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to voltage switching in Josephson junctions
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We propose to use a time-dependent imaginary potential to describe quantum mechanical tunneling through
time-varying potential barriers. We use Gamow solutions for stationary tunneling problems to justify our choice
of potential, and we apply our method to describe tunneling of a mesoscopic quantum variable: the phase change
across a Josephson junction. The Josephson junction phase variable behaves as the position coordinate of a
particle moving in a tilted washboard potential, and our general solution to the motion in such a potential with
a time-dependent tilt reproduces a number of features associated with voltage switching in Josephson junctions.
Apart from applications as artificial atoms in quantum information studies, the Josephson junction may serve as
an electric field sensitive detector, and our studies provide a detailed understanding of how the voltage switching
dynamics couples to the electric field amplitude.

DOI: 10.1103/PhysRevA.87.052119 PACS number(s): 03.65.Xp, 03.65.Ta, 85.30.Mn, 85.25.Cp

I. INTRODUCTION

Tunneling is a widely observed phenomenon in quantum
mechanics and, for tunneling through stationary barriers,
scattering theory and good approximations based on the JWKB
method are available [1]. For the general dynamical case
such simple approximations do not apply and only in certain
cases is it possible to evaluate the tunneling rate [2]. The
part of the wave function which is still trapped behind the
barrier is evolving within the trapping region, and it may
repeatedly encounter the tunnel barrier in a highly nontrivial
manner. While the Schrödinger equation is uniquely defined
in a time-dependent potential, the handling of the scattering
continuum components of the wave function is impeded by
the demand for precise calculations on a very large interval of
the coordinate variable. In this paper we propose an effective
ansatz to handle tunneling in a time-dependent potential. The
method addresses tunneling in a general manner, but as a
key example we will focus our attention on tunneling of a
mesoscopic variable, the phase of a current-biased Josephson
junction (CBJJ).

Circuit quantum electrodynamics components have re-
cently reached an experimental state of perfection that makes
quantum interaction and control properties of these manmade
devices compete with, or supersede the ones of natural,
microscopic quantum systems, while at the same time retaining
their fundamental interest as macroscopic quantum systems
[3,4]. The CBJJ is a device of particular interest since the
phase variable associated with the superconductor is trapped in
a washboard potential, and its quantum level structure permits
identification and control of pairs of states, which may be
used as qubits for the realization of quantum information
processing [5]. As shown in Fig. 1, its motional states are
subject to tunneling which corresponds to a voltage drop over
the device and which may be used to distinguish the qubit
states. In addition, by modulation of the potential tilt or by a
radiation field, a given initial state may be driven into states
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that undergo tunneling to running states. The switching can
occur due to thermal activation [6] and due to macroscopic
quantum tunneling. In this treatment the contribution from
thermal activation will be neglected. This implies that the
system can be described as an ordinary quantum particle and
general methods from quantum mechanics can be applied
to qualitatively and quantitatively study several features
associated with its dynamics. While our approach to tunneling
in a time-dependent potential is general, we will here discuss
its application to the CBJJ and present results analogous to
observations made in CBJJ experiments.

The CBJJ has also been suggested as a sensitive microwave
photodetector [7,8], and as a first step towards a low frequency
quantum detection theory for such a device, we will study its
response to driving by a weak microwave field.

A weak field-induced modulation, resonantly coupling
the initial state to eigenstates subject to stronger tunneling,
can be treated as a perturbation and for the CBJJ theory
yields good agreement with experimental results [9–12]. In
this paper we will describe the wave-function subject to a
strongly modified potential. This case is not amenable to
the perturbative description, and, instead, we shall formally
describe the tunneling process by wave-packet propagation
in a time-dependent imaginary potential (TDIP), such that
tunneling, observed as switching of the CBJJ into the voltage
state, is treated as a dynamical loss process. In this way
we both determine the time-dependent probability for the
tunneling to occur and we appropriately describe the evolution
of the wave function conditioned on no tunneling event being
detected.

