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Derivation of Markovian master equations for spatially correlated decoherence
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We introduce a general formalism to describe the effects of Markovian noise which is spatially correlated,
typically decaying over some finite correlation length. For any system of interest, this formalism describes spatial
correlations without the necessity to choose a particular microscopic model for the environment. We present
a method of mapping the equations to Lindblad form and discuss functional forms for homogeneous spatial
correlation functions. We also discuss two example microscopic models for the environment which exhibit
nontrivial spatial-temporal correlation functions.
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I. INTRODUCTION

The study of open quantum systems and the concept of
a density matrix master equation underlies much of modern
quantum physics, be it quantum optics, atom optics, condensed
matter physics, or quantum computation. When deriving or
assuming a particular form for the master equation via the
usual system-bath model [1], it is common to assume each
component of a system either couples to the same bath
(correlated or collective decoherence channels) or individual
baths (uncorrelated or independent decoherence channels);
see, e.g., [2–6]. We explore the regime between these two
extremes, introducing the concept of a correlation length ξ

and deriving a general master equation method for treating
such partially correlated environments.

Decoherence induced by a correlated environment is a
commonly observed effect. The concepts of super- and sub-
radiance [7,8] and decoherence-free subspaces [9–14] rely on
the interference resulting from several subsystems coupled to
the same environmental mode. Even some of the foundational
work on decoherence in quantum computation considered
both fully correlated and uncorrelated environments [15–18].
Recently, the ramifications of correlated environments have
been discussed in such diverse situations as scalable quantum
error correction [2,19–24], photosynthesis and biological
chromophores [25–29], and multiatom trapping experiments
[30–33].

The Lindblad equation [1,34–36] is the workhorse of open
quantum systems due to its simple form and well-behaved
mathematical properties. Yet, deriving a general master equa-
tion of this form for (partially) correlated environments is
nontrivial. Lindblad operators can be derived or assumed
which act individually, pairwise, or collectively, yet how
does one choose these in a physically sensible manner? We
use a general Bloch-Redfield approach, where environmental
noise correlation functions appear naturally in the formalism.
Given sufficiently well behaved environmental correlations,
a closed-form master equation can be obtained with the
same form as the Lindblad equation but whose operators and
rates are linked directly to the original physical system-bath
Hamiltonian. Following this route we consider a generalization
of the environmental correlation function which includes
spatial (as well as temporal) correlations and therefore derive
a general master equation. This describes spatially correlated
decoherence independent of the particular bath Hamiltonian

and purely based on environmental correlation functions.
We also consider two examples where such spatial-temporal
correlation functions can be derived microscopically.

II. BLOCH-REDFIELD EQUATIONS
WITH SPATIAL CORRELATIONS

We start from the usual system-bath Hamiltonian

H = HS + HB + Hint (1)

comprised of system (HS), bath (HB), and the interaction
between them

Hint =
∑

j

sjBj , (2)

where sj are system operators and Bj bath operators.
An arbitrary basis {|an〉} and the Hamiltonian eigenstates
HS |ωn〉 = ωn |ωn〉 are connected via the transformation matrix
V = ∑

n |ωn〉 〈an|. A compact and general form of the Bloch-
Redfield equations is then given by (see Appendix A)

ρ̇ = i

h̄
[ρ,Hs] + 1

h̄2

∑
j,k

(−sjV qjkV
†ρ + V qjkV

†ρsj

−ρV q̂jkV
†sj + sjρV q̂jkV

†) (3)

with

〈an|qjk|am〉 = 〈an| V †skV |am〉 1
2Cjk(ωm − ωn), (4)

〈an|q̂jk|am〉 = 〈an| V †skV |am〉 1
2Ckj (ωn − ωm), (5)

Cjk(ω) =
∫ ∞

−∞
dτ eiωτ 〈B̃j (τ )B̃k(0)〉. (6)

The spectral functions Cjk(ω) define the bath, i.e., the
environment. They are given by the Fourier transform of the
correlation functions of the bath operators in the interaction
picture B̃j (τ ) = exp(iHBτ )Bj exp(−iHBτ ).

A. Spatial-temporal correlations

The spectral functions define both the correlation function
with increasing time difference τ and which of the pairs of bath
operators Bj ,Bk (corresponding to system operators sj ,sk) are
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correlated. The operators Bj can be grouped such that

Cjk(ω) =
{

Cjk(ω) if j and k are in the same group,
0 if j and k are in different groups.

