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Partial decoherence and thermalization through time-domain ergodicity
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An approach, differing from two commonly used methods (the stochastic Schrödinger equation and the master
equation) but entrenched in the traditional density matrix formalism, is developed in a semiclassical setting in
order to go from the solutions of the time-dependent Schrödinger equation to decohering and thermalized states.
This is achieved by utilizing the time ergodicity, rather than the sampling (or ensemble) ergodicity, of physical
systems. We introduce the formalism through a study of the Rabi model (a two-level system coupled to an
oscillator) and show that our semiclassical version exhibits, both qualitatively and quantitatively, many features
of state truncation and equilibration. We then study the time evolution of two qubits in interaction with a bosonic
environment, such that the energy scale of one qubit is much larger and that of the other is much smaller than
the environment’s energy scale. The low-energy qubit decoheres to a mixture, while the high-energy qubit is
protected through the adiabatic theorem. However, an interqubit coupling generates an overall decoherence and
leads, for some values of the coupling, to long-term revivals in the state occupations.
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I. INTRODUCTION

Safe and reliable manipulation of quantum states (as is
envisaged in a quantum computer) depends on the possibility
of error-free and stable quantum systems when left alone,
except for the inevitable interaction with the environment.
The devil is in the decoherence, and numerous works have
been devoted to estimating, minimizing, circumventing it or
correcting for it [1]. Distinct from the direct approaches to
somehow provide remedies for decoherence, several avenues
have been explored in which the quantum system maintains
coherence due to the Hamiltonian that defines it. One of
the earliest works related to the subject is by Kubo [2], in
which hints for the approach taken in the present paper can
be found. While decoherence and dissipation are terms very
close to each other, “dissipationless decoherence” was also
considered [3], and decoherence-free subspaces in the Hilbert
space were studied in [4]. In more recent works such subspaces
were identified, manifesting “partial decoherence,” through
symmetry-based discrimination between parts of the Hilbert
space [5,6].

The present work also treats partial decoherence but differs
from the previous works in that, rather than throwing the
burden of discrimination on a specially contrived Hamilto-
nian, it finds discrimination between Hilbert subspaces more
generically, through their having different energy scales. A
simple physical example of this is an atomic system in the
presence of a magnetic field of 1 T, for which the electronic
spins separate to about 10 cm−1 and the nuclear spins separate
to about 10−2 cm−1. As already indicated, an allied idea
was briefly noted by Kubo [2], who differentiated between
the cases of fast and slowly modulated frequencies of the
relaxing system. A further idea borrowed in the present work
from that paper (and indeed from other treatments involving
“ergodicities”) is equating ensemble averages with long-time
averages [7].

The proposed semiclassical formalism (which is the main
point of this work) is introduced and tested in Sec. II on the

single qubit (or 1/2 spin)–single boson (Rabi) model [8].
This was thoroughly treated algebraically [9–13] and
applicatively: for single trapped ions [14], chiral molecules
in a three-level system [15], Josephson junctions [16], a
single photon coupled to a superconducting (SC) qubit [17],
and the Bloch-Siegert shift in a SC flux qubit [18]; all
of these were treated with a somewhat long-term view of
decoherence-ridden quantum computing. The case of two
qubits, interacting with a single classical oscillator and having
largely differing Zeeman splitting energies, is considered
in Sec. III and is the essential motivation for this work.
The two-qubit case was featured in [19] and was recently
treated algebraically in [20] in cases amenable to adiabatic
treatment, but when the two qubits have identical splitting
energies.

II. DECOHERENCE IN A SEMICLASSICAL RABI MODEL

Here the spin-vibration Hamiltonian

H (t,a) = eσz + kσx sin(ωt + αa)(ω → 1) (1)

describes our two-parameter system, involving a Zeeman-split

1/2 spin [represented by the Pauli matrices σz = ( 1 0
0 −1 ),

σx = ( 0 1
1 0 )] and a classical vibrator, whose frequency ω is

equated to 1, thus setting the time t scale and the energy
scales of the splitting 2e and of the spin-vibration coupling
k. αa is an initial phase of the classical vibrator, whose value
is specified by the indexing parameter a. The Hamiltonian
of the classical vibration is not needed. In our procedure
the time-dependent Schrödinger equation (TDSE) [i dψa (t)

dt
=

H (t,a)ψa(t)]1 is solved numerically with some fixed initial
conditions.