The paper is organized as follows. In Sec. II, we define
the tunneling problem, we motivate our TDIP description,
and we provide an explicit time-dependent expression for
the imaginary potential applied in our numerical studies. In
Sec. III, we use our method to study different regimes of
tunneling dynamics with increasing bias currents applied to
the CBJJ. In Sec. IV we fix the bias current and we analyze
the performance of the Josephson junction as a field detector
by examination of the switching properties under application
of a driving field. Section V concludes the paper.
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FIG. 1. (Color online) The superconducting phase variable in
a current-biased Josephson junction behaves as a quantum particle
trapped in a tilted washboard potential. The dashed (green) line is a
sketch of the ground-state wave function in one of the trapping wells.
The probability that the phase particle tunnels out of the potential is
increased if the barrier is modulated, e.g., by variation of the tilt or
by a time-dependent microwave field.

II. TUNNELING OF THE JOSEPHSON JUNCTION PHASE

A. Tunneling loss and complex absorbing potentials

The Josephson junction phase φ (see Sec. II B) behaves
as the position of a particle described by the time-dependent
Schrödinger equation,

ih̄
∂

∂t
ψ(φ,t) = H (t)ψ(φ,t), (1)

where the Hamiltonian operator H (t) contains a potential
and an effective kinetic energy term. The tunneling dynamics
of the phase variable, which physically corresponds to the
switching between different voltages across the device, is
hence mathematically described as a conventional quantum
tunneling problem. The purpose of this manuscript is to
establish an effective, approximate theory for the tunneling
dynamics in a time-dependent potential, with special attention
to parameter regimes relevant for the CBJJ. Following the
early description by Gamow [1], one can describe tunneling
in static potentials by eigenfunctions of the time-independent
Hamilton operator. If these functions are chosen with outgoing,
radiating boundary conditions and used as a wave-function
basis, we effectively redefine the scalar product on the system
Hilbert space, and the original Hamiltonian is not Hermitian.
This in turn leads to the emergence of complex eigenvalues,
and the loss of norm associated with the imaginary part of
the energy eigenvalues represents the probability of tunneling
[13–15]. Effective non-Hermitian Hamiltonians also emerge
in quantum optics and quantum measurement theory, where
they govern the evolution of a quantum system conditioned on
the absence of absorption or loss events. In these theories, the
decreasing norm of the state vector provides the probability for
the evolution to occur without these events happening, while
one may simulate the complete dynamics including random
detection events by suitable application of “quantum jump”
operators [16–18].

At a given time the tunneling probability is governed
by the wave function obtained by propagation with our
non-Hermitian Hamiltonian, i.e., the state conditioned on the

detection of no previous switching events. The amount of
trapped population and its actual wave function therefore
yields the local loss rate due to tunneling and the whole time-
dependent dynamics should be well described by the Gamow
vectors and their complex eigenvalues. Another approach
to yield complex eigenvalues is by directly implementing a
non-Hermitian Hamiltonian with respect to the original Hilbert
space of square integrable wave functions, for example, by
the introduction of a complex absorbing potential (CAP).
A properly designed CAP may thus describe the same
essential physics as the Gamov vectors, i.e., the evolution of
the unnormalized states may yield identical or very similar
wave-function behavior in the spatial and temporal range of
interest [19].

There is a rich literature [20] on the identification of
suitable CAPs, but since we shall be dealing with the further
complexity of tunneling through a time-dependent potential,
we shall merely propose a simple, physically motivated ansatz
for our time-dependent imaginary potential (TDIP), Vim(φ,t),
and solve the time-dependent Schrödinger equation,

ih̄
∂

∂t
ψ(φ,t) = H (t)ψ(φ,t) − iVim(φ,t)ψ(φ,t). (2)

B. The dynamics of a CBJJ

In this section we outline the particular properties and the
effective quantum description of a CBJJ by a one-dimensional
Schrödinger equation for the phase variable φ. The Josephson
junction is composed of two superconductors, R(ight) and
L(eft), separated by a thin isolating layer. The macroscopic
wave functions of R and L, ψR,L differ by a phase factor ψL =
eiφψR , which constitutes the macroscopic quantum degree of
freedom of the system. This phase can be described [21] as a
quantum particle with mass M = C(�0/2π )2, where C is the
capacitance of the junction and �0 = h

2e
is the flux quantum.

