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Resonant states and pseudospin symmetry in the Dirac-Morse potential
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The complex scaling method is applied to study the resonances of a Dirac particle in a Morse potential. The
applicability of the method is demonstrated with the results compared with the available data. It is shown that the
present calculations in the nonrelativistic limit are in excellent agreement with the nonrelativistic calculations.
Further, the dependence of the resonant parameters on the shape of the potential is checked with the sensitivity
to the potential parameters analyzed. By comparing the energies and widths of the pseudospin doublets, well
pseudospin symmetry is discovered in the present model. The relationship between the pseudospin symmetry
and the shape of the potential is investigated by changing the Morse potential shaped by the dissociation energy,
the equilibrium intermolecular distance, and the positive number controlling the decay length of the potential.
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I. INTRODUCTION

It is well known that the resonances are the most striking
phenomenon in the whole range of scattering experiments,
and appear widely in atomic, molecular, nuclear physics, and
in chemical reactions. One of the best-known examples is the
spontaneous positron production in uranium nuclei collisions,
where some harp resonance peaks have been observed [1].

To explore the resonances, many techniques have been
developed, which include the R-matrix theory [2], K-matrix
theory [3], the scattering phase shift method [4], and several
bound-state-like methods, such as the real stabilization method
(RSM) [5], the analytic continuation in the coupling constant
(ACCC) method [6], and the complex scaling method (CSM)
[7,8]. Due to the simplicity of the calculations, these bound-
state-like methods have been widely employed to study
resonances in quantum many-body systems. For example,
much effort has been made to more efficiently calculate
resonance parameters with the RSM [9–12]. Combined with
the cluster model, the ACCC approach has been used to
calculate the resonances in some light nuclei [13,14]. In
combination with the relativistic mean-field (RMF) theory
[15–17], the RMF-ACCC has presented a good description
for the structure of resonant levels in some realistic nuclei
[18,19]. Moreover, the CSM have been successfully used to
study resonances in atomic and molecular systems [20,21] and
atomic nuclei [22–26].

Recently, the Morse potential [27] has attracted additional
attention for its success in describing the motion of atomic
and molecular as well as nuclear systems. The vibration of a
diatomic molecule was well depicted by the Morse potential
[28]. The Morse potential is also very useful in expressing
the properties of nuclei [29–31]. Other applications of Morse
potential include the description of the interactions between
two atoms in a diatomic molecule [32–35], the interatomic
potential of crystalline solids [36], and the potential for the
adsorption of a molecule or atom by a solid surface [37]. This
list is far from comprehensive and new applications continue
to be found as well.
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Due to the wide applicability, it is interesting to probe
the resonances in a Morse potential. Several methods have
been developed to study the resonant states of a nonrelativistic
particle in a Morse potential. Nasser et al. [38] have adopted
the J -matrix method to examine not only the bound states but
also resonances associated with the rotating Morse potential
model. Satpathy et al. [39–42] have employed the long-ranged
Morse potential between two carbon nuclei in order to obtain
many vibrational states which can be compared with observed
resonance levels. Kato and Abe [43] have applied the Morse
potential model to the 12C-12C system as a typical example of
the molecular resonances observed in many lighter heavy-ion
collisions. Jarukanont et al. [44] have applied the Floquet
theory in combination with the exterior complex scaling to
obtain the energies and the distributions of probability for the
quasibound states of a driven Morse potential.

In addition to these nonrelativistic studies, much attention
has been paid to the problem of the relativistic Morse potential.
In 2001, the s-wave Dirac-Morse problem was formulated
and solved exactly [45]. As there are no analytical solutions
to the Dirac equation with κ �= 0 for the rotational Morse
potential, some approximations are employed to present the
numerical or quasianalytical solutions [46,47]. To recognize
the relativistic effects of the Morse potential, the Dirac equa-
tion has been solved for attractive scalar and repulsive vector
Morse potentials under pseudospin symmetry by the Pekeris
approximation [48,49]. Other interesting work includes the
solution of the relativistic Morse potential problem under the
condition of pseudospin symmetry [29].

