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Robust weak-measurement protocol for Bohmian velocities

F. L. Traversa,1,2,* G. Albareda,1 M. Di Ventra,2 and X. Oriols1,†
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We present a protocol for measuring Bohmian, or the mathematically equivalent hydrodynamic, velocities
based on an ensemble of two position measurements, defined from a positive operator-valued measure, separated
by a finite time interval. The protocol is very accurate and robust as long as the first measurement uncertainty
divided by the finite time interval between measurements is much larger than the Bohmian velocity, and the
system evolves under flat potential between measurements. The difference between the Bohmian velocity of
the unperturbed state and the measured one is predicted to be much smaller than 1% in a large range of
parameters. Counterintuitively, the measured velocity is that at the final time and not a time-averaged value
between measurements.
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I. INTRODUCTION

The velocity of a classical object, requiring two position
measurements, is trivially implemented in many apparatuses
which control our daily activity. On the contrary, in the quan-
tum world, such measurements are much more complicated.
The first position measurement implies a perturbation on
the quantum system so that the knowledge of the velocity
without perturbation is hardly accessible. One can minimize
the back action of the measurement on the system using weak
measurements. Such measurements were initially developed
by Aharonov, Albert, and Vaidman (AAV) [1] more than two
decades ago, and they are receiving increasing attention [2–10]
nowadays. As a relevant example, the spatial distribution
of velocities of relativistic photons in a double-slit scenario
has been measured, and the associated quantum trajectories
have been reconstructed [6]. However, we may ask the
question, Does the ensemble velocity obtained from weak
measurements have a clear physical meaning? A partial answer
was provided recently by Wiseman [3]. Using the weak AAV
value [1], he showed that the ensemble velocity constructed
from an arbitrarily preselected state and a postselected position
eigenstate, with an infinitesimal temporal separation between
position measurements, exactly corresponds to the Bohmian
velocity [11] of the unperturbed state. Note that Wiseman’s
answer is only valid for nonrelativistic scenarios (thus, strictly
speaking, excluding [6]).

We emphasize that two weak-position measurements on
an individual state do not provide the Bohmian velocity of
the unperturbed state because of the unavoidable back action
[12]. However, for an idealized scenario, Wiseman showed
that when the individual measurements are repeated over an
ensemble of identical states, the final ensemble velocity is
identical to the Bohmian velocity of the unperturbed state
[3]. These ensemble velocities can be interpreted either as
the orthodox hydrodynamic velocity [13,14] or as a genuine
measurement of the Bohmian velocity [12]. Following the
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recent literature [3,6,12], we will refer to these ensemble
velocities as Bohmian velocities.

The practical conditions for measuring Bohmian velocities
in a laboratory are different from the idealized theoretical
scenario studied by Wiseman [3] (implying discrepancies
between the measured velocity and the expected one). First,
weak measurements in a laboratory can be outside the linear-
response regime assumed in the AAV development [15]. Sec-
ond, position measurements have a small but finite uncertainty,
meaning that the postselected state is not an exact position
eigenstate. Third, the time separation between measurements
must be finite. In this paper we bring Wiseman’s original
conclusions about the measurement of Bohmian velocities into
practical laboratory conditions, free from previous idealized
assumptions. We will use the positive operator-valued measure
(POVM) framework [15] (instead of the AAV value), allowing
position uncertainties in both measurements, and we will
consider a finite time interval between position measurements.

II. ENSEMBLE VELOCITY

A. Definition of ensemble velocity

From a large set of measured positions, xw at time tw and
xs at ts = tw + τ , we construct the experimental velocity as

ve(xs,ts) = E[(xs − xw)|xs]

τ
, (1)

where E[(xs − xw)|xs] is the ensemble average of the distance
xs − xw, given the condition that xs is effectively measured.
Since E[xs |xs] = xs , the theoretical computation of the ve-
locity ve only requires evaluating E[xw|xs] using standard
probability calculus,

E[xw|xs] =
∫

dxwxwP (xw ∩ xs)

P (xs)
, (2)

with P (xw ∩ xs) being the joint probability of the sequential
measurements of xw and xs . Equivalently, P (xs) is the
probability of measuring xs . After properly modeling the
system perturbation due to the measurement, both probabilities
can be computed.
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B. Two consecutive POVMs separated by a finite time interval

The POVM appears to be a natural modeling of a measuring
process [16] when the laboratory is divided into the quantum
system and everything else (including the measuring appara-
tus). Thus, the perturbation of the state due to the measurement
of the first position xw can be defined through POVMs. In
this treatment we chose the Gaussian measurement Krauss
operators

