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Qubit dephasing affected by preparation-induced initial correlation with stochastic environment
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The reduced time evolution of a single qubit under the influence of a classical environment is studied by means
of the stochastic Liouville equation. The qubit initially correlates with the environment, which is created by a
preparation process of an initial state. The phase fluctuation caused by the environment is characterized by means
of the Gauss-Markov process and the two-state-jump Markov process. It is shown that depending on values of
the parameters, the initial correlation enhances or reduces the decoherence of the qubit. In the case of the slow
modulation, the effect of the initial preparation of the qubit becomes significant and it cannot be ignored in the
reduced time evolution of the qubit.
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I. INTRODUCTION

A quantum system in a real world is unavoidably influenced
by a surrounding environment. As a result of an interaction
with an environment, a quantum system evolves irreversibly
from a prepared initial state into a stationary state [1,2], during
which quantum-mechanical properties, such as coherence
and entanglement [3,4], of a relevant system are eventually
destructed. Such irreversible time evolution of a quantum
system can be investigated by means of the quantum master
equation method [5–10] and the path integral method [11–13].
In a study of irreversible time evolution, a noncorrelated initial
state of a quantum system and an environment is usually
assumed when the reduced dynamics of a quantum system
is derived. In this case, the reduced dynamics of a relevant
system is described by a completely positive map [2,4,14].
However, since an environment influences the time evolution
of a quantum system, it is reasonable to consider that a
preparation of an initial state of the system is also influenced
by the environment. This implies that an initial correlation
between a quantum system and an environment should be taken
into account when the reduced dynamics is derived. Therefore
it is important to investigate how an initial correlation between
a quantum system and an environment influences the reduced
time evolution of a quantum system.

Recently, in the many works [15–34], the effects of the
initial correlation on the relevant system have been investigated
in detail. One of the most important results is that the reduced
time evolution in the presence of an initial correlation cannot
be described by a completely positive map [15–17]. It has
also been pointed out that the reduced time evolution may
be quite different if the initial correlation is ignored [18].
The noncomplete positivity of the reduced time evolution has
been studied in terms of a trace distance between quantum
states [19–24], where the pure dephasing model, the Jaynes-
Cummings model, and the exactly solvable single excitation
model have been used. The quantum master equation for a
relevant system which has an initial correlation has also been
investigated by several methods [25–28]. Furthermore the
linear response of a two-level system initially correlated with
an environment to an external field has been also considered
[29,30]. In these works, the initial states are classified into two
types. One is given by a ad hoc manner without referring
to a preparation process. The other is given by a thermal

equilibrium state of a total system. All the initial states cannot
be factorized into the system and environment states due to an
initial correlation between them.

However, it is possible to consider a different type of initial
correlation when a preparation of an initial state is performed
by means of von Neumann measurement or filtering operation
on a relevant system. In this case, although an initial state of a
total system becomes a product state, the environmental part
depends on the system part. Such a dependence creates an
initial correlation between the system and the environment. It
has been examined in detail how the initial correlation created
by a preparation of a system initial state affects the decay of
coherence and entanglement in the reduced time evolution of
the quantum system [31–34]. In this paper, different from the
previous works on the initial correlation, we will consider
the case that a quantum system interacts with a classical
environment [35–42], the influence of which is described by a
stochastic process. Even in such a quantum-classical system,
it will be found that the initial correlation yields a significant
effect on the reduced time evolution of the quantum system.
Here it should be noted that although the time evolution of a
total system is given by a unitary map in the previous works,
it is described by a nonunitary map in the present work.

In our previous paper [43], we have investigated the deco-
herence of a qubit interacting with a classical environment,
where the time evolution of the total system is governed
by the stochastic Liouville equation [38,44,45]. We have
shown that the observation of the environmental variable (the
classical stochastic variable [46]) can suppress the decay of
distinguishability and entanglement of qubits. The present
paper, on the other hand, investigates how the initial correlation
between the qubit and the classical environment affects the
reduced time evolution of the qubit, where the time evolution
of the total system is determined by the stochastic Liouville
equation which is the same as that used in [43]. We will find
whether the initial correlation can reduce the decoherence of
the qubit or not. Furthermore we will show that the effect of
the initial correlation becomes significant and so it cannot be
ignored in the reduced time evolution of the qubit, even if an
environment is classical.