These relativistic studies on Morse potential are associated
with an interesting concept, pseudospin symmetry (PSS). The
concept was first introduced in the field of nuclear physics
more than 40 years ago [50,51]. Its meaning is that the
single-particle states with quantum numbers (n,l,j = l + 1/2)
and (n − 1,l + 2,j = l + 3/2) are nearly degenerate. In 1997,
Ginocchio pointed out that this symmetry is a relativistic
symmetry and presented the condition of exact pseudospin
symmetry [52]. Afterwards, the condition of exact PSS was
extended to a more general case [53], and found to be
approximately satisfied in exotic nuclei with highly diffuse
potentials [54]. The dynamical character of the symmetry was
recognized in Ref. [55] and the spin symmetry in the antin-
ucleon spectrum was indicated in Ref. [56]. Recent progress
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includes the supersymmetric description for deformed nuclei
[57], the nonperturbation nature of PSS [58,59], the relativistic
effect of PSS [60], the influence of tensor interaction on
PSS [61,62], the role of central Coulomb potential at PSS
[63], and the spin and pseudospin symmetries of the Dirac
equation with confining central potentials [64]. In Ref. [65],
the similarity renormalization group is used as a critical tool
for understanding the origin of the PSS, and the reason why
the PSS becomes better for the levels closer to the continuum
is disclosed in a quantitative way [66]. In combination with
the supersymmetric quantum mechanics, the origin of the PSS
and its breaking mechanism are detailedly analyzed at the
nonrelativistic limit [67]. This symmetry is also checked in the
resonant states with similar features to bound states indicated
in Refs. [68,69], where it was indicated that in conditions of
pseudospin symmetry the same pseudospin quantum numbers
will be conserved and the pseudospin doublets would have
the same energy and width. As this interesting phenomenon
also appears in the resonant states, in this work we will apply
the CSM to study the resonance states of a Dirac particle
populating in the Morse potential, and survey the existence of
PSS for this system.

II. THEORY

The Dirac equation for describing a particle moving in the
Morse potential V (r) is

H (r)ψ(r) =
(

V + M − d
dr

+ −1+κ
r

d
dr

+ 1+κ
r

V − M

) (
f (r)

g(r)

)

= ε

(
f (r)

g(r)

)
(1)

with

V (r) = V0e
−(r−r0)α(2 − e−(r−r0)α), (2)

where κ = ±(j + 1/2) for j = l ∓ 1/2, V0 is the strength
of the potential (or the dissociation energy in the context
of diatomic molecules), r0 is the equilibrium intermolecular
distance, and α is the positive number controlling the decay
length of the potential. For V0 < 0, this potential has a
minimum of V0 at r = r0 and it is called the regular Morse
potential. For V0 > 0, it has a maximum of V0 there and it is
called the inverted Morse potential, and then r0 is the location
of the top of the barrier.

The starting point of the CSM is a transformation of the
Hamiltonian H , which is operated by defining an unbounded
nonunitary scaling operator U (θ ) with a real parameter θ .
Similar to Refs. [25,70], the complex scaling operator takes
the form

U (θ ) =
(

eiθŜ 0

0 eiθŜ

)
, (3)

where Ŝ = r ∂
∂r

. Then, the Dirac Hamiltonian in Eq. (1)
becomes a complex scaling form:

Hθ = U (θ ) HU (θ )−1

=
(

V (reiθ ) + M e−iθ
(− d

dr
+ −1+κ

r

)
e−iθ

(
d
dr

+ 1+κ
r

)
V (reiθ ) − M

)
. (4)

The corresponding complex scaled equation is

Hθψθ (r) = εθψθ (r) , (5)

where ψθ = U (θ ) ψ (r) is the complex scaled wave function.
According to the Aguilar-Balslev-Combes theorem [71], the
energy for the bound states is independent of θ , and the real part
Er and the imaginary Ei part of the energy εθ for the resonant
states are independent of θ as well. � = −2Ei represents the
width for the resonant states.