This may be due to either the assumption of a certain
structure in the environment or groups of different types of
coupling operators (see Appendix B). We call each group an
independent bath since they are not correlated with the other
baths.

If the environment is thought to be a continuum with
decaying correlations over increasing distances a more flexible
model is to introduce a spatial dependency in the spectral
function:

Cjk(ω,rj ,rk) :=
∫ ∞

−∞
dτ eiωτ 〈B̃j (τ,rj )B̃k(0,rk)〉, (7)

where the components of the system couple to the environment
at positions rj ,rk . This function is similar to a Van Hove
function [37]; however we use real-space coordinates rather
than k space. As in conventional Bloch-Redfield theory, this
spectral function can be derived from a more fundamental
microscopic model or its form can be phenomenologically
assumed, typically as a homogeneous spectral function
Cjk(ω,rj ,rk) = C(ω,|rj − rk|) which will approach zero for
increasing distance.

Strictly speaking the spectral function Cjk(ω) is actually
given by a one-sided Fourier transform Djk(ω) = Cjk(ω) +
iFjk(ω); i.e., it may be complex. Such a term would lead to
additional coherent dynamics. In the secular approximation it
can be written as a correction HS → HS + Hcor to the system
Hamiltonian [see Eq. (C4)], where Hcor = ∑

jk Fjks
†
ksj . In

cases of uncorrelated decoherence (all terms for which j �=
k are zero) this correction of the system Hamiltonian is
generally neglected since the terms s

†
j sj in qubit systems

are diagonal in the system eigenbasis. In cases of correlated
decoherence however the correction Hamiltonian Hcor can lead
to interaction terms between the qubits, i.e., environmentally
induced interactions.

B. Qubit example

As an example we apply this formalism to two uncoupled
qubits HS = ∑2

j=1 ωqσ
(j )
z , each interacting longitudinally

with the environment Hint = ∑2
j=1 σ

(j )
z Bj . With the four states

|1,1〉,|1,0〉,|0,1〉,|0,0〉 we find a reduced dephasing rate γ− for
the single excitation subspace {|1,0〉 , |0,1〉} and an enhanced
dephasing rate γ+ between the states |1,1〉 and |0,0〉 while all
other pairs dephase at a rate γ0. These rates are obtained in
terms of C(ω,|rj − rk|) as

γ− = C(0,0) − C(0,d), (8)

γ+ = C(0,0) + C(0,d), (9)

γ0 = C(0,0)/2, (10)

where d = |r1 − r2| is the distance between the qubits.
For uncorrelated decoherence only the self-correlations are
nonzero and all coherences decay at the rate γ0 or 2γ0. With
increasing noise correlation length and fixed qubit distance
the single excitation subspace’s dephasing rate γ− is reduced

while γ+ is increased. This reduction of γ− is the basis of a
decoherence-free subspace [9].

For n qubits in an uncorrelated environment the dephasing
rate between two states is proportional to the number nf of
flipped qubits between the two states. In a perfectly correlated
environment however the dephasing rate between two states
with a difference of ne excitations is proportional to n2

e and
nf is irrelevant. Therefore the dephasing rate between states
with equal excitation number is reduced to zero when the
noise correlation length increases well beyond the qubits’
separation, forming a decoherence-free subspace. For example
a coherence of the form |0011〉〈1100| will decay with rate
� = nf γ = 4γ for ξ → 0 and as � = n2

eγ = 0 for ξ → ∞,
where γ is the corresponding single-qubit dephasing rate. In
contrast, the coherence |0000〉〈1111| which also decays as
� = nf γ = 4γ for ξ → 0 will decay as � = n2

eγ = 16γ for
ξ → ∞; i.e., the rate increases immensely for long correlation
length.

III. ANALYTICAL SPATIAL CORRELATION FUNCTIONS

To illustrate the concept of spatially correlated decoher-
ence, we now consider two example microscopic models
for an environment without choosing a particular system
Hamiltonian. The environmental spatial-temporal correlation
function as well as the spectral function can be calculated
explicitly showing different spatial correlations in each exam-
ple. In the first case the correlation length links naturally to
the environmental parameters; in the second case the spatial
correlations oscillate with increasing distance.