In this paper, we suppose that a classical environment
induces a phase fluctuation of a quantum system, which is
described by means of a classical stochastic process [46].
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In the rest of this paper, we refer to such a classical
environment as a stochastic environment. The time evolution
of a total system which consists of a quantum system and a
stochastic environment is governed by the stochastic Liou-
ville equation [38,44,45]. Usually, to investigate the reduced
time evolution of the relevant quantum system, the quantum
master equation is derived by eliminating variables of the
stochastic environment from the stochastic Liouville equation.
To take the effect of the initial correlation into account,
however, we need to solve the stochastic Liouville equation
without the elimination. In Sec. II, we briefly summarize
the stochastic Liouville equation [38,44,45] and the exact
solutions when the Gauss-Markov process and the two-state-
jump Markov process are considered [43]. We also explain a
correlated initial state of a quantum system and a stochastic
environment, which is prepared by means of the von Neumann
measurement or the filtering operation on the relevant quantum
system [31–34]. In Sec. III, we investigate how the initial
correlation influences the reduced time evolution of a single
qubit. It will be found that depending on the values of the
parameters, the initial correlation enhances or reduces the
decoherence of the qubit and the effect becomes significant in
the case of the slow modulation of the dephasing. In Sec. IV,
we provide concluding remarks.

II. TIME EVOLUTION AND INITIAL STATE

A. Stochastic Liouville equation

We suppose that a quantum system is placed under the
influence of a stochastic environment. As a result, a random
phase fluctuation described by means of a stochastic process
[46] occurs in the quantum system. In this paper, the Gauss-
Markov process and the two-state-jump Markov process are
considered. The total system consisting of the quantum system
and the stochastic environment can be described by a joint
state Ŵ (t ; �) [44,45] with � being a value of the stochastic
variable, the marginals of which are the reduced density matrix
ρ̂(t) = ∑

� Ŵ (t ; �) of the relevant quantum system and the
probability P (t ; �) = Tr Ŵ (t ; �) of the stochastic variable.
Here, the summation is taken over all possible values of the
stochastic variable and Tr stands for the trace operation over
the Hilbert space of the quantum system. When the stochastic
variable takes continuous values, the summation is replaced
with an appropriate integration. The time evolution of the joint
state Ŵ (t ; �) is governed by the stochastic Liouville equation
[44,45]

∂

∂t
Ŵ (t ; �) = − i

h̄
[Ĥ + h̄Ŝ�,Ŵ (t ; �)] + L�Ŵ (t ; �), (1)

where Ĥ is a Hamiltonian of the quantum system, and Ŝ is
a system observable coupled with the stochastic variable. In
this equation, L� stands for a map which characterizes the
time evolution of the stochastic process and it satisfies the
equality

∑
� L� = 0 due to a conservation law of probability.

Since we have assumed the time homogeneity of the stochastic
process, the map L� does not depend on time t . The time
evolution of the probability P (t ; �) of the stochastic variable
is determined by ∂P (t ; �)/∂t = L�P (t ; �) [10,46]. In the
dephasing, the equality [Ĥ ,Ŝ] = 0 holds, and we ignore the

unitary time evolution induced by the Hamiltonian Ĥ since it
does not affect our results.

B. Gauss-Markov process

We first consider the case that the phase fluctuation
caused by the stochastic environment is characterized by
means of the Gauss-Markov process [10,46]. In this case, the
stochastic Liouville equation for the joint state Ŵ (t ; �) is given
by [44,45]

∂

∂t
Ŵ (t ; �) = −i�Ŝ×Ŵ (t ; �)

+ γ
∂

∂�

(
� + �2 ∂

∂�

)
Ŵ (t ; �), (2)

where we set Â×B̂ = [Â,B̂]. In this equation, the non-negative
parameters γ and � are related to the correlation function
of the stochastic variable �(t) in the stationary state. The
Doob’s theorem provides 〈�(t)�(t ′)〉s = �2e−γ |t−t ′ | [10,46],
where 〈. . .〉s represents the average over the stationary Gauss-
Markov process. We can write the initial joint state at t = t0
in the form of Ŵ (t0; �) = ρ̂(t0|�)P (t0; �), where P (t0; �) is
an initial probability of the stochastic variable and ρ̂(t0|�) is a
conditional density matrix of the quantum system for a given
value � of the stochastic variable. When the initial probability
of the stochastic variable is Gaussian with the equilibrium
width �, that is,

P (t0; �) = 1√
2π�2

exp

[
− (� − �0)2

2�2

]
, (3)

the joint state Ŵ (t ; �) of the total system becomes

Ŵ (t ; �) = 1√
2π�2

exp[−f (t − t0)(Ŝ×)2

− i(�0/�)θ (t − t0)Ŝ×]

× exp

(
− 1

2�2
{� − [�0e

−γ (t−t0)

− i�θ (t − t0)Ŝ×]}2

)
ρ̂(t0), (4)

where we set f (t) = (�/γ )2(γ t − 1 + e−γ t ) and θ (t) =
(�/γ )(1 − e−γ t ). The reduced density matrix of the quantum
system is given by

ρ̂(t) = exp[−f (t − t0)(Ŝ×)2 − i(�0/�)θ (t − t0)Ŝ×]ρ̂(t0),

(5)

and the probability of the stochastic variable is

P (t ; �) = 1√
2π�2

exp

[
− (� − �0e

−γ (t−t0))2

2�2

]
. (6)

The conditional density matrix of the quantum system for a
given value � is provided by ρ̂(t |�) = Ŵ (t ; �)/P (t ; �). The
more general case has been considered in Ref. [43].