Ŵw = Cw

∫
dxe

− (xw−x)2

2σ2
w |x〉 〈x| , (3)

where σw is the experimental uncertainty. The measured
position xw belongs to the set M of all possible measurement
outputs of the apparatus. For simplicity, we assume M ≡ R
in a one-dimensional (1D) system, with the extension to the
three-dimensional (3D) spatial domain being straightforward.
Then, the normalization coefficient Cw = (

√
πσw)−1/2 is fixed

by the condition
∫

dxwŴ †
wŴw = I . Due to the unavoidable

uncertainty in any position measurement, we consider an
equivalent operator for the second position measurement of
xs :

Ŝs = Cs

∫
dxe

− (xs−x)2

2σ2
s |x〉 〈x| . (4)

We remark here that the choice of Gaussian measurement
operators is not the only possible one that leads to our results.
In fact, it can be proven that any POVM that symmetrically
perturbs the wave function only in the neighborhood of xw

(xs) with a radius σw (σs) and cancels the wave function in any
other position leads to equivalent results. Thus the choice of
Gaussian POVM is purely formal. It allows a simple analytical
treatment. Now, using the definitions in (3) and (4), we can
compute P (xw ∩ xs) and P (xs) from the Born rule as

P (xw ∩ xs) = 〈�| Ŵ †
wU †

τ Ŝ
†
s ŜsUτ Ŵw |�〉 , (5)

P (xs) =
∫

dxwP (xw ∩ xs), (6)

where |�(tw)〉 ≡ |�〉 is the initial state. Strictly speaking,
contrary to the AAV expression [1], we are using a weak
measurement without postselection. The final state of the
system (determined by the time evolution of the initial state
|�〉 and the measurement processes) has no relevant effect
when computing (5) and (6).

C. Calculation of the ensemble velocity

Let us now analyze P (xs) in detail by substituting Eqs. (3)
and (4) into Eq. (6). Then, we have

P (xs) = C2
w

∫∫∫
dxwdx ′dx ′′e

− (xw−x′)2
2σ2

w e
− (xw−x′ ′ )2

2σ2
w

×〈�|x ′〉〈x ′|U †
τ Ŝ

†
s ŜsUτ |x ′′〉〈x ′′|�〉. (7)

Integrating over xw and using Eq. (4), we can rewrite Eq. (7)
as

P (xs) = C2
s

∫∫
dx ′dx ′′〈�|x ′〉e− (x′−x′′ )2

4σ2
w 〈x ′′|�〉

×
( ∫

dxe
− (xs−x)2

σ2
s 〈x ′|U †

τ |x〉〈x|Uτ |x ′′〉
)

. (8)

For a particle of mass m that evolves under a flat potential
during τ , we can evaluate 〈x|Uτ |x ′〉 using [17]

〈x|Uτ |x ′〉 = [iπ (2h̄τ/m)]−1/2e
i(x−x′ )2
(2h̄τ/m) . (9)

Substituting Eq. (9) into (8) and solving the integral between
parentheses, we have

P (xs) =
∫∫

dx ′dx ′′e
− (x′−x′′ )2

4σ2
w e−( σsm

2h̄τ
)2(x ′−x ′ ′)2

×〈�|x ′〉〈x ′|U †
τ |xs〉〈xs |Uτ |x ′′〉〈x ′′|�〉. (10)

One easily realizes that the probability in (10) can be computed
as P (xs) = 〈�|U †

τ Ŝ
†
s ŜsU

†
τ |�〉 when the following limit is

satisfied:

σw

τ
� h̄

mσs

. (11)

Let us emphasize that this condition includes Wiseman’s
result [3] as a particular case: σw → ∞, σs → 0, and τ → 0.
Our development will justify the effective measurement of the
Bohmian velocity (up to a negligible error) for a broad range
of σw, σs , and τ .

Identical steps can be followed for the evaluation of∫
dxwxwP (xw ∩ xs) in Eq. (2). The only difference re-

sides in the integration on xw, which in this case gives
(x ′ + x ′′)/2 exp[−(x ′ − x ′′)2/4σ 2

w]. Using
∫

dx x |x〉 〈x| =
x̂, under limit (11), we obtain

∫
dxwxwP (xw ∩ xs) =

Re(〈�| U †
τ Ŝ

†
s ŜsUτ x̂ |�〉). Finally, we can rewrite Eq. (2) as

E[xw|xs] = Re(〈�| U †
τ Ŝ

†
s ŜsUτ x̂ |�〉)

〈�| U †
τ Ŝ

†
s ŜsUτ |�〉

. (12)

Next, we define the (averaged) position x̄s =
〈�| U †

τ Ŝ
†
s Ŝs x̂Uτ |�〉 / 〈�| U †

τ Ŝ
†
s ŜsUτ |�〉, so that using

Eq. (12) and the commutator [Uτ ,x̂], we get

x̄s − E[xw|xs] = Re(〈�| U †
τ Ŝ

†
s Ŝs[Uτ ,x̂] |�〉)