1We use units in which h̄ = 1.
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A. Programmatic summary of the three steps to construct
the density matrix ρmn

(1) We adopt the von Neumann definition [21–23]:

ρmn(t) = 1( ∑
a 1

) ∑
a

〈m|ψa(t)〉〈ψa(t)|n〉. (2)

In this definition the summation index a represents the values
of all coordinates, variables, etc., external to the system (e.g.,
those of the environment affecting the system) and appearing
also in the Hamiltonian. Thus the set ψa(t) for all a’s forms a
time-dependent ensemble of states. The degrees of freedom of
the system are implicit (not written out) in ψa(t).

(2) We solve only for a single external condition, thus
dispensing with the a index in the wave function but obtain
ρ(t) as the average over an adequate set of adjacent times:

ρmn(t) = 1

2�t

∫ t+�t

t−�t

dτ 〈m|ψ(τ )〉〈ψ(τ )|n〉. (3)

This should be equivalent to Eq. (2) if the ergodic hypothesis
holds for the duration 2�t . It also represents a considerable
simplification in numerics since the TDSE is only solved once,
specifically for α = 0. To justify the replacement of step 1
by step 2 we note that in all cases considered, numerically
computed nondiagonal density matrix elements were several
orders of magnitude smaller than the diagonal ones. Thus
decoherence, which is the “truncation” of [24], was achieved.
The time-averaging method also avoids the notorious “initial
slippage” problem [25]. More detailed motivation for step 2
is given in Sec. IV, after the reader has been informed of the
proposed method.

(3) For the basis n,m set we have chosen two alternative

representations: (a) the spin eigenstates [up: ( 1
0 ) and down:( 0

1 )]

and (b) the time-dependent adiabatic representation, which is
given by the two instantaneous solutions u(t) of H (t,a)u(t) =
w(t)u(t), with w(t) being the adiabatic energies. While the
spin-up and -down representation has been featured in many
works (e.g., [9–13]), the broader issue of representation choice
in the density matrix has been intensively studied, e.g., in terms
of the “einselection” in quantum measurements [26] and for
the preference of energy states [27].

Further discussions of these steps are given in the following.

B. The significance of averaging in steps 1 and 2

Clearly, without averaging, the density matrices could be
brought to a pure state form, with only one (diagonal) element
unity and all the rest being zero. Illustrating this for an N × N

density matrix when N = 2, one can write the density matrix
in the alternative forms(

a∗a a∗b
b∗a b∗b

)
≡

(
a∗
b∗

)
(a b) (4)

showing that the two rows are linearly related. Therefore one
eigenvalue of the matrix is zero, while the other eigenvalue is,
by invariance of the trace,

a∗a + b∗b = 1 (5)

due to normalization. The density matrix can thus be brought
to a form for a pure state. The same procedure holds also for

any density matrix of size N × N , with N > 2, where the
number of linear relations, and therefore of zero eigenvalues,
is N − 1. It is only when averaging is performed first and the
diagonalization of the averages is made subsequently that a
mixed state can arise and decoherence, with the vanishing of
off-diagonal density matrix elements, emerges.

However, to proceed literally as described in step 1,
namely, summing the density matrix over all (in practice,
say, 1000) initial phases of the oscillators would have meant
solving the TDSE 1000 times and saving all these solutions.
Instead, as noted in step 2 above, we have solved it only
once for one parameter set and averaged all density matrix
elements over some time interval 2�t . This time interval
will be specified as we progress, the criterion being that
averaging over a greater interval does not alter the value
of the averages. The relation of this procedure to ensemble
averaging is rooted in the ergodic theorem (or hypothesis) [7].
We have also constantly checked our results for error and
found that the full trace of the averaged density matrix
deviated from (was short of) unity by less than 4%, although
we have extended our computations over about 200 times the
vibrational period (2π/ω). Moreover, the normalization check
of the wave-propagated wave function was also in error by
the same margin (about 4%), indicating that the error in the
density matrix has arisen from numerical errors in the forward
integration and not from inadequate tracing (averaging).