A. One-dimensional Ising model

The first microscopic example is one of a system dephasing
due to the influence of a classical one-dimensional Ising chain
of N coupled spins Sx = ±1 with Hamiltonian

HB = −J

N−1∑
x=1

SxSx+1 (11)

with coupling strength J . The spatial correlations in a thermal
equilibrium state are given by an exponential decay [38]

〈SxSx ′ 〉 = tanh|x−x ′ |(βJ ) = exp{ln[tanh(βJ )] |x − x ′|} (12)

with β = 1/kBT . This can be extended [39,40] to a spatial-
temporal correlation function by introducing a switching rate
per unit time α/2 between the two states Sx = ±1 for each spin
(due to a heat bath), leading to an infinite sum of exponential
decays in space multiplied with modified Bessel function of
the first kind In(τ ) in time:

〈Sx(0)Sx ′ (τ )〉 =
∞∑

l=−∞
η|x−x ′+l|Il(γα|τ |) e−α|τ |, (13)

where η = tanh(βJ ) and γ = tanh(β2J ). Note that setting
τ → 0 in Eq. (13) yields Eq. (12).

Dephasing in qubit systems is generally caused by the noise
at zero frequency and the spatial correlations at ω = 0 can
be calculated (assuming positive J ) by integrating over each
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summand in Eq. (13) and evaluating the sum afterwards,

C(ω = 0,|x − x ′|) = 2(|x − x ′| + ζ )ζη|x−x ′ |

α
, (14)

with ζ = cosh(2Jβ) and η = tanh(βJ ). The spectral function
decays with distance as x exp(−x) and with it the collective
terms of the dephasing rate [cf. Eqs. (8) and (9)] decay. The
effective correlation length in this example increases with the
coupling J of the environmental spins and decreases with
temperature kBT . Note that the spatial indices here are natural
numbers, i.e., in units of the separation between environmental
Ising spins, w.

Using this spectral function for our previous example of a
two-qubit system (Sec. II B) one finds the rates

γ− = 2ζ

α
[ζ − ηd (d + ζ )], (15)

γ+ = 2ζ

α
[ζ + ηd (d + ζ )], (16)

γ0 = ζ 2/α, (17)

where ζ = cosh(2Jβ) and η = tanh(Jβ), and the qubit dis-
tance d is given in units of the environmental Ising spins’
nearest-neighbor distance, w. For close distances d � Jβ

the correlated decoherence effects are the strongest and the
reduced dephasing rate γ− is close to zero.

B. Bosonic chain

One of the most studied system-bath models is the spin-
boson model [15,18,41–43] where a spin undergoes dephasing
due to an ensemble of uncoupled harmonic oscillators. To
generalize this model, we now ask the question of how two
(or more) spins, located at positions x and x ′ (etc.), are
affected by a common bath with nontrivial correlations. As
an example of such a bath we consider a one-dimensional
chain of spatially located, coupled harmonic oscillators, the
“tight-binding chain,” described by

HB =
N∑

x=1

ω0a
†
xax − g

N−1∑
x=1

(a†
xax+1 + a

†
x+1ax). (18)

Transforming into k space via a lattice Fourier transform [44]
diagonalizes the Hamiltonian for large N , HB = ωk

∑
k a

†
kak

with ωk = ω0 − 2g cos kw where w is the environmental
lattice spacing. For a finite chain length, the sum over k is
given by kn = 2πn/Nw for integer n ∈ [−N/2,N/2].

We choose the bath operators Bj in the interaction
Hamiltonian [Eq. (2)] to be the lowering and raising operators
ax,a

†
x at a particular position x,

B(x) = ax =
∑

k

eikxw

√
N

ak, B†(x) = a†
x =

∑
k

e−ikxw

√
N

a
†
k,

which are nonlocal in k space [44] and similar in form to
Ref. [18].

1. Spatial-temporal correlation functions

If we assume the steady-state density matrix of the
harmonic oscillator chain is a fully mixed state (in the Fock
basis of the k modes) we can compute the four spatial-temporal

correlation functions for a coupled chain of harmonic
oscillators:

〈B̃(τ,x)B̃(0,x ′)〉 = 〈B̃†(τ,x)B̃†(0,x ′)〉 = 0 (19)

and

〈B̃†(τ,x)B̃(0,x ′)〉 =
∑

k

1

N
e−ik(x−x ′)weiωkτ 〈nk〉, (20)

〈B̃(τ,x)B̃†(0,x ′)〉 =
∑

k

1

N
eik(x−x ′)we−iωkτ (1 + 〈nk〉), (21)

where 〈nk〉 is the expectation value of the occupation number
of mode k. These expressions are exact and can be evaluated
numerically for finite N . To obtain more physical insight we
take the limits of large energies, where 〈nk〉 ≈ exp(−h̄ωkβ),
and a long chain

N/2∑
n=−N/2

f (kn) → Nw

2π

∫ π/w

−π/w

dkf (k). (22)

If we assume that the correlations in the chain are dominated by
propagating excitations, we may also linearize the dispersion
relation ωk ≈ ω0 + 2g(|k|w − π/2) within the first Brillouin
zone.