The particle experiences a potential,

U0(φ) = −EJ (Iφ + cos φ), (3)

where EJ = Ic�0
2π

is the Josephson energy and I = Ib

Ic
, with Ib

being the bias current applied to the junction. When Ib exceeds
the critical current Ic, the potential tilt dominates the harmonic
variation with φ, and the phase becomes classically unbound.

We further include the interaction of the CBJJ with a time-
dependent microwave field via the potential term,

Umw = −EJ ηφ sin (ωmwt), (4)

where η is proportional to the field amplitude.
The CBJJ is thus described by the time-dependent

Schrö;dinger equation,

ih̄
∂

∂t
ψ(φ,t) = H (t) ψ(φ,t)

=
(

− h̄2

2M

∂2

∂φ2
+ U (φ,t)

)
ψ(φ,t), (5)

with U (φ,t) = U0 + Umw. This time-dependent potential is
sketched in Fig. 1, indicating also the tunneling process,
responsible for the switching of the Josephson junction.
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C. Outgoing states and absorbing potential

An imaginary absorbing potential, extending beyond the
outer turning point of a potential barrier would seem a natural
candidate to remove the tail of the wave function as tunneling
develops. Since we want the potential to remove the projection
of our wave function on the running states in that region, it is
useful to apply approximate solutions for their position (phase)
and time dependence in our ansatz for the TDIP. From [22] we
have an approximate expression for the running state of the
Josephson junction phase variable φ > φturn, initially at time
τ in the ground state, in the linear potential region beyond
the outer classical turning point of the potential barrier φturn,

ψout(φ,t,τ ) =
√


√
2φ′�0ωp(τ )

e
i

h̄ωpφ′3/2

6
√

2EJ

× e
−(i ω

ωp
+ 


2ωp
)[(t−τ )ωp−√

2φ′]
, (6)

with φ′ = φ − φ0, where φ0 is the initial equilibrium position
(bottom of the well) and h̄ω is the energy difference between
the bottom of the well and the energy of the lowest quasibound
state. We have further introduced the frequency parameter

ω0 =
√

2πIc

C�0
and the plasma frequency ωp = ω0(1 − I 2)1/4.

The wave function (6) is defined for tωp >
√

2φ, and we
assume I < 1. The rate parameter 
 in (6) which attains a
definite value in a static potential, will be briefly discussed
below.

Our aim is to remove the projection of our time-dependent
wave function |ψ(t)〉 on a suitable set of running states of
the form (6), Pout|ψ〉 = ∑

ψout
|ψout〉〈ψout|ψ〉. We model this

operation by a time-dependent complex potential, obtained as
an integral over different running states, emitted within the
past interval of time �t ,

Vim(φ,t) = β

∫ t

t−�t

|ψout(φ,t,t ′)|2 dt ′. (7)

The parameter β serves both as an adjustable strength
parameter and as a convenient normalization for the temporal
integration. We assume a constant value of 
 and �t , with
�t−1 � 
 � ωp, and we evaluate the integral (7) only for
values φ larger than the outer turning point, φturn, of the
potential. The dependence on 
 drops out, and we obtain

Vim(φ,t) =
{

β√
2φ �0ωp(t)

for φ > φturn(t)

0 for φ < φturn(t).
(8)

Here, we recall the time dependence of the plasma frequency
as the effective bias current is changing with time.

Unlike normal CAPs used in time-independent problems,
this potential is modeled to absorb the running state compo-
nents (6) pertaining to the time-dependent Hamiltonian, and
our ansatz imaginary potential indeed attains finite values only
beyond the time-dependent outer classical turning point of the
real potential. We emphasize that (8) is only an ansatz, but
it ensures that the depletion of the wave-function norm is
properly associated with the probability that the particle has
tunneled through the barrier.