C. The environment interaction

A widespread formulation of the interaction of a bosonic
environment with a spin system is to write the interaction of
the spins with one or more oscillators in the form∑

n

∑
i=x,y,z

ki
nqnσi, (6)

where qn is the nth oscillator’s amplitude and ki
n is its coupling

strength for the interaction with the spin [28,29]. The behavior
of the closed (spin-boson) system is studied through its density
matrix ρs,b. The reduced density matrix of the spin system ρs

is then obtained from the trace Trbρs,b over all boson states
and modes of the environment. What is the relation of this
formulation to our model?

In Eq. (1) we have chosen an (Einstein) model for the
oscillators, so that their frequencies are the same (denoted
by ω and equated to 1). However, the stochastic (random)
effect of the environment on the spin systems is still present
through each oscillator having a different phase αa , randomly
distributed between 0 and 2π . We then replace the set of
randomly phased oscillators acting together by an ensemble of
independently acting oscillators, with each oscillator having a
phase αa , randomly distributed over the ensemble states. Here
a enumerates members of the ensemble. In summary, by the
adopted semiclassical approximation for our model in Eq. (1),
the oscillator amplitudes and coupling strengths in Eq. (6) take
the (unnormalized) forms

qa = sin(ωat + αa), kx = k, ky = kz = 0, (7)

with a labeling different states of the environment. In the von
Neumann averaging in Eq. (2), it is the values of αa that
are to be summed over (eventually, integrated). In the sense of
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spin-environment perturbation, the sine term represents highly
colored noise.

In the next development of the present formalism, noted in
the previous section and in step 2 of Sec. II A, the averaging
over the solutions with differing initial phases αa has been
replaced by averaging over a time interval 2�t .

D. Decoherence results

The decohered diagonal matrix elements with time averag-
ing over about five vibration periods and after reaching equili-
bration (such that longer times do not essentially change the av-
erage values and with near-zero off-diagonal matrix elements,
not shown) are presented in Figs. 1–4 in the spin representation
(long-dashed lines) and in the adiabatic, time-instantaneous
state representation (short-dashed lines). In Fig. 1 for weak
spin-oscillator coupling (k � 1) the initial (upper) state’s
density matrix (mean occupation probability) is close to 1 but
then decays to 1/2 as the coupling k increases. The computed
lower state’s mean occupation probability was found to be
1 minus the one shown, correct to about 0.001, verifying the
normalization of the density matrix. The limiting value of 1/2 is
appropriate for equilibration with an oscillator bath at infinite
temperature, which pertains to this model. (Finite temperatures
and thermalization are treated in the next section.)

There are sudden jumps here as in the following figures,
whose nature is not clear but probably reflect some resonances
(i.e., occurrences when the instantaneous energy differences
between the states match the oscillator frequency, ω = 1).
To discount the time windows as the sources for the peaks
(and also to provide assurances for the reliability of the
time-averaging procedure), we have consistently checked the
accuracy of the averages by varying the time window by 60%–
100%. The variations caused changes in the time averages that
were comparable to the widths of the lines in our figures. Sharp
variations in the state probabilities were also seen for relatively
small variations in the parameters of the Hamiltonian in Fig. 9
of [9] (there termed “unusual behavior”).
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Ρ

FIG. 1. (Color online) Decohered density matrix elements as
functions of the spin-classical oscillator coupling k for low spin
energy e = 0.1. Dots (connected for visual convenience by long-
dashed lines) show spin-up probability. Triangles (connected by short-
dashed lines) show upper energy state occupation in the adiabatic
energy state representation.

0 2 4 6 8 10 12
k in units of energy

0.2

0.4

0.6

0.8

1.0

Ρ

FIG. 2. (Color online) Decohered density matrix elements as
functions of coupling strength k for moderate spin energy e = 1.
Dots: Spin-up probability. Triangles: Upper energy state occupation
in the adiabatic energy state representation.

In Fig. 2 the same quantities are shown for spin energy
e = 1 of the same value as the oscillation frequency. The equi-
libration starts for larger k and the oscillations (resonances?)
are stronger.