〈�| U †
τ Ŝ

†
s ŜsUτ |�〉

, (13)

without any reference to Ŵw. To further develop Eq. (13), we
evaluate the commutator [Uτ ,x̂] using the Maclaurin series for
Uτ :

[Uτ ,x̂] =
∞∑

n=1

(−i)nτ n

n!h̄n [Ĥ n,x̂], (14)

where Ĥ = p̂2/2m + V is the system Hamiltonian, with V

being a flat potential at the spatial region where the wave
function is different from zero during the time between
measurements. There is no restriction on V for other regions
and times. Given two operators Â and B̂, it can be proven
that [Ân,B̂] = ∑n

j=1 Âj−1[Â,B̂]Ân−j . Then, with [Ĥ ,x̂] =
−ih̄/mp̂ and [Ĥ ,p̂] = 0, the commutator [Ĥ n,x̂] gives

[Ĥ n,x̂] = − ih̄n

m
p̂Ĥ n−1, (15)

and substituting Eq. (15) into Eq. (14), we obtain

[Uτ ,x̂] = − τ

m
p̂Uτ , (16)

052124-2



ROBUST WEAK-MEASUREMENT PROTOCOL FOR BOHMIAN . . . PHYSICAL REVIEW A 87, 052124 (2013)

without considering the limit τ → 0. Using Eq. (16) and
definition (4), a straightforward calculation for the numerator
of Eq. (13) gives

Re(〈�| U †
τ Ŝ

†
s Ŝs[Uτ ,x̂] |�〉)

≡ τ J̄ (xs,ts)

= τC2
s

∫
dxJ (x,ts) exp

[ − (xs − x)2/σ 2
s

]
, (17)

where J (x,ts) is the standard quantum current probabil-
ity density [18]. Similarly, we define 〈�| U †

τ Ŝ
†
s ŜsUτ |�〉 =

C2
s

∫
dx|�(x,ts)|2 exp[−(xs − x)2/σ 2

s ] ≡ |�̄(xs,ts)|2 for the
denominator. Finally, the velocity, defined as Eq. (13) divided
by τ , gives

v̄(xs,ts) = x̄s − E[xw|xs]

τ
= J̄ (xs,ts)

|�̄(xs,ts)|2 . (18)

This expression is just the Gaussian spatially averaged current
density J̄ (xs,ts) inside a tube of diameter σs divided by
the corresponding Gaussian spatially averaged probability
|�̄(xs,ts)|2.

Whether or not the Gaussian spatially averaged value (18)
is identical to the Bohmian velocity depends on the measuring
apparatus resolution, i.e., σs , and the de Broglie wavelength λ

associated with |�〉. Under the limit

σs < λ, (19)

one can assume �(x,τ ) ≈ �(xs,ts) for x ∈ [xs − σs,xs + σs],
so that �̄(xs,ts) ≈ �(xs,ts). Identically, J̄ (xs,ts) ≈ J (xs,ts)
and x̄s = xs . Then, Eq. (18) directly recovers the Bohmian
velocity v̄(xs,ts) ≈ v with

v ≡ v(xs,ts) = J (xs,ts)

|�(xs,ts)|2 . (20)

Let us mention that the consideration σs ≈ λ and the momen-
tum p = h/λ imply h̄/(mσs) ≈ v in limit (11).

From the definition of velocity in (1), one could reasonably
expect to get a value associated with the velocity averaged
during the time interval τ and associated with a perturbed
wave function. However, under conditions (11) and (19),
result (20) is clearly identified as the instantaneous (Bohmian)
velocity associated with an unperturbed wave function at
the final time ts . The mathematical reasons leading to (20)
are fully detailed in the previous calculations. Here, we try
to provide some physical insights. It is well known that a
measurement process induces a perturbation on the wave
function, breaking the symmetry in its time evolution. In
our case, because of the imposed conditions (11) and (19),
the roles of the first and second measurements are very
different. Condition (11) implies that the first measurement
perturbs very weakly the wave function in the neighborhood
Iw with radius σw around xw, while the second limit, (19),
implies a very strong perturbation of the wave function
during the second measurement process. As a result, when
constructing (1), only the position eigenstates belonging to
Iw (where the wave function remains mainly unperturbed
by the first measurement) are used. In fact, the ensemble
average (12) has no memory of the first measurement process
(i.e., of the first POVM). Moreover, the condition of a flat
potential between the two measurements that leads to Eq. (16)

implies explicit independence of τ because it provides free
evolution of the unperturbed wave function. In this regard,
the first measurement does not actually break the symmetry.
The obvious consequence (supported by our calculation) is
that the velocity in (1) is independent of the time τ between
the two measurements. Finally, since the symmetry is broken
essentially by the second measurement, the velocity that we
obtain is the one associated with an unperturbed wave function
at the last time ts .