In this work, Eq. (5) is solved by expanding the large and
small components of the Dirac spinors f (r) and g(r) in terms
of the radial functions Rnl (r) of a spherical harmonic oscillator
potential, i.e.,

fθ (r) =
nmax∑
n=1

fn(θ )Rn l (r); gθ (r) =
ñmax∑
n=1

gñ(θ )Rñ l̃ (r), (6)

where the orbital angular momenta l and l̃ have the same
meaning as that in Ref. [72]. The upper limits nmax and
ñmax in Eq. (6) are radial quantum numbers determined by
the corresponding major shell quantum numbers Nmax =
2(nmax − 1) + l and Ñmax = 2 (ñmax − 1) + l̃. In the present
calculations, the maximum of the major shell quantum number
N = 200 is chosen to ensure the calculated result with the
accuracy better than the order of 10−4 fm−2 or 10−4 a.u. for
the energies and widths. The details can be referred to in the
literature [70,72].

Inserting Eq. (6) into Eq. (5) and using the orthogonality
of wave functions Rnl , one arrives at a symmetric matrix
diagonalization problem of the dimension nmax + ñmax, i.e.,

(
Vn,n′ + Mδn,n′ Bn,ñ′

Bñ,n′ Vñ,ñ′ − Mδñ,ñ′

)(
fn′

gñ′

)
= εθ

(
fn

gñ

)
. (7)

The matrix elements Vn,n′ and Bn,ñ′ are given by

Vn,n′ =
∫ ∞

0
r2dr Rnl(r)[V (reiθ )]Rn′l(r), (8)

Bñ,n′ = e−iθ

∫ ∞

0
r2dr

[
Rñ l̃(r)

(
d

dr
+ 1 + κ

r

)
Rn′ l(r)

]
. (9)

The integral in Eq. (8) is calculated with the Gauss quadrature
approximation [20,70]. The matrix elements Bn,ñ′ can be
further simplified as

Bñ,n′ =
{− 1

b0eiθ (
√

ñ + l + 1/2δñ,n′ + √
ñδñ,n′−1), κ < 0

1
b0eiθ (

√
ñ + l − 1/2δñ,n′ + √

ñ − 1δñ,n′+1), κ > 0.

(10)

With the matrix elements Vññ′ and Bn,ñ′ , the solutions of the
Dirac equation are obtained by diagonalizing the matrix

Hθ =
(

Vn,n′ + Mδn,n′ Bn,ñ′

Bñ,n′ Vñ,ñ′ − Mδñ,ñ′

)
. (11)

The eigenvalues of Hθ representing the bound or resonant
states do not change with θ , while eigenvalues representing
the continuous spectrum rotate.
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FIG. 1. (Color online) Position in complex energy surface for the
states with κ = −1, where the bound, the resonant, and the continuum
are respectively labeled as open boxes, open circles, and solid circles.
The parameters in the Morse potential are adopted as V0 = 6 fm−2,
r0 = 4 fm, and α = 0.3 fm−1. The mass of particle M = 0.5 fm−1

and the rotation angle θ = 70◦ are adopted in the present calculations.

III. RESULT AND DISCUSSION

With the theoretical formalism represented in the previous
section, we explore the resonant states for a particle populating
in a Morse potential. For comparison with the results from
the J -matrix approach in Ref. [38], the same values for
the parameters of the Morse potential are employed. The
illustrated results are plotted in Fig. 1 with the complex
rotation angle θ = 70◦ for the states with κ = −1. It should be
mentioned that the energy displayed in Fig. 1 is multiplied by
a factor 2M/h̄2 in order to compare with Ref. [38]. The same
as Fig. 1, the energy and the depth of potential in the following
Table I and Figs. 2 and 3 are multiplied by a factor 2M/h̄2.