Figure 3 is for spin energy e = 10 � 1 (equal to the
vibration frequency ω), representing a situation where the
adiabatic theorem holds, so that there is no environment
induced mixing of states. As seen, this holds for moderate
values of the coupling, but for very strong coupling (k � 1)
the adiabaticity protection breaks down.

Figure 4 shows the inverse situation, where the coupling
strength is held fixed at k = 2.5 and the spin energy is
varied from e 	 0 (equilibrated case) to a large value (the
adiabatically protected regime).

E. Thermalization

While the results in Figs. 1–4 show decoherence at
essentially infinite temperature [T ≡ 1/(kBβ) → ∞] or with
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FIG. 3. (Color online) Decohered density matrix vs k in the
adiabatically protected spin (e = 10) regime. The meaning of the
curves is as in Fig. 1. The coupling parameter k reaches only 2; for
much larger values the numerical results were not reliable.
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FIG. 4. (Color online) Decohered density matrix plotted against
spin energy e for fixed coupling strength (k = 2.5). Curves are
as in Fig. 1.

the same probability for up and down flipping by the oscillator,
at finite temperatures the two probabilities differ. Since in
our model stochasticity enters through time averaging, we
include temperature effects by weighting the time duration
according to the energy of the system, meaning that excursions
at lower energies have greater time weights than those at higher
energies. Quantitatively, we express Eq. (3) in the adiabatic
energy representation, in which m(t) indexes the two states
in the adiabatic representation. Then we replace the diagonal
terms in Eq. (3) by

ρmm(t) = 1

2�t

∫ t+�t

t−�t

dτ
e−βEm(τ )|〈m(τ )|ψ(τ )〉|2
〈ψ(τ )|e−βH (τ )|ψ(τ )〉 (8)

in which the denominator in the integrand ensures the
normalization of the density matrix. The off-diagonal elements
are negligible also in the thermalized density matrix.

An intuitive justification for the chosen time weighting can
be based on the early work of Rechtman and Penrose [30],
who have shown that the probability distribution for a finite
classical system in thermal contact with an infinite (in practice,
sufficiently large) heat bath, with the composite system
being distributed microcanonically, is the Gibbs canonical
distribution e−βE , where E is the energy of the system.
This has the meaning that for a state of energy E of the
system and no degeneracies, the number of microstates of
the heat bath is proportional to e−βE . If we now suppose that
the heat bath spends equal time in each microstate (cf. the
ergodic hypothesis), then in the system’s time integration the
infinitesimal dt has to be weighted by the Gibbs factor, as in
Eq. (8).

To check the validity of our proposed thermalization
procedure, we investigate whether we regain through it the

ρmm = e
− Em

kB T /Z law. In Fig. 5 we show the logarithm of the
ratio of the up and down (time-averaged) diagonal density
matrices in the adiabatic state representation, divided by the
adiabatic energy difference, against the inverse temperature
β ≡ 1

kBT
. In thermalized energy eigenstates the plot should be

linear in β with a slope of 1. This is approximately the case for
the three lower curves (in which k � 1, weak to moderate
spin-oscillator coupling), but for the uppermost curve (in
which k = 2.5) the spin is too interwoven with the environment
to thermalize independently of it.

FIG. 5. Thermalized density of states. The input parameters for
the curves from bottom to top (at β = 0 or infinite temperature)
are the following: Solid line: spin energy e = 0.5, coupling k = 1,
time*frequency = 270, vertical displacement = 0, (in this curve
the mean slope is 1). Dotted line: e = 0.5, k = 1, time*fr. = 60,
vertical displacement = 0.2. Chained line: e = 5 (near adiabatic),
k = 0.2, time*fr. = 250, vertical displacement = 0.6. Long broken
line: e = 0.1, k = 2.5, time*fr. = 250, vertical displacement = 0.4.
Curves are displaced vertically for visual clarity.