Taking these limits, we find that the correlation function
decays for large τ as

lim
τ→∞〈B̃†(τ,x)B̃(0,x ′)〉 ∝ 1

2πgτ
. (23)

This slow algebraic temporal decay indicates the potential for
non-Markovian memory effects of this environment. However,
the coupling strength g is an environmental parameter and in
the limit where g is much larger than the relevant system
parameters the decay time of correlations is much shorter
than the relevant system time scales. Only in this limit the
corresponding spectral function can be used for Markovian
master equations.

For linearized dispersion, we can also evaluate the spatial
correlations at one moment in time t = t ′ ⇔ τ = 0, in the
limit of gβ � 0 and normalized by the value for x = x ′,

〈B̃†(t,x)B̃(t,x ′)〉
〈B̃†(t,x)B̃(t,x)〉 = (2βg)2

(2βg)2 + (x − x ′)2
. (24)

This indicates that the mixed spatial correlations decay over
a characteristic correlation length ξ = 2wβg, due to the
interplay between excitations hopping along the chain and
thermal noise.

2. Spectral functions

While the relative spatial correlation function for τ = 0
shows Lorentzian decay [Eq. (24)] the spectral function shows
very different spatial correlations. The spectral function of
Eq. (20) can be computed in the limit of large N , using the
identity δ(f (k)) = ∑

j

δ(k−kj )
|f ′(kj )| where f (kj ) = 0. For cosine

dispersion and a Boltzmann distribution for 〈n(ω)〉 we find

CB†B(ω,x − x ′) = � (2|g| − |ω + ω0|)

×
cos

[
(x − x ′) arccos

(−ω+ω0
2g

)]〈n(|ω|)〉
π

√
4g2 − (ω + ω0)2

.

(25)
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The spectral function CBB† (ω,x − x ′) corresponding to
Eq. (21) takes the same form with ω → −ω and 〈n(|ω|)〉 →
[1 + 〈n(|ω|)〉].

The spectral functions show that the noise consists of
frequencies centered around the oscillator’s eigenenergies ω0

with a noise cutoff at ω0 ± 2g due to the band gap of the
chain. For a given frequency the spatial correlations are cosine
oscillations with distance |x − x ′|, allowing points of negative
correlations. The cosine shape is physically necessary as the
self-correlations (at |x − x| = 0) always need to be positive.

With this spectral function the rates in our previous example
of a two-qubit system (Sec. II B) become

γ− = [1 − cos(dπ/2)]/[2πg〈n(0)〉], (26)

γ+ = [1 + cos(dπ/2)]/[2πg〈n(0)〉], (27)

γ0 = 1/[πg〈n(0)〉], (28)

where d is given in units of the environmental nearest-neighbor
distance of the harmonic oscillators w and we assume ω0 ≈ 0
on the scale of the system energies making their energy
spectrum approximately continuous. There are now three
types of system dynamics: For cos(dπ/2) = 1 one finds the
qubits fully (positively) correlated and γ− → 0, similar to the
previous model (Sec. III A) for short distances. At the points
where cos(dπ/2) = 0 the collective terms are zero and all
correlated decoherence effects vanish. For cos(dπ/2) = −1
the collective terms are negative and γ+ → 0; i.e., the reduced
and enhanced rates swap roles. This means the subspace
{|1,1〉, |0,0〉} becomes decoherence free and the subspace
{|1,0〉, |0,1〉} has an enhanced dephasing rate. This rare case
only occurs at points where the environmental noise of the two
qubits is negatively correlated.

IV. PHENOMENOLOGICAL SPATIAL CORRELATION
FUNCTIONS AND VALID FUNCTIONAL FORMS

Ideally one has a clear microscopic model of a particular
environment and can derive a spatial-temporal correlation
function from it. However in some cases it is necessary to
assume the spatial-temporal correlations phenomenologically.
We now present a method to map the Bloch-Redfield equations
to Lindblad form, which provides a test of complete positivity
in the time evolution for any such phenomenological spatial-
temporal correlation function. We furthermore present two
examples of valid functional forms.