C. Two-state-jump Markov process

Next we consider the case that the phase fluctuation of
the quantum system is characterized by the two-state-jump
Markov process [46,47]. In this case, the stochastic variable
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takes only two values which are denoted as ± 1
2�. The joint

state of the total system is given by the two-dimensional vector,
the components of which are operators of the quantum system,
where we denote the system operators as Ŵ (t ; 1

2�) ≡ Ŵ+(t)
and Ŵ (t ; − 1

2�) ≡ Ŵ−(t). Then the joint state is represented
by

Ŵ (t) =
(

Ŵ+(t)

Ŵ−(t)

)
. (7)

The reduced density matrix of the relevant quantum system is
ρ̂(t) = Ŵ+(t) + Ŵ−(t) and the probability that the stochastic
variable takes the value ± 1

2� is given by P±(t) = Tr Ŵ±(t).
When we assume that 〈�(t)〉s = 0 and 〈�(t)�(t ′)〉s =
(�/2)2e−γ |t−t ′ | in the stationary state, the stochastic Liouville
equation for the joint state Ŵ (t) is provided by [44,45]

∂

∂t
Ŵ (t) = −i�Ŝ×Ŵ (t) + �Ŵ (t), (8)

with

� =
(

1
2� 0

0 − 1
2�

)
, � =

(
− 1

2γ 1
2γ

1
2γ − 1

2γ

)
. (9)

Using the Lie algebra method [48–51], we can solve the
stochastic Liouville equation (8) to obtain the joint state [43],

Ŵ (t) =
(
Ĝ++(t − t0) Ĝ+−(t − t0)

Ĝ−+(t − t0) Ĝ−−(t − t0)

)
Ŵ (t0), (10)

where Ĝjk(t)’s are given by

Ĝ++(t) = e−(1/2)γ t

[
cosh

(
γ t

2Â

)
− i

(
�Ŝ×

γ

)
Â sinh

(
γ t

2Â

)]
,

(11)

Ĝ−−(t) = e−(1/2)γ t

[
cosh

(
γ t

2Â

)
+ i

(
�Ŝ×

γ

)
Â sinh

(
γ t

2Â

)]
,

(12)

Ĝ+−(t) = Ĝ−+(t) = e−(1/2)γ t Â sinh

(
γ t

2Â

)
, (13)

with Â = 1/
√

1 − (�Ŝ×/γ )2. The conditional density matrix
of the quantum system for given value ± 1

2� of the stochastic
variable is ρ̂(t |±) = Ŵ±(t)/P±(t). The details are given in
Ref. [43].

D. Initial state with correlation

Finally we explain a correlated initial state which is used to
investigate the decoherence of a quantum system. The initial
correlation is created in a preparation process which uses the
von Neumann measurement. Such a process is called filtering
or preselection. Suppose that to prepare an initial state at
time t = 0, we first put a quantum system in a stochastic
environment at time t = −t0, where the quantum state is given
by the density matrix ρ̂i = |ψi〉〈ψi | and the environment is
in the stationary state before interacting with the quantum
system. The joint state of the total system at this time is a
product ρ̂iP (�) with P (�) being the stationary probability.

Then the total system consisting of the quantum system and
the stochastic environment evolves into the joint state Ŵ (t0; �)
at t = 0, according to the stochastic Liouville equation, which
can be written in the form of Ŵ (t0; �) = Gi(t0; �,Ŝ×)ρ̂i

[for instance, see Eq. (4)]. Here Gi(t0; �,Ŝ×) represents the
quantum channel derived by the stochastic Liouville equation.
We prepare a state of the quantum system at time t = 0 by
means of the state reduction caused by the von Neumann
measurement or by the filtering operation on the quantum
system [31–34]. We denote the projectors of the von Neumann
measurement as M̂k = |ψk〉〈ψk|. When we obtain the kth
measurement outcome, the joint state of the total system just
after the measurement becomes

Ŵk(0,�) = |ψk〉〈ψk|P (�|k), (14)

with the conditional probability

P (�|k) = 〈ψk|Ŵ (t0,�)|ψk〉∑
�〈ψk|Ŵ (t0,�)|ψk〉

. (15)