All the eigenvalues of Hθ , which correspond to the bound,
resonant, and continuum states, are respectively labeled as
open boxes, open circles, and solid circles. From Fig. 1, one
sees clearly that the eigenvalues of Hθ fall into three regions:
The bound states populate on the negative energy axis, while
the continuous spectrum of Hθ rotates clockwise with the
angle 2θ , and resonances in the lower half of the complex
energy plane located in the sector bound by the new rotated
cut line and the positive energy axis get exposed and become
isolated. In the present calculations, as the finite basis is used,
the continuous spectrum of Hθ consists of a string of points.

The energies for the resonant states in Fig. 1 are listed in
Table I. The relativistic results are shown in the first column.
The second column displays the data in the nonrelativistic
limit, which are obtained with an approximation by increasing
the value of the speed of light up to 100 times larger than
its actual value in the relativistic CSM calculations [20].
In order to compare with the other methods, some data
from the nonrelativistic calculations are exhibited in the third
column by the J -matrix method [38] and the fourth column
by the S-matrix method [73]. From Table I, it can be seen
that the deviation between the relativistic result and that
in the nonrelativistic limit is observable, which implies the
relativistic effect cannot be completely ignored in the present
model. The present calculations in the nonrelativistic limit
agree with the nonrelativistic calculations quite well. The
deviation between our results and the data by the J -matrix
or S-matrix method is very small. Whether for a relativistic or
nonrelativistic system, the present method has provided a good
description for the resonant states. Hence, we can look into all
the resonant states for a Dirac particle in a Morse potential by
this method.

To survey the resonances in a wider range, it is necessary
to analyze the dependence of the resonant parameters on
the shape of the potential, which can help us to recognize

TABLE I. Energies in the present calculations for the states with κ = −1 in comparison with the data in Refs. [38,73]. Here the parameters
of Morse potential are adopted as V0 = 6 fm−2, r0 = 4 fm, and α = 0.3 fm−1. The mass of particle is adopted as M = 0.5 fm−1. For comparison
with Refs. [38,73], the depth of potential displayed and the calculated energies are multiplied by a factor 2M/h̄2.

Er + iEi (fm−2) Er + iEi (fm−2) Er + iEi (fm−2) Er + iEi (fm−2)
Relativistic Nonrelativistic limit Nasser [38] Rawitscher [73]

−8.1096 −8.1089 −8.1090 −8.1090
1.1745 −i 0.0002 1.1779 −i 0.0011 1.1778 −i2.01×10−13 1.1783
5.6229 −i 0.0349 5.6212 −i 0.0303 5.6252 −i 0.0351 5.6252 −i 0.0351
6.8906 −i 1.3170 6.9041 −i 1.3103 6.8911 −i 1.3194
7.3194 −i 3.5858 7.3375 −i 3.6189 7.3182 −i 3.5887
7.1143 −i 6.0693 7.0545 −i 6.0853 7.1111 −i 6.0715
6.3679 −i 8.5999 6.3820 −i 8.5374 6.3627 −i 8.6005
5.1514 −i 11.0980 5.1806 −i 11.1429 5.1446 −i 11.0960
3.5200 −i 13.5209 3.4649 −i 13.5147 3.5123 −i 13.5151
1.5173 −i 15.8439 1.5262 −i 15.8071 1.5095 −i 15.8334

−0.8212 −i 18.0518 −0.8167 −i 18.0490 −0.8278 −i 18.0358
−3.4656 −i 20.1350 −3.4773 −i 20.1177 −3.4697 −i 20.1128
−6.3907 −i 22.0869 −6.3930 −i 22.0537 −6.3907 −i 22.0579
−9.5750 −i 23.9031 −9.5671 −i 23.8658 −9.5691 −i 23.8667