Another way of explaining our results is by noticing
that identity (16) can be used for a finite τ because we
assume that the potential is flat at the spatial region where
the wave function is different from zero. For a classical
system evolving under a flat potential from tw to ts = tw + τ ,
the instantaneous velocity at ts is exactly equal to the
averaged velocity during τ . The classical velocity remains
constant during this time interval because the classical
acceleration is zero. In the quantum counterpart, from
Ehrenfest’s theorem, we know that the ensemble momentum
with a flat potential is constant during tw < t � ts . Using
limit (11), the ensemble momentum can be defined as
〈�(t)| p̂ |�(t)〉 = ∫ 〈�(tw)| Ŵ †

wU
†
t−tw

p̂Ut−tw Ŵw |�(tw)〉 dxw,
which corresponds to (17) without performing the second
measurement. This again justifies why the resulting velocity
evaluated with our protocol is independent of τ and is exactly
equal to the (Bohmian) velocity measured at ts .

D. Calculation of the ensemble velocity variance

Let us now compute the velocity variance. Since xs

and τ are fixed in Eq. (1), var(ve) = var(xw)/τ 2. Thus,
var(xw) = E[x2

w|xs] − (E[xw|xs])2, where E[xw|xs] defined
in Eq. (2) is obtained from Eq. (20). The evaluation of∫

dxwx2
wP (xw ∩ xs) follows steps identical to those in the

computation of P (xs), where again the only difference re-
sides in the integral in xw, which now gives [σ 2

w/2 + (x ′ +
x ′′)2/4] exp[−(x ′ − x ′′)2/4σ 2

w]. Using again
∫

dx x |x〉 〈x| =
x̂ and

∫
dx x2 |x〉 〈x| = x̂2, the final result, under limit (11), is

E
[
x2

w

∣∣xs

] = 1

2
σ 2

w + 1

2

Re(〈�| U †
τ Ŝ

†
s ŜsUτ x̂

2 |�〉)
〈�| U †

τ Ŝ
†
s ŜsUτ |�〉

+ 1

2

Re(〈�| x̂U †
τ Ŝ

†
s ŜsUτ x̂ |�〉)

〈�| U †
τ Ŝ

†
s ŜsUτ |�〉

, (21)

which, as detailed in Appendix A, finally gives

var(v) = σ 2
w

2τ 2
+ 2

m
QB(xs) + O

(
h̄

mτ

)
, (22)

where QB(xs) is the (local) Bohmian quantum potential
[11,18]. Under limits (11) and (19), the term σ 2

w/(2τ 2) in
Eq. (22) will be orders of magnitude greater than the other
two. For an experimentalist, this means that the presence
of the quantum potential on the spatial fluctuations of
Eq. (22) will hardly be accessible and that var(v) provides
basically the value σw of the apparatus. Using the well-known
result from the probability calculus ε(N ) = √

var(v)/
√

N ≈
σw/(τ

√
2N ), such variance can be used to evaluate the number

N of measurements needed to obtain (20) with a given error
ε(N ).
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E. Error analysis

In order to test how robust (i.e., how independent of
σw, σs , and τ ) the possibility of measuring the Bohmian
velocity in a laboratory is, we compute the (local) error
εw(xs) ≡ |ve(xs) − v̄(xs)|. The details of the calculation are
reported in Appendix B:

εw(xs) = τh̄2

4m2σ 2
w

∣∣∣∣2(1 − τ∂xv)∂xρ − τρ∂2
x v

ρ + τ 2h̄2

4m2σ 2
w
∂2
xρ

∣∣∣∣, (23)

where ρ = |ψ(xs,ts)|2. We further define the measuring
apparatus error εs(xs) ≡ |v(xs) − v̄(xs)| derived from the
requirement (19). The calculation reported in Appendix C
gives

εs(xs) = σ 2
s

∣∣∣∣∣
2
τ
∂xρ + (2∂xρ − ρ∂x)∂xv

4ρ + σ 2
s ∂2

xρ

∣∣∣∣∣ . (24)

It is worth noticing that, by construction, the total error ε(xs) ≡
|v(xs) − ve(xs)| accomplishes ε(xs) � εs(xs) + εw(xs).