A. Mapping to Lindblad equations

The Bloch-Redfield equations do not guarantee complete
positivity by their mathematical form but depend on a consis-
tent model of the environment’s temporal and spatial correla-
tion functions. When assuming a phenomenological spatial-
temporal correlation function Cjk(ω,rj ,rk), highly nontrivial
physical conditions apply for multipartite correlations. We
therefore present a way to check for a mapping to the Lindblad
equations which are known to be “the most general form of
the generator of a quantum dynamical semigroup” [1,34,35].
This means that the time-evolution operator due to a certain
Markovian master equation is a completely positive map of

the density matrix if and only if there exists a set of operators
in which the master equation takes on Lindblad form.

We take the Bloch-Redfield equations in the secular
approximation (see Appendix B):

ρ̇ = i

h̄
[ρ,Hs] + 1

h̄2

∑
j,k

Cjk

(
skρs

†
j − 1

2
{s†j sk,ρ}

)
. (29)

This equation can be mapped to Lindblad form if and only
if there exists an invertible matrix W such that W †CjkW is
diagonal with nonnegative eigenvalues. The eigenvalues then
correspond to the Lindblad rates. The Lindblad operators are
given by

Lk =
∑

j

Wjksj . (30)

For real-valued homogeneous correlation functions,
Cjk(rj ,rk) = Cjk(|rj − rk|), the coefficient matrix Cjk

is symmetric and its diagonalization is unitary; i.e., Eq. (29)
can be mapped to Lindblad form if the coefficient matrix is
positive semidefinite. If one or more eigenvalues are negative
then according to Sylvester’s law of inertia [45] all transforms
W †CjkW will have the same number of negative values on
the diagonal; i.e., there is no mapping to Lindblad form.

B. Valid functional forms

To illustrate this procedure, we consider a one-dimensional
chain of equidistant subsystems (separated in space by a
distance d). We now show that the following two functional
forms can always be mapped to Lindblad form. Both are
therefore sensible physical models of spatial correlations
which guarantee complete positivity in the time evolution:

Cjk = exp[−a|j − k|] exponential decay, (31)

Cjk = exp[−a(j − k)2] Gaussian function, (32)

where the parameter a > 0 sets the decay in terms of the
environmental correlation length, a = d/ξ .

We first note that homogeneous coefficient matrices Cjk

with row j and column k are Toeplitz matrices. To determine
whether it is positive semidefinite we utilize Lemma 6 in
Chapter 4.2 of Ref. [46], which applied to our notation reads
as follows:

The eigenvalues of an n × n Hermitian Toeplitz matrix in
the notation

(Cjk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t−1 t−2 t−3 . . . t−n+1

t1 t0 t−1 t−2
. . .

t2 t1 t0 t−1
. . .

t3 t2 t1 t0
. . .

...
. . .

. . .
. . .

. . .
...

tn−1 . . . t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

with absolutely summable elements tm,

∞∑
m=−∞

|tm| < ∞, (34)
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are not smaller than the minimum and not greater than the
maximum of the Fourier series f (λ) defined by

f (λ) =
∞∑

m=−∞
tme−imλ. (35)

1. Exponential decay

Since the element index in Eq. (33) corresponds to the
difference (row − column) the Toeplitz matrix corresponding
to Eq. (31) is given by the elements um = e−a|m|. Via a
geometric series, they are found absolutely summable:

∞∑
m=−∞

|um| = 1 + 2
∞∑

m=1

e−am = 2

1 − e−a
− 1 < ∞. (36)

Similarly the Fourier series evaluates to

g(λ) =
∞∑

m=−∞
um exp(−imλ) (37)

= −1 + 2(1 − e−a cos λ)

1 − 2e−a cos λ + e−2a
> 0. (38)

Since the Fourier series g(λ) is greater than zero, the
eigenvalues of the corresponding Toeplitz matrices are greater
than zero. Any master equation based on an exponentially
decaying spatial correlation function Cjk = exp(−a|j − k|)
can therefore be mapped to Lindblad form.

2. Gaussian decay

The Toeplitz matrix corresponding to Eq. (32) has abso-
lutely summable elements vm = e−am2

,
∞∑

m=−∞
|vm| = 2

∞∑
m=0

e−am2 − 1 < ∞, (39)

while the Fourier series is given by

h(λ) =
∞∑

k=−∞
vke

ikλ = 1 + 2
∞∑

k=1

e−ak2
cos(kλ) > 0, (40)

which can be shown using Jacoby’s imaginary transformation
(Chapter 21, page 475 of Ref. [47]). Again we see that
the Fourier series h(λ) and therefore the eigenvalues of
the corresponding Toeplitz matrices are greater than zero
which means that any master equation based on a Gaussian
correlation function can be mapped to Lindblad form.