The kth outcome is obtained with probability P(k) =∑
�〈ψk|Ŵ (t0,�)|ψk〉. The joint state (14) is the initial state

that we consider. If there is no correlation between the quantum
system and the stochastic environment just before the prepa-
ration, the probability P (�|k) does not depend on the mea-
surement outcome k and the joint state becomes Ŵk(0,�) =
|ψk〉〈ψk|P (�). Although the initial joint state Ŵk(0; �) is fac-
torized into the qubit part and the environmental part, it is really
correlated unless P (�|k) = P (�) [32–34]. After the prepara-
tion, the total system evolves, according to the stochastic Liou-
ville equation with the initial joint state (14). The preparation
and time evolution of the system is depicted in Fig. 1.

For a single qubit, the von Neumann measurement is
described in terms of two orthonormal vectors |ψ+〉 =
cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 and |ψ−〉 = e−iφ sin(θ/2)|0〉 −
cos(θ/2)|1〉 with 0 � θ � π and 0 � φ � 2π . Here |0〉 and
|1〉 are eigenstates of the Pauli matrix σ̂z such that σ̂z|0〉 = |0〉
and σ̂z|1〉 = −|1〉. In the case of the single qubit, the system
operator Ŝ is given by Ŝ = 1

2 σ̂z. Then we can obtain

〈ψ±|Ŵi(t0,�)|ψ±〉 = 1
2Gi(t0; �,0)[1 ± 〈σ̂z〉i cos θ ]

± 1
2Gi(t0; �, − 1)〈σ̂+〉ie−iφ sin θ,

± 1
2Gi(t0; �,1)〈σ̂−〉ieiφ sin θ, (16)

S S

ΩΩ

E E

S+E S+E

FIG. 1. A schematic representation of the state preparation and
the time evolution of the quantum system (S) and the stochastic
environment (E), where L̂ stands for the time evolution generated by
the stochastic Liouville equation. The von Neumann measurement
{M̂k} makes the correlated initial state Ŵk(0,�) = ρ̂kP (�|k) at time
t = 0, and after that the system evolves according to the stochastic
Liouville equation.
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where we have used the relations

Tr[|0〉〈1|f (Ŝ×
z )Â] = f (−1)〈1|Â|0〉, (17)

Tr[|1〉〈0|f (Ŝ×
z )Â] = f (1)〈1|Â|0〉, (18)

Tr[|k〉〈k|f (Ŝ×
z )Â] = f (0)〈k|Â|k〉 (k = 0,1), (19)

and we set 〈Â〉i = Tr(Âρ̂i) and σ̂± = (σ̂x ± iσ̂y)/2. The
correlated initial state of the single qubit and the stochastic
environment is provided by Eqs. (14)–(16). The initial corre-
lation is really created unless 〈ψ±|Ŵi(t0,�)|ψ±〉 is factorized
into the qubit part and the environmental part.

The initial state that we consider in this paper has the
characteristic features. First, it is obvious that there is no initial
correlation between the qubit and the stochastic environment
if t0 = 0 since the qubit does not interact with the stochastic
environment before the preparation of the initial state. Further-
more if the time t0 is greater than the phase relaxation time
τph, the coherence of the qubit is destroyed by the stochastic
environment. In that case, the initial correlation cannot be
created by the preparation procedure. In fact, if t0 > τph, we
can approximate as

〈ψ±|Ŵi(t0,�)|ψ±〉 ≈ 1

2
Gi(t0; �,0)[1 ± 〈σ̂z〉i cos θ ], (20)

∑
�

〈ψ±|Ŵi(t0,�)|ψ±〉 ≈ 1

2
[1 ± 〈σ̂z〉i cos θ ], (21)

where we have used G(t0; �, ± 1) ≈ 0 for t0 > τph. In this
case, from Eq. (15), we derive P (�|k) ≈ Gi(t0; �,0), which
does not depend on the result k of the state preparation. In
the intermediate time region (0 < t0 < τph), we can obtain the
initial state correlated with the stochastic environment. The
formal solution of the stochastic Liouville equation (1) with
Ĥ = 0 is written as Ŵ (t) = e−it�Ŝ×+tL� ρ̂kP (�|k), where we
set ρ̂k = |ψk〉〈ψk|. Then the reduced density matrix of the qubit

is given by ρ̂(t) = Ĝ(t |k)ρ̂k , where Ĝ(t |k) = 〈e−it�Ŝ×+tL�〉k
and 〈. . .〉k = ∑

� · · · P (�|k) means the conditional average of
the stochastic variable. The dependence of the time evolution
operator Ĝ(t |k) on the initial state of the qubit is clear evidence
of the initial correlation [14].