III. ENSEMBLE CURRENT DENSITY

We observe that the same set of measured values xw and xs

can be used to define an experimental current density:

Je(xs,ts) = P (xs)xs − ∫
dxwxwP (xw ∩ xs)

τ
. (25)

To get the experimental value Je(xs,ts), we only need to change
how the measured data xw and xs are treated. The fact that
expression (25) provides the expected theoretical definition
of the current density (within a negligible error) can be
straightforwardly computed following previous developments
of P (xs) and

∫
dxwxwP (xw ∩ xs) in Sec. II C. Identically, all

the previous calculations for the variance of the current density
and their errors can then be repeated for the current in a similar
way.

IV. NUMERICAL RESULTS AND DISCUSSION

As a numerical test of our prediction, we consider an
electron passing through a double slit. For simplicity, the time
evolution of two 1D initial Gaussian wave packets with zero
central momenta and central positions separated a distance of
100 nm are explicitly simulated. This roughly corresponds
to the evolution of the quantum state after crossing the
double slit at t = 0 s. From Fig. 1(a) the agreement between
the exact Bohmian velocity v in (20) and ve [numerically
evaluated from (1), (2), (5) and (6) without any limit or
approximation] is excellent, and it is highlighted by Fig. 1(a’),
where the total error (23) plus (24) is reported. In Fig. 2,
we plot the normalized value of the error εw(xs) integrated
over xs as εw = [

∫
dxsεw(xs)2/

∫
dxsv(xs)2]1/2. The main

conclusion extracted from Fig. 2 is that a large set of parameters
(large σw/τ values) allows very accurate measurement of the
Bohmian velocity, justifying the robustness of our proposal.

At this point, we emphasize some relevant issues. First, we
have shown theoretically and numerically that the Bohmian
velocity of an unperturbed state under general laboratory
conditions can be obtained from two POVM measurements
separated by a finite τ . Unlike the results derived from the
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FIG. 1. (Color online) (a) Velocity distribution (v, black solid
line; ve, green dashed line) and (b) quantum current density (J , black
solid line; Je, green dashed line) for an electron in a double-slit
experiment at ts = 11 ps, σs = 0.2 nm, and σw = 150 nm. Insets (a’)
and (b’) are the total error εs(xs) + εw(xs) in the highlighted position
interval for the velocity and current, respectively. Inset (c) is |�|2 at
ts = 11 ps.

AAV formulation [1], limits (11) and (19) provide a simple
quantitative explanation of the experimental conditions for an
accurate and robust measurement of the Bohmian velocity.

On the other hand, the error εs(xs) in (24) has a term
that diverges as σ 2

s /τ , meaning that a τ close to zero will
produce an inaccurate measurement of the velocity for finite
σs . This regime is reported in the right panel of Fig. 3. Roughly
speaking, for τ → 0, the wave packet moves a distance vτ .
When vτ < σs , the measured position xs has no relation to
the velocity. We emphasize again that Wiseman’s result [3]
does not suffer from this inaccuracy because he considers both
σs → 0 and τ → 0.

A closer look at expressions (23) and (24) shows that the
error diverges when ρ has oscillations with minima tending to
zero. This can be clearly seen in Figs. 1(a) and 1(a’), where the
highest peak of the velocity corresponds to a minimum of ρ
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FIG. 2. (Color online) Relative error εw integrated over all
positions xs as a function of σw and τ for σs = 0.2 nm for the
numerical test represented in Fig. 1. The black line bounds the region
for ε(σw) � 1%, and the red (gray) line is the analytical error for the
value τ = 1 ps.
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(right) region of relative error εs < 1%. Solid lines are the boundaries
for the velocity, and dashed lines are the boundaries for the quantum
current. The dotted line bounds the σ 2

s /τ region.

very close to zero. This situation is reversed when we evaluate
the current J [see Figs. 1(b) and 1(b’)]. In fact, in these critical
points, J → 0, and even the corresponding errors become very
small. In Fig. 3 the shift of the <1% region due to this error
reduction is evident.

Perhaps the most surprising feature of our protocol is that a
local (in time and position) Bohmian velocity can be measured
with a large temporal separation between measurements, while
one would expect a time-averaged value as discussed at the end
of Sec. II C. This is highly counterintuitive because we are in
a scenario where the time-evolving interferences imply large
acceleration of the Bohmian particle in order to rapidly avoid
the nodes of the wave function.

Finally, another relevant result is that the accuracy of the
Bohmian velocity is obtained at the price of increasing the
dispersion on xw [as seen in Eq. (22) for large σw]. Therefore,
the fact that we can obtain the Bohmian velocity is not
because the system remains unperturbed after one position
measurement, but rather because of the ability of the ensemble
average done in the xw integrals in Eqs. (5) and (6) to
compensate for the different perturbations. The fact that a
very large perturbation of the state is fully compatible with
a negligible error can easily be seen in our numerical data.
The measured state is roughly equal to the product of the
unperturbed wave function (whose support is L ≈ 2000 nm at
time tw = 11 ps in Fig. 1) and a Gaussian function centered
at the measured position with a dispersion equal to σw (for
example, σw ≈ 150 nm for τ = 1 ps in Fig. 2). Even for
σw 
 L (i.e., a large perturbation), the velocity error is
negligible in Fig. 2.