While it is generally a challenge to design CAPs that do
not reflect part of the wave packets impinging on them, our
application only concerns the small wave-function amplitude

that has tunneled through the real potential barrier, and we have
verified that reflection is insignificant in our calculations. To
account for the running solution, the TDIP must furthermore
suppress the wave function before it hits and gets reflected by
the border of the grid used for the calculation, and a sufficiently
large grid is readily identified in the numerical calculations.

D. Friction and junction resistance

We have now presented our candidate TDIP, but before we
proceed to numerical examples let us include the effects of
friction (junction resistance). Methods have been developed to
incorporate friction and diffusion in the quantum mechanical
description of Brownian motion of a particle coupled to
its environment [23,24]. Assuming zero temperature and
Markovian noise correlation in the environment, we can
describe the effects of the junction resistance R by a nonlinear
imaginary potential term, −iζ (φ − 〈φ〉t )2, where ζ ∝ 1

RC and
〈φ〉t = ∫ ∞

−∞ φ |ψ(φ,t)|2 dφ is the mean value of φ at time t .
When added to the Hamiltonian this term penalizes large
variations of φ around its mean and decoheres the spatial wave
function, which in turn leads to friction for the phase variable φ.
It also leads to a loss of norm, albeit on a typically slower
scale than the tunneling dynamics. We shall include this term
in our calculations on the CBJJ, but we shall renormalize the
wave function with respect to the loss it incurs, so that we
unambiguously associate the wave-function loss of norm with
the tunneling dynamics.

To summarize, we treat the entire problem by solving the
nonlinear Schrödinger equation,

ih̄
∂

∂t
ψ(φ,t) =

(
− h̄2

2M

∂2

∂φ2
+ U (φ,t)

)
ψ(φ,t)

− iVim(φ,t) ψ(φ,t) − iζ (φ − 〈φ〉t )2ψ(φ,t),

(9)

and renormalize with respect to the loss of norm caused by the
last term.
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I

FIG. 2. (Color online) Blue (solid) bars show the switching
current distribution simulated with an absorbing potential. Red
(hollow) bars are calculated by Eq. (10). We have chosen C and R such
that ω0 = 0.0183 EJ /h̄ and ζ = 8.4 × 10−4EJ . The bias current is
increased linearly from I = 0.2 at a slow rate. dI/dt = 5EJ

6h̄ . Results
are shown for I > 0.95.
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E. Tunneling rates and switching current distributions

In a time-independent potential, the tunneling rate of the
Josephson junction phase variable has been determined by
Caldeira and Leggett [25,26],

γCL = ωp

2π

√
120π × 7.2�U

h̄ωp

e
− 7.2�U

h̄ωp

(
1+ 0.87

ωpRC

)
, (10)

where �U = 2EJ [
√

1 − I 2 − I arcos(I )] is the barrier height,
and where effects due to the friction are also taken explicitly
into account. This analytic expression available for CBJJs

qualify them as ideal candidates to test our general tunneling
description.

The gradually decreasing norm, ‖ψ(t)‖2 of our numerically
determined wave packet is interpreted as the probability that
the phase variable has not tunneled until time t . The probability
for a current switching event in the next infinitesimal time
interval dt , is thus simply given by the loss of norm in that
interval, and conditioned on no previous event, the switching
rate of the CBJJ reads

γt = −d‖ψ(t)‖2

dt
/‖ψ(t)‖2. (11)
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FIG. 3. (Color online) Switching current distributions for a CBJJ driven by a field. In all figures we have chosen C and R such that
ω0 = 0.0183 EJ /h̄ and ζ = 8.4 × 10−4EJ . The frequencies and hence the resonance currents are chosen as ωmw = 0.64ω0, I = 0.90 in (a1)
and (a2), ωmw = 0.51ω0, I = 0.95 in (b1) and (b2), ωmw = 0.36ω0, I = 0.98 in (c1) and (c2), and ωmw = 0.255ω0. I = 0.987 in (d1) and (d2).
In panels (c1) and (c2) and (d1) and (d2) the resonance current is above the current of the primary zero-field peak. In (a1)–(d1) the applied
microwave amplitude attains the values, η = 0, 0.002, 0.004, 0.006, 0.008, 0.010, 0.014, 0.018, 0.022, 0.030, 0.040, 0.055, 0.070, 0.090, 0.115,
0.140, which yield the curves shown in the front (dark blue) towards the back (dark red) in each panel. In (a2)–(d2) we see the color plots
showing the same result as the three-dimensional plots in (a1)–(d1). The calculations are carried out with a bias current that increases linearly
with time from I = 0.2 at a rate equal to dI/dt = 5EJ