F. Revivals

To establish the compatibility of our approach with previous
works (some of them analytic) on the Rabi model, we turn to a
study in which the oscillator state was modeled by a coherent
state ([9], Sec. III). As is well known, coherent quantum states
resemble closely the behavior of a classical oscillator (which
features in our Hamiltonian). Long-period (compared to the
oscillator’s period) revivals in the spin-up (or spin-down) state
probabilities (equivalent to the diagonal terms in the reduced
density matrix) were shown in Fig. 7(a) of [9] in the adiabatic
limit. The curve computed by us and shown in Fig. 6 (persistent
for many further periods, not shown) is extremely similar to
their result for a coherent state. Our parameter choice (spin
energy e = 0.05, spin-oscillator coupling strength k = 2.5) is
not immediately translatable to that (〈N〉 = 1,λ/ω = 0.1) in
[9] since the coupling strength k in our semiclassical formalism
is a combination of these. We have also found that the complete
revival pattern shown in Fig. 6 occurs for a restricted choice
of parameters and is not a universal feature of the model.
However, referring to the Figs. 9(a) to 9(e) of [9], we note that
also in their model even slight changes of the parameters cause
radical changes in the patterns.

III. TWO-QUBIT SYSTEMS

The Hamiltonian Htotal(t) involves two half-spin systems
(qubits), whose parameters are consistently designated by
capital and lowercase letters, respectively, interacting with
a classical boson source (as before, vibrational or lightlike)
varying with time:

Htotal(t) = H (t) + h(t) + Hint, (9)

H (t) = E�z + K�x sin(ωt + α), (10)

h(t) = eσz + kσx sin(ωt + α′), (11)

Hint = γ (�zσz + �xσx) + γ ′(�xσx + �yσy), (12)
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FIG. 6. Time-averaged spin-up probability. Model parameters:
spin energy e = 0.05, spin-oscillator coupling strength k = 2.5, time
averaging over 1.2/ω, ω = 1.

where the total Hamiltonian (9) comprises Hamiltonians (10)
and (11) and Eq. (12) gives the interaction between these. E

and e are the energies of the two spin systems, � (!) and σ are
Pauli matrices operating in the respective spin-spaces, K,k,

and α are parameters of the spin-boson couplings, and ω is the
frequency of the interacting source. The external boson source
is classical, and for it the Hamiltonian need not be written out.

The strengths of the spin-spin interaction are denoted by
γ and γ ′. For the form of the interaction two alternative
submodels will be used: The first, named the two-dimensional
model, for which γ �= 0 and γ ′ = 0, is fashioned after the
E ⊗ e vibronic interaction [31]. The second, in which γ ′ �= 0
and γ = 0, is commonly featured in Ising models and is known
as the transverse interaction. It has been recently used for
superconductors with a large pseudogap and weak long-range
Coulomb interaction [32].

The double inequality (exemplified with a physical model
in the Introduction)

E � h̄ω � e (13)

is the keynote of the present section, in that it makes the time
variation in the Hamiltonian slow (adiabatic) with respect to
that of one of the spins (the one given by capital letter) and
fast (nonadiabatic) with respect to that of the other (the one
given by lowercase letters). It is therefore expected that the
distilled wave function in the former’s Hilbert space will stay
coherent, while that in the latter’s Hilbert space will decohere.
This result is indeed found, and some interesting features
will be expatiated on in the following. (Two spin systems
with identical energies were treated in the adiabatic limit
in [20].)

We wish to investigate decoherence in the combined
system. In an overwhelmingly large number of papers “deco-
herence,” leading from an initially pure to a later mixed state,
has been obtained by going from the density of states in the full
Hilbert space to that in a partial Hilbert space, through tracing
over the complementary Hilbert space (e.g., see references
in [24]). As noted earlier in the programmatic summary of
Sec. II A, we use an alternative procedure for decoherence,
namely, an external parameter averaging procedure. In terms
of our model, in which the environment is represented by a
classical oscillator, this means that after obtaining a (time-
dependent) solution ψα,α′ (t) for given phases α,α′, we average
the elements of the density matrix ρnm(t) with respect to all
values of these parameters. Then, formally,

ρnm(t) = (4π2)−1
∫ 2π

0
dα

∫ 2π

0
dα′〈n|ψα,α′ (t)〉〈ψα,α′(t)|m〉

(14)

for some chosen representation, whose components are labeled
(n,m). This procedure differs from the commonly used
ones (e.g., the stochastic Schrödinger equation or a time-
propagation equation for the reduced density matrix) in which
the environment is also in a quantum state, whose nature
is specified by its spectral properties [33]. Still the method
used here is historically primordial (coming from [21,22]).
It is also suitable for numerical calculations and alleviates,
to some extent, the classical-quantal dichotomy, extensively
treated in [24].