III. DECOHERENCE OF QUBIT

In this section, we investigate how the initial correlation
between the qubit and the stochastic environment affects the
decoherence of the qubit, where the Gauss-Markov process and
the two-state-jump Markov process are considered. We will
find that depending on the values of the parameters, the initial
correlation enhances or suppresses the decoherence and the
effect becomes significant in the case of the slow modulation.

A. Gauss-Markov process

For the Gauss-Markov process, the quantum channel
Gi(t0; �,Ŝ×

z ) that generates the joint state Ŵ (t0; �) just before
the preparation of the initial state is obtained by putting �0 = 0
in Eq. (4),

Gi(t0; �,Ŝ×
z ) = 1√

2π�2
exp

[
− f (t0)(Ŝ×

z )2

− 1

2�2
(� + i�θ (t0)Ŝ×

z )2

]
. (22)

Substituting this equation into Eq. (16), we find out the
initial joint states Ŵ±(0; �) of the qubit and the stochastic
environment just after the preparation with the projector
M̂± = |ψ±〉〈ψ±|,
Ŵ±(0; �) = |ψ±〉〈ψ±|[Q±(t0; �) ± R±(t0; �) ± R∗

±(t0; �)],

(23)

where Q±(t0; �) and R±(t0; �) are given, respectively, by

Q±(t0; �) = P (�)(1 ± 〈σ̂z〉i cos θ )

1 ± 〈σ̂z〉i cos θ ± 
(t0)〈σ̂−〉ieiφ sin θ ± 
(t0)〈σ̂+〉ie−iφ sin θ
, (24)

R±(t0; �) = P (t0; �)
(t0)〈σ̂+〉ie−iφ sin θ

1 ± 〈σ̂z〉i cos θ ± 
(t0)〈σ̂−〉ieiφ sin θ ± 
(t0)〈σ̂+〉ie−iφ sin θ
. (25)

In these equations, we set P (�) = (2π�2)−1/2

exp(−�2/2�2) and

P (t0; �) = 1√
2π�2

exp

{
− 1

2�2
[� − i�θ (t0)]2

}
, (26)

with 
(t0) = exp[−f (t0)]. The correlated initial state
Ŵ±(0; �) is obtained with probability

Pi(t0; ±) = 1
2 [1 ± 〈σ̂z〉i cos θ ± 
(t0)〈σ̂−〉ieiφ sin θ

± 
(t0)〈σ̂+〉ie−iφ sin θ ]. (27)

When we choose appropriate measurement vectors |ψ±〉 for
the qubit, we can obtain the initial qubit state that we would
like to prepare with the finite success probability. On the other

hand, the probability of the stochastic variable just after the
preparation is given by P±(0; �) = Q±(t0; �) ± R±(t0; �) ±
R∗

±(t0; �), which is apparently not Gaussian. This means that
the stochastic process deviates from a Gaussian process. Thus
the preparation of the initial state changes the property of the
phase fluctuation of the qubit.

Since we have obtained the initial joint state Ŵ±(0; �),
we can derive the time evolution by solving the stochastic
Liouville equation. It is a straightforward task to find the time
evolution of each term of the right-hand side of Eq. (23),

|ψ±〉〈ψ±|P (�) → 1√
2π�2

e−f (t)(Ŝ×
z )2

× e−[�+i�θ(t)Ŝ×
z ]2/2�2 |ψ±〉〈ψ±|, (28)
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|ψ±〉〈ψ±|P (t0; �)

→ 1√
2π�2

e−f (t)(Ŝ×
z )2+�(t,t0)Ŝ×

z

× e−[�−i�θ(t0)e−γ t+i�θ(t)Ŝ×
z ]2/2�2 |ψ±〉〈ψ±|, (29)

|ψ±〉〈ψ±|P ∗(t0; �)

→ 1√
2π�2

e−f (t)(Ŝ×
z )2−�(t,t0)Ŝ×

z

× e−[�+i�θ(t0)e−γ t+i�θ(t)Ŝ×
z ]2/2�2 |ψ±〉〈ψ±|, (30)

where we set �(t,t0) = (�/γ )2(1 − e−γ t0 )(1 − e−γ t ). Then
the reduced density matrix of the qubit at time t is obtained:

ρ̂±(t) = 1 ± cos θ

2
|0〉〈0| + 1 ∓ cos θ

2
|1〉〈1|

± 1

2
�±(t,t0)e−iφ sin θ |0〉〈1|

± 1

2
�∗

±(t,t0)eiφ sin θ |1〉〈0|, (31)

where the function �±(t,t0) that characterizes the decoherence
of the qubit is given by

�±(t,t0) = 
(t)
1 ± 〈σ̂z〉i cos θ ± ϒ−(t,t0)〈σ̂−〉ieiφ sin θ ± ϒ+(t,t0)〈σ̂+〉ie−iφ sin θ