6h̄ . [In (a1)–(d1) the results are only shown for I > 0.6, since P (I ) � 1 for the smaller
bias currents. In (a2) and (c2) we show the results for I > 0.7, while in (b2) and (d2) the results are shown for I > 0.8.]
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It is convenient in experiments to determine the switching
current distribution, i.e., the probability distribution P (I ) for
switching events to occur at different values of the bias current
I , while this is being ramped up slowly, I (t) = I0 + dI

dt
t .

Our wave-packet propagation yields the surviving (non-
switching) population ‖ψ(t)‖2 as a function of time, and
we directly obtain the corresponding switching current
distribution, obeying

P (I )�I = −d‖ψ(t)‖2

dt
�t

= −d‖ψ(t)‖2

dt

(
dI

dt

)−1

�I, (12)

evaluated at time t such that I = I (t) and �t being the
infinitesimal time interval in which I increases by �I .

Under the assumption of a slowly ramped bias current, the
rate γCL found by Caldeira and Leggett leads to a switching
current density, expressed as a product of the current tunneling
rate with the survival probability until the value I is reached
during the ramp,

PCL(I ) =
(

dI

dt

)−1

γCL(I ) e
− ∫ I

I0
( dI

dt
|I=I ′ )−1γCL(I ′)dI ′

. (13)

In Fig. 2 we see that our calculation matches the result of
the quasistatic switching current distribution (13) reasonably
well as a function of the bias current.

III. DRIVING WITH INCREASING BIAS CURRENT

To study a system with a more complicated time-dependent
tunneling dynamics we now include a microwave field with a
constant power (constant η) and a frequency ωmw, while we
increase I with a low constant rate. Many experimental results
are available for the CBJJ under such conditions, and this
special example of tunneling dynamics serves as the primary
application of our theoretical description.

The evolution of the system is calculated numerically using
Eq. (9) with the imaginary potential given in (8). The parame-
ters are chosen to represent a Josephson junction with a critical
current of ∼2 A. The results of the simulations are shown
in Figs. 3(a1)–3(d1) where the probability distribution is
plotted as a three-dimensional plot, while in Figs. 3(a2)–3(d2)
we plot the switching current probability distributions as
two-dimensional color plots to give both a qualitative and
a quantitative overview of the results. In the following
subsections we will separately discuss many of the features
observed in Fig. 3.

A. Resonance peaks

We notice in Figs. 3(a1) and 3(a2) and Figs. 3(b1) and
3(b2) that when the microwave field strength is increased, in
addition to the conventional switching current peak a second
peak appears. In the two-dimensional color plots this is seen as
the opening of a gap in the switching current curve. This second
peak is associated with the tunneling via the excited phase
eigenstate [27,28], and hence the peak starts appearing where

P
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I

FIG. 4. (Color online) Switching current distributions for a CBJJ
driven by a field. The parameters are chosen as in Fig. 3(a) and with
η = 0.008. These parameters give rise to a multipeak structure of the
switching current distribution.

the frequency ωmw = ω01(I ), with the resonance frequency,

ω01(I ) = ωp(I )

(
1 − 5h̄ωp(I )

36�U (I )

)
. (14)

In Figs. 3(d1) and 3(d2) at a much higher field strength we
observe a second peak at the same bias current as in Figs. 3(b1)
and 3(b2). But, since, in this panel, the microwave frequency
is half the resonance frequency, the excitation of the phase
variable is a second-order process [29].

When the power is further increased the peaks move
linearly to lower bias current, which is also well understood
[30]. This behavior is clearly observed in Figs. 3(a2)–3(d2).
The strong microwave field then effectively suppresses the
potential barrier as the power is increased.