3. Step function

Finally we give a counterexample where the mapping fails,
indicating an unphysical correlation function. The Toeplitz
matrix corresponding to a step correlation function has the
elements

wm =
{

1 for |m| < 2,

0 otherwise.
(41)

The elements are absolutely summable
∑∞

m=−∞ |wm| = 3;
however the Fourier series has negative values:

∞∑
k=−∞

wke
ikλ = eiλ + e−iλ + 1 = 1 + 2 cos λ. (42)

In fact for the specific case of a system consisting of three
subsystems

det

⎛
⎝ 1 1 0

1 1 1
0 1 1

⎞
⎠ = −1; (43)

i.e., the matrix is not positive semidefinite. This 3 × 3 matrix
is a principal submatrix [48] of the coefficient matrix for any
correlation function which corresponds to a step function.
Following the definiteness criterion of symmetric matrices
[48,49], it follows that no step function correlation matrix
(other than trivial limiting cases) is positive semidefinite.
Step functions should therefore not be used as the form of
a homogeneous spatial correlation function as they always
lead to a time evolution which is not completely positive,
even though the temporal component can be considered to be
Markovian.

V. CONCLUSION

We have utilized the Bloch-Redfield formalism to include
spatial correlations within a decohering environment. This
approach is very general as the effect of the environment is
modeled via spatial-temporal correlation functions.

The typical effects of spatially correlated decoherence on
qubit systems are the formation of decoherence-free subspaces
as well as enhanced dephasing rates between other states. For
positively correlated noise the dephasing rate between two
states is proportional to the square of the excitation difference
of the two states.

Two microscopic examples for an environment were pre-
sented where the spatial-temporal correlation function can
be derived explicitly. The one-dimensional Ising model has
a purely positive spectral function which decays spatially. The
spatial correlation length is increased by stronger coupling
between the environmental spins and decreased by thermal
effects. The chain of harmonic oscillators shows a spectral
function which oscillates spatially in the form of a cosine,
creating points of negative correlation.

We also provide a method for working with phenomeno-
logically assumed spectral functions. A mapping to the
completely positive Lindblad form master equation provides a
test for physicality of the spectral functions in the Markovian
regime. With this test we show that homogeneous exponential
or Gaussian spatial decay with an arbitrary correlation length
proves to be a physical model for spectral functions.
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APPENDIX A: DERIVATION OF THE MATRIX FORM
OF THE BLOCH-REDFIELD EQUATIONS

The derivation of the Bloch-Redfield equations [50–52] is
a well known procedure which can be found in several good
textbooks [1,36,53]. In this and the following appendices, we
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summarize this derivation and its associated results for two
reasons, first to clarify our notation and form of the equations
and second to discuss several important approximations
explicitly. Although these approximations are included in
the usual discussions, the introduction of spatial correlations
requires careful treatment of these points.

From the usual system-plus-bath approach,

H = HS + HB + Hint with Hint =
∑

j

sjBj ,

where the interaction is given as a product of system
operators sj and bath operators Bj , one finds the standard
master equation in the Born-Markov approximation [see, e.g.,
Carmichael [36], Eq. (1.34)]:

˙̃ρ =
∑
jk

∫ ∞

0
dt ′[s̃j (t)s̃k(t ′)ρ̃ − s̃k(t ′)ρ̃s̃j (t)]〈B̃j (t)B̃k(t ′)〉

+
∑
jk

∫ ∞

0
dt ′[ρ̃s̃k(t ′)s̃j (t) − s̃j (t)ρ̃s̃k(t ′)]〈B̃k(t ′)B̃j (t)〉,

where the tilde implies the interaction picture. To define our
matrix notation in an arbitrary basis {|an〉} we introduce
the transformation matrix V = ∑

n |ωn〉 〈an| to the system
Hamiltonian’s eigenstates HS |ωn〉 = ωn |ωn〉. To perform the
t ′ integration explicitly, we transform back to the Schrödinger
picture. For the first term it reads explicitly

sjV V †e−iHSτ ske
iHSτV︸ ︷︷ ︸

=:Q

V †ρ(t) (A1)

with τ = t − t ′. Inserting unity operators
∑

n |ωn〉 〈ωn| gives

Q =
∑
lmnp

|al〉 〈ωl |e−iHSτ |ωm〉︸ ︷︷ ︸
=e−iωl τ δlm

〈ωm|sk|ωn〉

× 〈ωn|eiHSτ |ωp〉︸ ︷︷ ︸
=eiωnτ δnp

〈ap| (A2)