1 ± 〈σ̂z〉i cos θ ± 
(t0)〈σ̂−〉ieiφ sin θ ± 
(t0)〈σ̂+〉ie−iφ sin θ
, (32)

with ϒ±(t,t0) = 
(t0)e±�(t,t0). The second factor on the right-
hand side of this equation represents the effect of the initial
correlation on the decoherence of the qubit. It is obvious
from Eq. (32) that the decoherence function �±(t,t0) depends
on the initial state of the qubit. Note that the decoherence
function is equivalent to the characteristic function of the
stochastic process. If the process is Gaussian, it is given by
a simple exponential function since all the cumulants greater
than the second order vanish. The decoherence function given
by Eq. (32) clearly shows that the process is non-Gaussian
due to the effect of the initial correlation. By the way, if we
do not refer to the outcome of the measurement for the state
preparation, we obtain

ρ̂(t) = Pi(t0; +)ρ̂+(t) + Pi(t0; −)ρ̂−(t)

= 1 ± cos θ

2
|0〉〈0| + 1 ∓ cos θ

2
|1〉〈1|

± 1

2

(t)e−iφ sin θ |0〉〈1| ± 1

2

(t)eiφ sin θ |1〉〈0|,

(33)

which does not depend on the measurement and is equal to
that obtained in the absence of the initial correlation.

To examine the effect of the initial correlation on the
decoherence of the qubit, we suppose that the qubit state ρ̂i at
time t = −t0 is equal to one of the measurement vectors, that is,
ρ̂i = |ψ+〉〈ψ+| (or ρ̂i = |ψ−〉〈ψ−|). Furthermore we assume
that the qubit is prepared in ρ̂+(0) = |ψ+〉〈ψ+| (or ρ̂−(0) =
|ψ−〉〈ψ−|) by performing the von Neumann measurement.
In this case, the decoherence function �(t,t0) of the qubit
becomes

�(t,t0) = 
(t)
1 + cos2 θ + 
(t0) cosh �(t,t0) sin2 θ

1 + cos2 θ + 
(t0) sin2 θ
. (34)

It is obvious that the inequality �(t,t0) � 
(t) is always
satisfied. Hence we find that the initial correlation between the
qubit and the stochastic environment reduces the decoherence
of the qubit. This result suggests as follows: When we need
the qubit in the state |ψ±〉, we can obtain the qubit that is
more robust against the phase fluctuation if we first put the

qubit of the state |ψ±〉 in the environment at t = −t0 and
then we perform the von Neumann measurement (the filtering
operation or the preselection) at t = 0 to generate the qubit
state |ψ±〉, where the success probability of the generation is
given by

Pi(t0; ±) = 1
2 [1 + cos2 θ + 
(t0) sin2 θ ]. (35)

On the other hand, if we obtain the initial qubit state
ρ̂−(0) = |ψ−〉〈ψ−| (or ρ̂+(0) = |ψ+〉〈ψ+|) with the probabil-
ity Pi(t0; ±) = 1

2 [1 − 
(t0)] sin2 θ , the decoherence function
becomes

�(t,t0) = 
(t)
1 − 
(t0) cosh �(t,t0)

1 − 
(t0)
, (36)

which is independent of the parameter θ . If 
(t0)[1 +
cosh �(t,t0)] > 2, the inequality |�(t,t0)| > 
(t) is fulfilled.
Otherwise, we obtain |�(t,t0)| � 
(t). Hence in this case,
depending on the values of the parameters, the decoherence is
suppressed or enhanced by the initial correlation.

Next we suppose that the qubit state at t = −t0 is
|ψ̃i〉 = cos(θ/2)|0〉 ± ieiφ sin(θ/2)|1〉. The value of the rel-
ative phase φ is different from that of the measurement vector
by ±π/2. In this case, we find the decoherence function
from Eq. (32),

�(t,t0) = 
(t)

[
1 ± i

sin2 θ

1 + cos2 θ

(t0) sinh �(t,t0)

]
, (37)

for the initial state ρ̂(0) = |ψ+〉〈ψ+|, which is obtained with
the probability Pi(t0; +) = 1