−12.9998 −i 25.5801 −12.9859 −i 25.5370 −12.9861 −i 25.5363
−16.6491 −i 27.1155 −16.6258 −i 27.0640 −16.6255 −i 27.0642
−20.5088 −i 28.5077 −20.4731 −i 28.4487
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FIG. 2. (Color online) Energies and widths as a function of every potential parameter for the resonant states shown in Fig. 1. The data
corresponding to the variables V0, r0, and α are respectively displayed in (a), (b), and (c) with the other parameters fixed to r0 = 4 fm,
α = 0.3 fm−1 in (a), V0 = 6 fm−2, α = 0.3 fm−1 in (b), and V0 = 6 fm−2, r0 = 4 fm in (c). The mass of particle is adopted as M = 0.5 fm−1.

the resonances for more realistic systems. The variations
of energy and width with the parameters of the potential
are shown in Fig. 2, where the data associated with the
dissociation energy, the equilibrium intermolecular distance,
and the positive number controlling the decay length of

FIG. 3. (Color online) The Morse potential model for (a) various
strength of the potential V0 = 1,6,10 fm−2 along with r0 = 4 fm and
α = 0.3 fm−1; (b) various equilibrium intermolecular distance r0 =
3,4,5 fm along with V0 = 6 fm−2 and α = 0.3 fm −1; and (c) various
positive number α = 0.2,0.3,0.4 fm−1 along with V0 = 6 fm−2 and
r0 = 4.0 fm.

the potential are respectively shown in the panels (a), (b),
and (c) of Fig. 2. Starting from V0 = 1.5 fm−2, the energy
of the resonant states increases with the increasing of V0.
Further increasing V0, the energy level changes the direction
of evolution for the 1s1/2, followed by the 2s1/2, and so on.
Simultaneously, some new resonant levels are exposed. For
the width, its evolution with V0 is consistent with that for the
energy. Starting from V0 = 1.5 fm−2, the width reduces with
the increasing V0 for the several lower levels. For the several
upper levels, the width increases with the increasing of V0. As
n increases, the width is sequentially changed in the direction
of the evolution with V0. The phenomenon can be explained by
the potential energy curves plotted in Fig. 3. With the increase
of V0, the barrier becomes higher and the well becomes deeper

TABLE II. The same as Table I, but for the states with κ = 2 in
comparison with the data in Ref. [38]. Here the parameters of Morse
potential are adopted as V0 = 10, r0 = 1, and α = 2.0 in the atomic
units h̄ = m = 1.

Er + iEi Er + iEi Er + iEi

Relativistic Nonrelativistic limit Nasser [38]

−30.7047 −30.4136 −30.4139
10.8020 −i 0.2822 10.9262 −i 0.3026 10.9260 −i 0.3027
17.1419−i 12.3689 17.1244 −i 12.5031 17.1240 −i 12.5027
11.1795 −i 32.0868 11.0511 −i32.1914 11.0521 −i 32.1906
−4.8377 −i 52.5443 −5.0383 −i 52.5395 −5.0376 −i 52.5407

−29.3283 −i 72.2381 −29.5208 −i 72.0565
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FIG. 4. (Color online) Pseudospin doublets in the complex energy
surface for the Morse potential with the parameters V0 = 10, r0 = 1,
and α = 0.5 in the atomic units h̄ = m = 1.

as seen in Fig. 3(a) for the Morse potential. It is the reason that
the resonant parameters vary with V0 in accordance with the
foregoing. With the increase of n, the evolution of the resonant
energy with r0 changes from a decrease to an increase with the

increasing r0. At the level located in the middle, the energy of
the state (4s1/2) only has a slight change. The energy for the
levels lower than 4s1/2 decreases with the increasing r0, while
the energy increases with the increasing r0 for the energy level
populating in higher than 4s1/2, which is associated with the
variation of the potential. From the potential energy curves in
Fig. 3(b), one can see that both the barrier and the well become
wider with the increase of r0, which leads to a weakening
of penetration for a particle in the Morse potential. Thus, the
width becomes systematically smaller with the increasing r0.
Figure 2(c) shows the resonant parameters varying with α; a
similar change is seen for the energy with r0 in Fig. 2(b) and
for the width with V0 in Fig. 2(a). These can be explained from
the changes in the potential field. The potential energy curves
in Fig. 3(c) display that the potential well becomes deeper and
the range of the potential barrier becomes narrower with the
increase of α, which is the cause of the resonant parameters
with α.