The four-component wave function ψ is inserted from
the numerical solution of the time-dependent Schrödinger
equation (with h̄ = 1),

i
∂ψα,α′ (t)

∂t
= Htotal(t)ψα,α′(t), (15)

with the appropriate initial condition at t = 0. This system is
then in a pure state; to track down its progression in interacting
with a stochastic environment towards a (possibly) mixed state,
we need to consider the density matrix of the system.

As already remarked, the density matrix is representation
dependent (although its trace is not), and the choice of the
representation (labeled above nm) for the density matrix was
extensively discussed in several publications (e.g., [26]). The
conclusion there was that an “environment induced selection
(einselection)” takes place due to the (experimentalist’s)
choice of the pointer, which is expressed by the form of
the interaction between the environment and the system. In
this choice, the off-diagonal matrix elements of the system’s
density matrix vanish in a time shorter than other time scales
in the system’s Hamiltonian. (It will be seen that our numerical
results support their choice for einselection.) Furthermore,
under conditions of weak coupling and large energy scales it
was formally shown in [27] that the choice pointer states are the
discrete energy states of the system. In this context, one recalls
an early, somewhat enigmatic statement in [34]: “In general,
only quantities quasi-diagonal in the energy representation are
observable.”

This has dictated the choice for one of our two adopted rep-
resentations (representation b in the programmatic summary
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in Sec. II A) as the adiabatic solutions of the Hamiltonian,
namely, the instantaneous (upper and lower energy) solutions
u(t),l(t) for the low-energy part of the Hamiltonian [35], i.e.,

h(t)[u(t)/l(t)] = wu/l(t)[u(t)/l(t)], (16)

and, likewise, the adiabatic solutions U (t),L(t) for the high-
energy part of the Hamiltonian:

H (t)[U (t)/L(t)] = WU/L(t)[U (t)/L(t)]. (17)

Thus the 4 × 4 density matrix is written in the representation of
Uu,Ul,Lu,Ll in the given order. The appropriate initial con-
dition is an energy eigenstate at t = 0. The alternative choice
for the representation, namely, the more conventional spin-up
and -down representation (representation a in Sec. II A),
is not treated in this two-qubit section since we could not find
results in the literature to which we might make a comparison.

Actually (as already indicated in Sec. II A), for the sake of
simplifications in our procedure, to obtain the density matrix
at any time t , we have averaged not over the initial parameters
α,α′, but rather, with fixed values of α = 0 = α′, over a spread
of the times (t − �t,t + �t), with �t being, in the two-qubit
case, close to the oscillator period squared, (2π/ω)2, or about
40 in our time units [ω = 1; see the integral in Eq. (14)].

A. Noninteracting spin systems

As a start, we consider the simplified situation in which
the spin systems do not interact, i.e., γ = γ ′ = 0 in Eq. (12).
Although this case can be treated for the two spins separately,
for the sake of continuity with the interacting spin case in
later sections, we treat the two spins as belonging to a larger,
combined Hilbert space. We show below the resulting 4 × 4
density matrix obtained, as described above, from averaging
over neighboring times (by an integration over about 10
oscillator periods) and then further representing the obtained
averages by their mean values over the full computed time
range (in practice about 500 vibrational periods), together with
the specification of the standard deviation of the values inside
this time range. The obtained results are shown in Fig. 7 for

FIG. 7. Diagonal density matrix elements ρii (i =
[Uu,Ul,Lu,Ll]) vs normalized time. Time averages of overlap
squares are shown in the adiabatic representation described in the
text. Only the diagonal matrix elements for i = Uu,Ul (shown in this
order from top to bottom) are visible, while those for i = Lu,Ll are
too small to be visible without magnification. Since at any reduced
time ωt the averaging spreads over ±30, the first shown value is
above 30, thus missing the starting values for the four-component
wave function (1,0,0,0). The constancy of the averages and the small
deviations from these throughout the time range should be noted.

the chosen parameter values of

E = 5, e = 0.1, K = 2, k = 0.125,

α = α′ = 0, γ = γ ′ = 0 (18)

in units of ω, which are characteristic of other parameter
values.