2 (1 + cos2 θ ), and

�(t,t0) = 
(t)[1 ∓ i
(t0) sinh �(t,t0)], (38)

for the initial state ρ̂(0) = |ψ−〉〈ψ−| with probability
Pi(t0; −) = 1

2 sin2 θ , both of which always satisfy the inequal-
ity |�(t,t0)| � 
(t0). Hence the initial correlation reduces
the decoherence of the qubit. The time dependence of the
decoherence function is depicted in Fig. 2. It is found
from the figure that the initial correlation can enhance or
reduce the decoherence of the qubit, depending on the values
of the parameters. In the case of �/γ = 4.0 and
t0/T2 = 6.0 [Fig. 2(a)], the decoherence function (36) [long
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FIG. 2. (Color online) The time dependence of the absolute value of the decoherence function |�(t,t0)|, where the solid line (black) stands
for Eq. (34) with θ = π/2, the long dashed line (blue) for Eq. (36), the short dashed line (red) for Eq. (37) with θ = π/2 [or Eq. (38)], and the
dash-dotted line (green) for 
(t) = exp[−f (t)]. We set �/γ = 4.0 and t0/T2 = 6.0 in panel (a) and �/γ = 0.8 and t0/T2 = 1.0 in panel (b).
In the figure, time is scaled by the dephasing time T2 = γ /�2, which is derived in the narrowing limit of the Gauss-Markov process.

dashed line (blue)] becomes greater than 
(t) in the time re-
gion t/T2 � 9.1. Thus the initial correlation always suppresses
the decoherence of the qubit in the long-time region. On the
other hand, when �/γ = 0.8 and t0/T2 = 1.0 [Fig. 2(b)]
the decoherence function (36) is always smaller than 
(t).
Furthermore it is obvious from the figure the effect of the initial
correlation is significant in the case of the slow modulation
(�/γ > 1). In the case of the fast modulation (�/γ < 1),
the preparation effect is very small since the correlation just
before the preparation cannot be large. In the latter case,
since the correlation time of the stochastic environment is
sufficiently short, the phase information of the qubit is lost
before the preparation of the initial state is performed. Finally
we summarize the effect of the initial preparation on the
decoherence in Table I.

B. Two-state-jump Markov process

We consider the case that the phase fluctuation caused by
means of the stochastic environment is described by the two-
state-jump Markov process. In this case, the quantum channel

TABLE I. A summary of the effect of the initial preparation on the
decoherence of the qubit under the influence of the phase fluctuation
of the Gauss-Markov process.

Qubit state Initial state Decoherence
at t = −t0 at t = 0 function

|ψ+〉 |ψ+〉 �(t,t0) � 
(t)
|ψ−〉 �(t,t0) � 
(t) or �(t,t0) � 
(t)

|ψ−〉 |ψ+〉 �(t,t0) � 
(t) or �(t,t0) � 
(t)
|ψ−〉 �(t,t0) � 
(t)

|ψ̃i〉 |ψ±〉 �(t,t0) � 
(t)

G(t0; ±�/2,Ŝ×
z ) is obtained from Eq. (10):

G(t0; ±�/2,Ŝ×
z )

= e−(1/2)γ t0

[
cosh

(
γ t0

2Â

)
+

(
1 ∓ i

�Ŝz

γ

)
Â sinh

(
γ t0

2Â

)]
.

(39)

Then we can derive the initial joint state prepared by the von
Neumann measurement or the filtering operation on the qubit

Ŵ±(0) = |ψ±〉〈ψ±|
⎛
⎝ 1+w±(t0)

2

1 − w±(t0)

2

⎞
⎠, (40)

where the real parameter w±(t0) is given by

w±(t0)

= ±i
v(t0)[〈σ̂+〉ie−iφ − 〈σ̂−〉ieiφ] sin θ

1 ± 〈σ̂z〉i cos θ ± u(t0)[〈σ̂+〉ie−iφ + 〈σ̂−〉ieiφ] sin θ
.

(41)

In this equation, the functions u(t) and v(t) are

u(t) = e−(1/2)γ t

[
cosh

(
γ t

2a

)
+ a sinh

(
γ t

2a

)]
, (42)

v(t) = e−(1/2)γ t

(
�

γ

)
a sinh

(
γ t

2a

)
, (43)

with a = 1/
√

1 − (�/γ )2. The initial joint state Ŵ±(0) is
obtained with probability

P±(t0) = 1
2 [1 ± 〈σ̂z〉i cos θ

± u(t0)(〈σ̂+〉ie−iφ + 〈σ̂−〉ieiφ) sin θ ]. (44)

Here it should be noted that although the initial preparation
of the qubit changes the probability of the stochastic variable
from ±1/2 to [1 ± w±(t0)]/2, the stochastic process is still a
two-state-jump Markov process. Since the fluctuation of the
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FIG. 3. (Color online) The time dependence of the absolute value of the decoherence function |�(t,t0)|, where the solid line (black) stands
for Eq. (46) with θ = π/2 [or Eq. (47)] and the long dashed line (blue) for 
(t) = u(t). We set �/γ = 5.0 and t0/T2 = 4.0 in panel (a) and
�/γ = 0.8 and t0/T2 = 0.6 in panel (b). In the figure, time is scaled by the phase relaxation time T2 = 4γ /�2 provided in the narrowing limit
of the two-state-jump Markov process.