V. CONCLUSIONS

The work presented here explains a protocol for measuring
Bohmian velocities. It is based on using an ensemble of two
position measurements separated by a finite time interval. The
perturbation of each position measurement on the state is
modeled by a POVM. The difference between the Bohmian
velocity of the unperturbed state and the ensemble Bohmian
velocity of the two-times measured state is predicted to be
much smaller than 1% in a large range of parameters. This work
clarifies the laboratory conditions necessary for measuring

Bohmian velocities, while relaxing the experimental setup by
allowing reasonable position uncertainties and a finite time
interval between measurements. Following the same ideas
presented in this work (with two POVMs for position measure-
ments), an equivalent analysis for the case of combined POVM
momentum plus POVM position measurements can be carried
out for particles with mass. This case, experimentally tested
also for relativistic photons [6], could be of major interest for
several experiments. In this sense, a clear and feasible proposal
has been recently presented for the demonstration of the
nonlocal character of Bohmian mechanics by measuring the
ensemble velocities of path-entangled particles [19]. Finally,
as mentioned in the Introduction, the present work is fully
developed within orthodox quantum mechanics. However, we
emphasize that this works opens relevant and unexplored
possibilities for understanding quantum phenomena through
the quantitative comparison between simulated and measured
Bohmian (or hydrodynamic) trajectories [18,20,21], instead of
using the wave function and its related parameters.
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APPENDIX A: DERIVATION OF THE VARIANCE

In order to evaluate the variance var(v) = var(x2
w), defined

as

var
(
x2

w

) =
∫

dxwx2
wP (xw ∩ xs)

P (xs)
− (E[xw|xs])

2,

where P (xw ∩ xs) and P (xs) are given, respectively, by
Eqs. (5) and (6), we calculate

∫
dxwx2

wP (xw ∩ xs)

= σ 2
w

2
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

+C2
s

∫∫∫
dxdx ′dx ′′

(
x ′ + x ′′

2

)2

× e
− (x′−x′′)2

4σ2
w e

− (xs−x)2

σ2
s |x ′〉〈x ′|U †|x〉〈x|U |x ′′〉〈x ′′|, (A1)

where the integral over xw has already been evaluated. From
Eq. (9) and accounting for limit (11), we have

∫
dxwx2

wP (xw ∩ xs)

= σ 2
w

2
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉 + 1

2
Re(〈�|U †

τ Ŝ
†
s ŜsUτ x̂

2|�〉)

+1

2
〈�|x̂U †

τ Ŝ
†
s ŜsUτ x̂|�〉. (A2)
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Under limit (11) we have shown in the text that P (xs) =
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉. Moreover, using Eq. (16), we have

〈�|x̂U †
τ Ŝ

†
s ŜsUτ x̂|�〉 = Re(〈�|U †

τ Ŝ
†
s ŜsUτ x̂

2|�〉
+ τ

m
〈�|U †

τ [Ŝ†
s Ŝs ,p̂]Uτ x̂|�〉), (A3)

which, substituted in Eq. (21), gives

var
(
x2

w

) = σ 2
w

2
+ Re(〈�|U †

τ Ŝ
†
s ŜsUτ x̂

2|�〉)
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

+ τ

2m

Re(〈�|U †
τ [Ŝ†

s Ŝs ,p̂]Uτ x̂|�〉)
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

− (E[xw|xs])
2.

(A4)

The difference between the second and the fourth terms on the
right-hand side of Eq. (A4) can be rewritten using Eqs. (12)
and (16) as

Re(〈�|U †
τ Ŝ

†
s ŜsUτ x̂

2|�〉)
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

− (E[xw|xs])
2

= τ 2

m2

[
Re〈�|U †

τ Ŝ
†
s Ŝs p̂

2Uτ |�〉
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

−
(

Re〈�|U †
τ Ŝ

†
s Ŝs p̂Uτ |�〉

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

)2
⎤
⎦ . (A5)

Using in (A5) the relations 〈x|p̂Uτ |�〉 = −ih̄∂x�(x,τ )
and 〈x|p̂2Uτ |�〉 = −h̄2∂2

x�(x,τ ) and limit (19), we can
rewrite (A5) as

var
(
x2

w

) = σ 2
w

2
+ 2

τ 2

m
QB(xs,τ )

+ τ

2m

Re(〈�|U †
τ [Ŝ†

s Ŝs ,p̂]Uτ x̂|�〉)
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉

. (A6)