The time-averaged density matrix is shown next:

〈ρ〉 =
〈Uu| :
〈Ul| :
〈Lu| :
〈Ll| :

⎛
⎜⎜⎝

0.721 ± 0.015 10−2 10−4 10−4

10−2 0.272 ± 0.010 10−5 10−3

10−4 10−5 2 × 10−4 10−6

10−4 10−3 10−6 4 × 10−4

⎞
⎟⎟⎠ . (19)

The ± deviations represent estimated variations in the values
over the whole time investigation range. Their signature
in Fig. 7 is the small wiggles on the otherwise horizontal
lines. The off-diagonal entries show the upper limits to
absolute values. The deviations are partly due to computational
inaccuracies, partly to the finite range of the averaging process,
and partly to the parameters not being in the extreme adiabatic
limit.

It may be added that the above error checking refers
exclusively to the diagonal terms in the density matrix,

whereas the averaged off-diagonal matrix elements were
unexceptionally negligible. This means that the (adiabatic,
instantaneous) representation used here was indeed the proper
(einselected) one. These results then lend numerical support
for the analytical arguments of Paz and Zurek [27].

1. Reduced density matrices

With the complementary subsystem traced over, the re-
duced density matrices for the low- and high-energy systems
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are (with suppression of errors), respectively,

〈ρu/l〉 ≈ 〈u| :
〈l| :

(
0.721 0

0 0.272

)
, (20)

〈ρU/L〉 ≈ 〈U | :
〈L| :

(
0.993 0

0 0

)
. (21)

The low-energy system is thus seen to have decohered,
or to be in a mixture state (with the partitioning of the
weights depending on the values of the parameters, e,ω,k),
while the high-energy state is throughout in a coherent,
pure state due to its protection by the adiabatic theorem.
For situations not belonging to the extreme adiabatic limit
(represented by E

h̄ω
−→ ∞), there will be a finite decoherence

time, during the course of which the pure state also decoheres
(equilibrates). This decoherence time will decrease as the
above ratio decreases, but in our computation range (typically
500 vibrational periods) we have not found for the high-energy
(adiabatically protected) states a finite decoherence time.

When the environment coupling to the low-energy sys-
tem was enlarged to k = 0.5 (instead of k = 0.125, as
in the previous case), the diagonal matrix elements took
the mean values, with their standard deviation not noted,
[0.804,0.192,0.0004,0.0000].

B. Systems with spin-spin interaction

1. Two-dimensional submodel, γ �= 0,γ ′ = 0

Weak interaction. We first investigate how the interaction
between the spin systems modifies the decoherence discrimi-
nation between adiabatic and nonadiabatic systems. In Fig. 8
the diagonal density matrix elements are shown for |γ | � 1.
Let us set, somewhat arbitrarily, the criterion for decoherence
discrimination between high- and low-energy states as a 80%
purity for the high-energy states. The thick line in Fig. 8 shows
the sum of the two uppermost thin curves (for Uu and Ul):
One sees that the >0.8 criterion for purity is well satisfied
for negative couplings in the range 0 > γ > −1 but does not
hold near the upper values in the positive range 0 < γ < 1, for

FIG. 8. Diagonal density matrix elements ρii , i =
[Uu,Ul,Lu,Ll] (for the thin curves in this order from top to
bottom), as function of a weak γ (the two-dimensional spin-spin
coupling strength). The thick curve is the sum of Uu and Ul, giving
the diagonal U term in the reduced density matrix.

FIG. 9. Diagonal density matrix elements against γ , the two-
dimensional spin-spin coupling strength for extended values of the
coupling. The meaning of the curves is as in Fig. 8.

which the two curves do not add up to 0.8. One also notices
that for |γ | ≈ 1 the low-energy states (u and l) are “fully”
mixed, i.e., their diagonal values are equal. However, this does
not hold for higher coupling strength, as Fig. 9 illustrates.