stochastic variable at the initial time reduces from (�/2)2

to (�/2)2[1 − w2
±(t0)] due to the initial preparation, the

decoherence of the qubit may be suppressed by the initial
correlation. The reduced density matrix ρ̂(t) of the qubit at time
t is derived by solving the stochastic Liouville equation (8)
with the initial condition (40). The result is provided by
replacing the decoherence function �±(t,t0) in Eq. (31) with

�±(t,t0)

= u(t) ± v(t0)v(t)[〈σ̂+〉ie−iφ −〈σ̂−〉ieiφ] sin θ

1±〈σ̂z〉i cos θ±u(t0)[〈σ̂+〉ie−iφ+〈σ̂−〉ieiφ] sin θ
.

(45)

The second term on the right-hand side of this equation
represents the effect of the initial correlation. As in the
case of the Gauss-Markov process, the decoherence function
depends on the initial qubit state. We can see from Eqs. (42)
and (43) that the effect of the initial correlation disappears
at time t = (2πn/γ )

√
(�/γ )2 − 1 (n = 1,2, . . .) when the

inequality � > γ is satisfied. Furthermore, if we do not refer
to the outcome of the preparation measurement, the initial
correlation disappears and the decoherence function becomes
�±(t,t0) = u(t).

When the qubit state at t = −t0 is ρ̂i = |ψ±〉〈ψ±|, we find
out w±(t0) = 0 from Eq. (41). This means that the preparation
of the initial qubit state at t = 0 does not make any correlation
between the qubit and the stochastic environment. Hence
the decoherence function becomes �(t,t0) = u(t). On the

TABLE II. A summary of the effect of the initial preparation on
the decoherence of the qubit the influence of the phase fluctuation of
the two-state-jump Markov process.

Qubit state at t = −t0 Initial state at t = 0 Decoherence function

|ψ±〉 |ψ±〉 �(t,t0) = 
(t)
|ψ̃±〉 |ψ±〉 �(t,t0) � 
(t)

other hand, when ρ̂i = |ψ̃±〉〈ψ̃±| with |ψ̃±〉 = cos(θ/2)|0〉 ±
ieiφ sin(θ/2)|1〉, we obtain the decoherence function

�(t,t0) = u(t) ± i
v(t0)v(t) sin2 θ

1 + cos2 θ
(46)

for the initial state ρ̂(0) = |ψ̃+〉〈ψ̃+| with probability
Pi(t0; +) = 1

2 (1 + cos2 θ ) and

�(t,t0) = u(t) ∓ iv(t0)v(t) (47)

for the initial state ρ̂(0) = |ψ̃−〉〈ψ̃−| with probability
Pi(t0; −) = 1

2 sin2 θ . It is obvious that the decoherence func-
tions always satisfy the inequality |�±(t,t0)| � |u(t)|. Hence
the initial correlation reduces the decoherence of the qubit.
This result means that when we need the qubit state |ψ±〉,
we first put the qubit of the state |ψ̃±〉 in the environment
and then we perform the von Neumann measurement with the
projector |ψ±〉〈ψ±|. The time dependence of the decoherence
function is depicted in Fig. 3. The figure shows that the initial
correlation significantly reduces the decoherence of the qubit
in the case of the slow modulation. As in the Gauss-Markov
process, the effect of the initial-state preparation becomes
negligible in the case of the fast modulation. The effect of the
initial preparation on the decay of coherence is summarized in
Table II.

IV. CONCLUDING REMARKS

In this paper, we have studied how the initial correlation
between the qubit and the stochastic environment influences
the decoherence of the qubit during the reduced time evolution,
where the Gauss-Markov process and the two-state-jump
Markov process have been used to describe the phase fluc-
tuation of the qubit. The time evolution of the qubit and
the environment is determined by the stochastic Liouville
equation. We have supposed that the initial correlation is
created by the von Neumann measurement or by the filtering
operation on the qubit, which is performed to prepare the
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initial qubit state. We have found that depending on the value
of the parameters, the decoherence of the qubit is suppressed
or enhanced by the initial correlation. In the case of the
slow modulation, the effect of the initial correlation becomes
significant and thus it cannot be ignored in the reduced
time evolution. On the other hand, in the case of the fast
modulation (or the narrowing limit), the preparation of the

initial state slightly affects the reduced time evolution of the
qubit since the phase information of the qubit is lost before the
initial correlation is created. Although we have considered
the specific type of the initial correlation in this paper, it
may be sufficient to recognize the importance of the effect
of the initial correlation between the quantum system and the
environment.
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