We further evaluate the commutator [Ŝ†
s Ŝs ,p̂] as

[Ŝ†
s Ŝs ,p̂]|�〉 = −ih̄C2

s

∫
dx

{
e
− (xs−x)

σ2
s

2

[∂x�(x)]|x〉

− [
∂x

(
e
− (xs−x)

σ2
s

2

�(x)
)]|x〉}

= −ih̄∂xs
(Ŝ†

s Ŝs)|�〉, (A7)

and using Eq. (A7) in the last term of Eq. (A6), we have

var
(
x2

w

) = σ 2
w

2
+ 2

τ 2

m
QB(xs,τ )

+ τh̄

2m

∂xs
Im(〈�|U †

τ Ŝ
†
s ŜsUτ x̂|�〉)

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

. (A8)

From limits (11) and (19) we have

τh̄

m

 σwσs 
 σ 2

w, (A9)

and we can conclude that the last two terms of the right-hand
side of Eq. (A8) are much smaller than σ 2

w.

APPENDIX B: DERIVATION OF THE ERROR εs(xs)

The definition of εs(xs) is

εs(xs) = |v(xs) − v̄(xs)| = τ−1

∣∣∣∣∣Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

−Re〈�|U †
τ |xs〉〈xs |Uτ x̂|�〉

〈�|U †
τ |xs〉〈xs |Uτ |�〉

∣∣∣∣∣ .
(B1)

We can easily take the limit of (B1) for σs small using a Taylor
series,

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉 =

2∑
n=0

∂n
x ρ

n!
C2

s

∫
e
− (xs−x)

σ2
s

2

(x − xs)
n dx

= ρ + σ 2
s

4
∂2
xρ, (B2)

and in the same way, using Eq. (16),

Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉

= Re〈�|U †
τ Ŝ

†
s Ŝs x̂Uτ |�〉 − τ

m
Re〈�|U †

τ Ŝ
†
s Ŝs p̂Uτ |�〉

= xsρ + σ 2
s

2
∂xρ + xs

σs

4
∂2
xρ − τJ − τ

σ 2
s

4
∂2
xJ. (B3)

Using Re〈�|U †
τ |xs〉〈xs |UτX|�〉 = xsρ − τJ and substituting

Eqs. (B2) and (B3) into Eq. (B1), we finally have

εs(xs)

= τ−1

∣∣∣∣4xsρ + 2σ 2
s ∂xρ + xsσs∂

2
xρ − 4τJ − τσ 2

s ∂2
xJ

4ρ + σ 2
s ∂2

xρ

−xsρ − τJ

ρ

∣∣∣∣
= τ−1

∣∣∣∣2σ 2
s ∂xρ + τvσ 2

s ∂2
xρ − τσ 2

s ∂2
x J

4ρ + σ 2
s ∂2

xρ

∣∣∣∣
= σ 2

s

∣∣∣∣∣
2
τ
∂xρ + (2∂xρ − ρ∂x) ∂xv

4ρ + σ 2
s ∂2

xρ

∣∣∣∣∣ . (B4)

APPENDIX C: DERIVATION OF THE ERROR εw(xs)

The definition of εw(xs) is

εw(xs) = τ−1

∣∣∣∣∣
∫

dxwxw〈�|Ŵ †
wU †

τ Ŝ
†
s ŜsUτ Ŵw�〉∫

dxw〈�|ŴwU
†
τ Ŝ

†
s ŜsUτ Ŵw|�〉

− Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

∣∣∣∣∣ . (C1)

Under limit (11) and after the integration over xw we
can expand exp[−(x ′′ − x ′)2/4σ 2

w] in a Taylor series in the
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numerator and denominator of (C1) to get∫
dxw〈�|Ŵ †

wU †
τ Ŝ

†
s ŜsUτ Ŵw�〉

= 〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

− 1

2σ 2
w

(Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂

2|�〉 − 〈�|x̂U †
τ Ŝ

†
s ŜsUτ x̂|�〉)

(C2)

and∫
dxwxw〈�|Ŵ †

wU †
τ Ŝ

†
s ŜsUτ Ŵw�〉

= Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉 − 1

4σ 2
w

(Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂

3|�〉

− Re〈�|x̂U †
τ Ŝ

†
s ŜsUτ x̂

2|�〉). (C3)

Moreover, using twice Eq. (16), we have

〈�|x̂U †
τ Ŝ

†
s ŜsUτ x̂|�〉 = Re

(
〈�|U †

τ Ŝ
†
s ŜsUτ x̂

2|�〉

+ τ

m
〈�|U †

τ [Ŝ†
s Ŝs ,p̂]Uτ x̂|�〉

)
(C4)

and

Re〈�|x̂U †
τ Ŝ

†
s ŜsUτ x̂

2|�〉 = Re

(
〈�|U †

τ Ŝ
†
s ŜsUτ x̂

3|�〉

+ τ

m
〈�|U †

τ [Ŝ†
s Ŝs ,p̂]Uτ x̂

2|�〉
)

.