=
∑
mn

|am〉 〈ωm| sk |ωn〉 〈an| ei(ωn−ωm)τ , (A3)

〈am|Q|an〉 = 〈ωm|sk|ωn〉ei(ωn−ωm)τ (A4)

= 〈am|V †skV |an〉ei(ωn−ωm)τ . (A5)

Performing these operations analogously on all four terms we
can then integrate element-wise and we find a compact and
general form of the Bloch-Redfield equations:

ρ̇ = i

h̄
[ρ,Hs] + 1

h̄2

∑
j,k

(−sjV qjkV
†ρ + V qjkV

†ρsj

− ρV q̂jkV
†sj + sjρV q̂jkV

†) (A6)

with

〈an|qjk|am〉 = 〈an|V †skV |am〉Djk(ωm − ωn), (A7)

〈an|q̂jk|am〉 = 〈an|V †skV |am〉D∗
jk(ωn − ωm), (A8)

Djk(ω) =
∫ ∞

0
dτ eiωτ 〈B̃j (τ )B̃k(0)〉. (A9)

If Djk(ω) contains an imaginary term, this leads to additional
coherent dynamics (which in the secular approximation can

even be written as a correction of the system Hamiltonian
(see section “Complex spectral functions”); therefore only
the real part of Djk causes decoherence. Assuming the
property 〈B̃j (−τ )B̃k(0)〉 = [〈B̃j (τ )B̃k(0)〉]∗ this real part can
be rewritten in terms of the Fourier transform:

Re(Djk) = 1

2
Cjk, (A10)

Cjk(ω) =
∫ ∞

−∞
dτ eiωτ 〈B̃j (τ )B̃k(0)〉. (A11)

The Markov approximation, which is used to derive the
Bloch-Redfield equations, requires Cjk(ω) to be constant on
the frequency scale of the quantum system, i.e. “smoothness.”
This means a fast decay of the temporal correlation function,
which is independent of the spatial correlation length.

APPENDIX B: SECULAR APPROXIMATION
OF THE BLOCH-REDFIELD EQUATIONS

The secular approximation can be used to simplify the
Bloch-Redfield equations to the form of Eq. (29). First we
separate the system operators sj into several operators by
multiplication with projection operators onto the Hamiltonian
eigenstates |ωn〉:

sj (ε) =
∑

ωm−ωn=ε

|ωn〉 〈ωn| sj |ωm〉 〈ωm| . (B1)

The sum extends over all Hamiltonian eigenvalues ωn and ωm

with a fixed difference ε. Assuming all sj to be Hermitian we
find

sj (−ε) = sj (ε)†. (B2)

Using Eq. (B1), we write

sj =
∑

ε

sj (ε), (B3)

qjk = V †
∑

ε

sk(ε)
1

2
Cjk(ε)V, (B4)

q̂jk = V †
∑

ε

sk(ε)
1

2
Ckj (−ε)V. (B5)

Replacing Eqs. (B3) to (B5) in the Bloch-Redfield equations
[Eq. (3)] and changing to the interaction picture,

eiHSt sj (ε)e−iHS t = e−iεt sj (ε), (B6)

one then finds

˙̃ρ =
∑
jkεε′

e−i(ε+ε′)tCjk(ε)[−sj (ε′)sk(ε)ρ̃ + sk(ε)ρ̃sj (ε′)]

+
∑
jkεε′

e−i(ε+ε′)tCkj (−ε)[−ρ̃sk(ε)sj (ε′) + sj (ε′)ρ̃sk(ε)].

Since ε includes negative frequencies the only nonoscillating
terms are for ε′ = −ε. In the secular approximation, the
oscillating terms which are neglected are fast oscillating
on the time scale of the system dynamics. This time scale
τS = 1/|ε − ε′| for ε �= ε′ must be much shorter than the
decoherence time scale set by the terms Cjk and the magnitudes
of the sj . Roughly this can be restated as HS � Hint. Applying

052138-6



DERIVATION OF MARKOVIAN MASTER EQUATIONS FOR . . . PHYSICAL REVIEW A 87, 052138 (2013)

the secular approximation one finds

˙̃ρ =
∑
jkε

Cjk(ε)[−sj (−ε)sk(ε)ρ̃ + sk(ε)ρ̃sj (−ε)]