Higher interaction strengths. In Fig. 9 one sees that as the
coupling strength γ is varied, a high level of weight exchange
takes place between the terms, especially between the diagonal
Uu and Lu terms. One notes signs of the “level crossing
avoidance” phenomenon, familiar from energy level plots for
interacting states.

C. Ising coupling model, γ = 0,γ ′ �= 0

Numerical results are shown in Fig. 10 (for parameters
E/ω = 5,e/ω = 0.1,K/ω = 4,k/ω = 2.5).

1. Remarkable appearance of revivals

“Revivals,” or large-amplitude, long-period returns to the
starting diagonal elements in the density of states, have been
shown in Sec. II F for a single-qubit Rabi model. Similar
phenomena occur also in the two-qubit case. While for most

FIG. 10. Time-asymptotic diagonal density matrix elements un-
der moderate spin-spin interaction (γ ′ = 1) in the Ising model
coupling plotted against normalized time. Results are similar to
those in Fig. 7, but with more noise. However, there is an overall
decoherence as a result of the coupling. The diagonal matrix elements
are, from top to bottom, for Uu,Lu,Ul,Ll. The parameter set is
[E = 5,e = 0.1,K = 4,k = 2.5,ω = 1,γ = 0,γ ′ = −0.5].
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FIG. 11. Large-scale, large-period (�2π/ω) oscillations in the
diagonal Uu component of the density matrix, superimposed
on tiny, ≈2π/ω, oscillations (not visible). Parameter values are
[E = 5,e = 0.1,K = 4,k = 2.5,ω = 1,γ = 0,γ ′ = −0.5].

values of the parameters the diagonal density matrix elements
exhibit only small oscillations over the time range in the
asymptotic, long-time range, typically, δρ ≈ 1%, there are
some singular values of the parameters where the oscillations
are of the order of 100% and persist over several periods.
The periods are in the range of 50 × 2π/ω or larger. An
example of this behavior is shown in Fig. 11 for the param-
eter set [E = 5,e = 0.1,K = 4,ω = 1,k = 2.5] at coupling
strengths in the close vicinity of γ ′ = −0.5, but not at more
than about 0.02 away from this value. Similar oscillations
with comparable periods are observed for the parameter set
[E = 5,e = 0.1,K = 2,k = 1.25,ω = 1], near the coupling
strength value of γ ′ = 0.8.

The oscillations are even more remarkable in that the time
period of 300/ω does not have any simple physical explanation
in terms of the parameter set. (This is unlike the revival time
expression in [9], holding for weak coupling and the large 〈N〉

case.) Further investigation is needed to reveal the source of
this result.

IV. DISCUSSION

In a two-qubit system whose energy splittings are (respec-
tively) much larger and much smaller than the frequencies
in externally induced time-dependent perturbations, the low-
energy qubit decoheres, while the high-energy qubit maintains
its purity, being adiabatically protected. While this may be
intuitively obvious, we have also examined less obvious cases
when the two qubits are coupled and have found that for large
coupling strength the adiabatic protection wears off.

The time-averaging procedure used in here (introduced
programmatically in Sec. II A) has been found to be, in
practice, more time economic for achieving the density matrix
truncation than the mainstream formalism of environment
tracing. A more basic advantage is that, whereas in the latter
method the truncation has to be enacted by some assumption
of the nature and dynamics of the environment (e.g., the
measuring apparatus, as in Sec. 1.1.2 in [24]), which is outside
and beyond the Hamiltonian of the system itself, in the present
formalism the same effect is achieved by the relatively simple
manipulation (time averaging) of the system’s Hamiltonians,
such as those in Eqs. (1) and (9)–(12), without speculating
on the time development of the environment. In this sense,
then, the system’s Hamiltonian is much more self-contained
than that of the mainstream formalism. The choice of the
time-dependent terms in the above equations is apparently
ad hoc and arbitrary; we have also tried, in a preliminary
way, other forms (such as a sum of oscillator terms, with
random amplitudes and frequencies), and the results appear to
be similar, except for the required time width for averaging.
To present these results in a systematic form represents an
extension of the present (single-frequency) model, which was
named the “minimal model” in a recent presentation [36].
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