To further examine the present CSM calculations, the
resonant states with κ = 2 is investigated with the data
exhibited in Table II. For comparisons with the data in
Ref. [38], the atomic units h̄ = m = 1 are adopted here.
Similar to Table I, the result in the nonrelativistic limit is
obtained according to the method in Ref. [20]. From Table II, it
can be seen our results are in excellent agreement with the data
in Ref. [38], which are obtained by the J -matrix method for
a nonrelativistic system. These show the present calculations
are fully correct, and we can explore the resonant states of a
relativistic particle by this method.

FIG. 5. (Color online) Pseudospin energy and width splittings as a function of every potential parameter for the resonant states shown in
Fig. 4(a). The data corresponding to the variables V0, r0, and α are respectively displayed in (a), (b), and (c) with the other parameters fixed to
r0 = 1, α = 0.5 in (a), V0 = 10, α = 0.5 in (b), and V0 = 10, r0 = 1 in (c) in the atomic units h̄ = m = 1.
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With the resonance states obtained by the CSM, the position
of pseudospin doublets in the complex energy surface is shown
in Fig. 4, where the pseudospin doublets κ = −1 and 2,
κ = −2 and 3, κ = −3 and 4, as well as κ = −4 and 5 are
respectively displayed in Figs. 4(a)–4(d). It is clear that PSS is
well preserved for all the doublets. For the pseudospin doublet
with the same orbital angular momentum, the quality of PSS
improves with the increase of the radial quantum number.

To disclose the relationship of the PSS in the resonant states
and the shape of the potential, we analyze the variation of
the pseudospin splittings with the parameters in the Morse
potential. Keeping r0 and α fixed, we vary V0 to see how the
energy and width of the pseudospin doublets are sensitive to
the dissociation energy. This dependence is shown in Fig. 5(a)
for the energy and width splitting. It is clear that the energy
splitting of the pseudospin doublets increases with the increase
of V0, while an inverse trend is found for the variation of
width. This can be easily understood as higher barrier and
deeper potential well are accompanied with the increase of
V0. Similarly, the energy and width splittings varying with
r0 are displayed in Fig. 5(b) with the other parameters fixed.
From the left (r0 = 0.5), as the radius r0 increases, the energy
and width splittings decrease, which can be understood by the
dependence of dV (r)/dr on r . The variation of the pseudospin
splittings with α is presented in Fig. 5(c). For all the pseudospin
doublets, the tendency for the change of the pseudospin energy
and width splittings with α is the same. With α increases,
the splitting increases. This could be expected because the
potential well becomes deeper and widened with the increase
of α, hence the increase of the derivative of V (r). In the range
of the potential parameters considered here, the deviations
between pseudospin doublets are within 1.17 a.u. for Er and
1.04 a.u. for �, which indicates the PSS is well preserved.

IV. SUMMARY

In summary, the resonant states of Morse potential are
investigated by using the complex scaling method in the rela-
tivistic framework. The calculated results are compared with
the available data in references and satisfactory agreements
are found. Further, the dependence of the resonant parameters
on the shape of the potential is checked and a unified result
is found for the evolution of the resonant parameters with the
potential parameters, which can be well explained from the
change of potential energy curves. With these resonant states
obtained, the PSS in the resonant states is investigated and well
PSS is found in the present model. The pseudospin splitting
is shown in correlation with the Morse potential shaped by
the dissociation energy V0, the equilibrium intermolecular
distance r0, and the positive number controlling the decay
length of the potential α, in which three Morse potential
parameters V0, α, and r0 are found to play the important roles
in the splittings of energy and width of pseudospin doublets.
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