+
∑
jkε

Ckj (−ε)[−ρ̃sk(ε)sj (−ε) + sj (−ε)ρ̃sk(ε)]. (B7)

Since the sum over ε extends over all positive and negative
energy differences we can replace ε → −ε in the second line of
Eq. (B7). Note that this makes the last two terms the Hermitian
conjugate of the first two terms. Furthermore we swap the
equivalent indices j and k in the last two terms. This together
with Eq. (B2) yields

˙̃ρ =
∑

ε

∑
jk

1

2
Cjk(ε)[2sk(ε)ρ̃sj (ε)† − {sj (ε)†sk(ε),ρ̃}]. (B8)

In several cases one finds only one frequency in the elements
of qjk and q̂jk in which case the summation over ε contains
only one summand and can be omitted, simplifying Eq. (B8)
(back in the Schrödinger picture) to

ρ̇ = i

h̄
[ρ,Hs] + 1

h̄2

∑
j,k

1

2
Cjk(2skρs

†
j − {s†j sk,ρ}). (B9)

For ease of notation, the form of Eq. (B9) is used without
loss of generality. For cases where the summation over ε

in Eq. (B8) is relevant, each frequency component is added
independently and all further results apply analogously. In
practice the secular approximation for a particular system
is best applied via the method given in Appendix A1 of
Ref. [6]. The general arguments above are analogous to
the derivation of the Lindblad form on pages 128ff. in
Ref. [1].

For a system of two qubits

H = ωqσ
(q1)
z + (ωq + δ)σ (q2)

z + Hc,

the general coupling operator Hc between the two (which
consists of tensor products of all Pauli matrices acting on
one qubit with all Pauli matrices on the other with respective
coupling strengths) can be simplified via a rotating wave
approximation (assuming ωq much greater than δ and all
coupling strengths) to only a transverse and a longitudinal
component:

Hc = v⊥
(
σ (q1)

x σ (q2)
x + σ (q1)

y σ (q2)
y

)/
2 + v‖σ (q1)

z σ (q2)
z

= v⊥(σ (q1)
+ σ

(q2)
− + σ

(q1)
− σ

(q2)
+ ) + v‖σ (q1)

z σ (q2)
z . (B10)

Regarding environmental coupling of a qubit the transverse
component leads to energy exchange between qubit and
environment and the longitudinal component simply imparts
a phase shift on the qubit. The environmental coupling of the
two qubits with transverse and longitudinal components is

Hint = σ (q1)
x B1 + σ (q2)

z B2 + σ (q2)
x B3 + σ (q2)

z B4.

Applying the secular approximation (based on a large ωq)
one finds that the two coupling types can be approximated as
coupling to independent baths. For systems of several qubits
this applies independently for each pair. Therefore no mixed
couplings of transversal and longitudinal operators appear in
the Bloch-Redfield equations in the secular approximation.

APPENDIX C: COMPLEX SPECTRAL FUNCTIONS

Strictly speaking the spectral function Cjk(ω) is actually
given by a one-sided Fourier transform [see Eq. (A9)]
Djk(ω) = Cjk(ω) + iFjk(ω) which can be in general complex.
Taking that into account Eq. (B7) becomes

˙̃ρ =
∑
jkε

Djk(ε)[−sj (−ε)sk(ε)ρ̃ + sk(ε)ρ̃sj (−ε)] (C1)

+
∑
jkε

[Djk(ε)]∗[−ρ̃sk(−ε)sj (ε) + sj (ε)ρ̃sk(−ε)]. (C2)

Dividing the expression into its real and imaginary compo-
nents, one finds additional terms to Eq. (B8):

˙̃ρ =
∑

ε

∑
jk

1

2
Cjk(ε)[2sk(ε)ρ̃sj (ε)† − {sj (ε)†sk(ε),ρ̃}]

+
∑

ε

∑
jk

iFjk(ε)[ρsj (ε)†sk(ε) − sj (ε)†sk(ε)ρ], (C3)

which (back in the Schrödinger picture) can be regarded as
a correction to the system Hamiltonian, often referred to as
Lamb shift terms [1]:

ρ̇ = i

h̄
[ρ,Hs + Hcor]

+ 1

h̄2

∑
ε

∑
jk

1

2
Cjk(ε)[2sk(ε)ρ̃sj (ε)† − {sj (ε)†sk(ε),ρ̃}],

(C4)

Hcor = 1

h̄

∑
ε

∑
jk

Fjk(ε)sj (ε)†sk(ε). (C5)

Again for ease of notation the summation over ε is omitted in
the main text.
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