shows
complete decoherence, with the quantum coherence decaying
to zero. With the increasing α to certain value, a finite
steady Pz(t) can be obtained asymptotically. With the further
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FIG. 5. (Color online) The nonequilibrium dynamics of Pz(t)
of the SBM without the RWA under the initial condition given by
Eq. (19). Here the parameters s = 0.7 and � = 0.02ωc have been
used. The critical point can be evaluated numerically at αC = 0.104.

increasing of α, Pz(t) shows decoherence inhibition with the
quantum coherence tending to lossless oscillation.

C. QPT without RWA

In the similar manner as the case under RWA, we expect
that such anomalous decoherence is caused by the intrinsic
QPT occurring explicitly in the conventional delocalized phase
regime. After the similar procedure as in Sec. III and neglecting
temporarily the constant term C in Eq. (18), we can determine
that a bound state |ϕ′

1〉 = d0|+,{0}〉 + ∑
k dk|−,{1}k〉 with the

eigenvalue E1 satisfying

y(E1) ≡ η�

2
−

∑
k

ν2
k

ωk − (
E1 + η�

2

) = E1 (21)

can be formed for Ĥeff . This equation permits a real root in
the regime E1 � −η�/2 if and only if y(−η�/2) � −η�/2.
Accompanying the formation of a bound state, the ground state
is changed from |ϕ′

0〉 ≡ |−,0k〉 to |ϕ′
1〉. Recovering back the

neglected term C, we get the ground-state energy as

Eg =
{

− η�

2 − C, α < αC

E1 − C, α > αC,
(22)

where the critical point αC can be determined by solving equa-
tion y(−η�/2) = −η�/2. Physically, such a sudden change
of the ground-state structure signals clearly the occurrence of
QPT in the system.

It is noted that the neglected higher-order perturbation
term Ĥ ′

2 gives no contribution to the QPT because it is
zero, i.e., 〈ϕ′

i |H ′
2|ϕ′

j 〉 = 0(i,j = 0,1), in the two eigenbases.

It means that the neglected term Ĥ ′
2 has no impact on

such level-crossing-caused QPT. This in turn validates our
approximation.

Remembering we are working in the conventional delocal-
ized phase regime, where η takes a finite value, we now verify
the QPT by studying the ground-state energy of the sub-Ohmic
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FIG. 6. (Color online) (a) Ground-state energy Eg and (b) its first
derivative E′

g = ∂Eg

∂α
as a function of α and �.

SBM. Taking s = 0.7 as an example, we plot in Figs. 6(a)
and 6(b), respectively, the ground-state energy and its first
derivative to the coupling constant according to Eq. (22). We
can see that Eg is continuous, but dEg

dα
shows a discontinuity

at the critical point αC where the bound state is formed. It
manifests clearly that there is another QPT existing in the
delocalized phase regime.

From the analysis above, we can see that the QPT induced
by the formation of the bound state has a profound impact on
the nonequilibrium dynamics of the TLS in the conventional
delocalized phase regime. It induces a dynamical transition
from complete decoherence to decoherence suppression for
the initial states where only the single-excitation subspace
is involved. On the other hand, a widely studied case is the
nonequilibrium dynamics of the TLS when the reservoir is
initially in a vacuum state, where the spin dynamics shows
a transition from damped coherent oscillation to incoherent
relaxation, i.e., the so-called coherent-incoherent transition,
in the delocalized phase regime. Therefore, it is reasonable
to conjecture that the coherent-incoherent transition is also
a dynamical consequence of this QPT on the initial vacuum
state of the reservoir. This has been proved analytically for the
Ohmic spectral density in Ref. [25] that αC of the QPT matches
well with the point of the coherent-incoherent transition. Thus,
we can conclude that both of the transitions from complete
decoherence to decoherence suppression and from damped
coherent oscillation to incoherent relaxation are actually the
different dynamical consequences of the same intrinsic QPT
on different initial states.

V. CONCLUSION

In conclusion, going beyond the Born-Markovian approx-
imation, we have studied the decoherence dynamics of the
TLS in the SBM both with and without RWA. When the
RWA is used, we reveal analytically that a QPT induced
by the formation of a bound state in the single-excitation
subspace occurs. This QPT causes the anomalous decoher-
ence phenomenon, i.e., the decoherence inhibited with the
increasing of the coupling strength. When the RWA is relaxed,
using the perturbation approach to neglect the high-order
interaction terms in a unitarily transformed Hamiltonian,
we have shown that the similar anomalous decoherence
induced by the intrinsic QPT still exists in the conventional
delocalized phase regime. The approximation is justified by
the fact that we are working in the weak-coupling (i.e., the
delocalized phase) regime and in the zero-temperature case,
where the high-order excitations are negligible. On the other
hand, one also can verify that the neglected terms give no
contribution to the QPT we obtained, which in turn validates
our approximation. This dynamical behavior is compatible
with the coherent-incoherent transition which happens to the
state where the reservoir is initially in vacuum. It conjectures
that the coherent-incoherent transition reported in the literature
is essentially caused by the intrinsic QPT of the SBM. Our
purely analytical results when the RWA is relaxed agree
qualitatively with the results obtained under the path-integral
Monte Carlo methods [26]. Our results also suggest a control
way to beat the effect of decoherence by engineering the
spectrum of the reservoirs to approach the non-Markovian
regime and to form the bound state of the whole system.
This can be readily realized in the newly emerged field, i.e.,
reservoir engineering [39–42], for controlling the quantum
system by tailoring its coupling to the reservoirs.
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