(C5)

Putting Eq. (A7) into Eqs. (C4) and (C5) and substituting them
into Eqs. (C2) and (C3), we have∫

dxw〈�|Ŵ †
wU †

τ Ŝ
†
s ŜsUτ Ŵw�〉

= 〈�|U †
τ Ŝ

†
s ŜsUτ |�〉 + τh̄

2mσ 2
w

∂xs
Im〈�|U †

τ Ŝ
†
s ŜsUτ x̂|�〉

(C6)

and ∫
dxwxw〈�|Ŵ †

wU †
τ Ŝ

†
s ŜsUτ Ŵw�〉

= Re〈�|U †
τ Ŝ

†
s ŜsUτX|�〉

+ τh̄

4mσ 2
w

∂xs
Im〈�|U †

τ Ŝ
†
s ŜsUτ x̂

2|�〉. (C7)

Using again Eqs. (16) and (A7), we realize that

Im〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉 = h̄τ

2m
∂xs

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉, (C8)

Im〈�|U †
τ Ŝ

†
s ŜsUτ x̂

2|�〉 = h̄τ

m
∂xs

Re〈�|U †
τ Ŝ

†
s ŜsUτ x̂|�〉,

(C9)

so finally we can write∫
dxw〈�|Ŵ †

wU †
τ Ŝ

†
s ŜsUτ Ŵw|�〉

=
(

1 + τ 2h̄2

4m2σ 2
w

∂2
xs

)
〈�|U †

τ Ŝ
†
s ŜsUτ |�〉 (C10)

and ∫
dxwxw〈�|Ŵ †

wU †
τ Ŝ

†
s ŜsUτ Ŵw|�〉

=
(

1 + τ 2h̄2

4m2σ 2
w

∂2
xs

)
Re〈�|U †

τ Ŝ
†
s ŜsUτ x̂|�〉. (C11)

Evaluating the derivatives in (C10) and (C11), we have

∂2
xs

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉

= C2
s ∂

2
xs

∫
e
− (xs−x)2

σ2
s ρ(x)dx

= −C2
s

4

σ 4
s

∫
e
− (xs−x)2

σ2
s

(
−(xs − x)2 + σ 2

s

2

)
ρ(x)dx

(C12)

and

∂2
xs

Re〈�|U †
τ S

†SUτX|�〉

= −C2
s

4

σ 4
s

∫
e
− (xs−x)2

σ2
s

(
−(xs − x)2 + σ 2

s

2

)
×[xρ(x) − τJ (x)]dx, (C13)

both of which can be rewritten in a compact way as

−C2
s

4

σ 2
s

∫
e
− (xs−x)2

σ2
s

(
−(xs − x)2 + σ 4

s

2

)
α(x)dx

≈ ∂2
xs

α(xs), (C14)

where we keep only the first three terms in the Taylor
expansion. Using Eq. (C14) in Eqs. (C10) and (C11) and
plugging them into expression (C1), we have

ε(σw)

= τ−1 τ 2h̄2

4m2σ 2
w

∣∣∣∣∣∣
∂2
x (xρ − τJ ) − Re〈�|U †

τ Ŝ
†
s ŜsUτ x̂|�〉

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉 ∂2

xρ

〈�|U †
τ Ŝ

†
s ŜsUτ |�〉 + τ 2h̄2

4m2σ 2
w
∂2
xρ

∣∣∣∣∣∣ ,
(C15)

which can be finally rewritten using Eqs. (B2) and (B3) as

ε(σw)

= τh̄2

4m2σ 2
w

∣∣∣∣∣∣
2∂xρ − τ∂2

xJ − 2σ 2
s ∂2

x ρ−4τJ−τσ 2
s ∂2

x J

4ρ+σ 2
s ∂2

x ρ
∂2
xρ

ρ + σ 2
s

4 ∂2
xρ + τ 2h̄2

4m2σ 2
w
∂2
xρ

∣∣∣∣∣∣ .
(C16)

In the limit of small σs we finally get

ε(σw) = τh̄2

4m2σ 2
w

∣∣∣∣∣∣
2∂xρ − τ∂2

xJ + τv∂2
xρ

ρ + τ 2h̄2

4m2σ 2
w
∂2
xρ

∣∣∣∣∣∣
= τh̄2

4m2σ 2
w

∣∣∣∣∣∣
2 (1 − τ∂xv) ∂xρ − τρ∂2

x v

ρ + τ 2h̄2

4m2σ 2
w
∂2
xρ

∣∣∣∣∣∣ . (C17)
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