B. Multipeak structure

In Fig. 3(a), after the revival of the second peak, a multipeak
structure appears. This is shown in Fig. 4. Since we only drive
the junction with a single frequency field, these extra peaks
cannot be understood as conventional resonances. They are,
however, a well-known effect associated with the multipeaked
Fourier transform of a frequency chirped electric field ampli-
tude [31]; see also [32]. The analysis in [31] leads to peaks
with higher density for the largest detunings and, although the
correspondence between the two physical problems is only
approximate, it is consistent with our observation that the
multipeak structure is not discernible in Fig. 3(b). We should
emphasize that in typical experiments, dI

dt
is smaller than in

our calculations leading to more narrow peaks than seen here.

C. Dynamical bifurcation

In Figs. 3(c1)–3(c2) we see yet another interesting feature
of a driven CBJJ. The resonance condition lies here at a bias
current above the zero-field peak current, which implies that
we see no resonance peak. However, for very strong fields
we observe a very broad splitting into a multipeak structure.
Such results are usually explained by a dynamical bifurcation
[27,33]. Further analysis of this phenomenon is beyond the
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FIG. 5. (Color online) Switching distributions for different frequencies with a fixed bias current at I = 0.96. We have chosen C and R

such that ω0 = 0.0183 EJ /h̄ and ζ = 8.4 × 10−4EJ . This gives a zero-field energy splitting between the ground and first exited states at
ω01 = 0.48ω0. To the left, we have increasing frequency from the front (dark blue) to the back (dark red) at ωmw = (0.07, 0.23, 0.38, 0.54, 0.69,
0.84, 1.00, 1.15, 1.31)ω01. To the right, we show a color plot of the same switching distributions where the signal from later cycles decreases
and eventually disappears. The power of the field is chosen with η = 0.020.

scope of the present work, but it is reassuring that our simple
model also gives rise to this complex behavior.

IV. DRIVING WITH CONSTANT BIAS CURRENT

We now maintain the bias current at a constant, I = 0.96,
close to the switching value, and we apply a microwave
field to the junction. As we have already seen, the tunneling
rate is increased if the resonance condition is met. In Fig. 5
we observe what happens at different frequencies. First, the
switching probability follows the field strength, but as we
approach resonance, a peak emerges, and when the frequency
is increased even further the peak is reduced. In the color
plot we see a hyperbolic behavior of the signal following
each oscillation cycle, and for increasing frequency they,
naturally, move closer together and increase in strength and
as a consequence the later ones disappear. After the resonance
we see that the signal slowly smears out.

A switching rate that follows the field strength in real time
allows implementation of a field amplitude detector capable of
resolving single oscillations of the field. In Fig. 6 we increase
the field strength while maintaining a very low frequency
and see that when the field is strong enough single positive
oscillations of the field amplitude are clearly detected. In the
color plot we also clearly see the growth and reduction of
equally spaced areas of probability.

We intend to study the performance and sensitivity of this
detection mode of the CBJJ further with particular emphasis
on the prospects for quantum information processing in circuit
quantum electrodynamics.

V. CONCLUSION AND OUTLOOK

We have introduced a novel, effective method using time-
dependent imaginary potentials to describe the switching
behavior of a current biased Josephson junction. The method
is readily implemented with standard wave-packet solvers
and with realistic parameters, it reproduces a wide range of
results that have previously been investigated experimentally
and theoretically by other techniques [27–33]. We emphasize
that our treatment builds on an ansatz for a time-dependent
imaginary potential (TDIP), and a number of possibilities
may be explored for quantitative improvement of the potential
chosen.

An advantage of the TDIP method is its ability to deal
with explicitly time-dependent driving fields. With the explicit
treatment of the wave function of the phase variable condi-
tioned upon the tunneling dynamics, we may readily extend
the studies towards other systems where nontrivial tunneling
dynamics in time-dependent potentials is present. We may
also expect that the methods developed here can be used to
model the dynamics of coupled CBJJs and of correlated and
entangled CBJJ dynamics with the quantized radiation fields.

P
(t

)

0.06

0.03

0.00

0.028
0.020

0.0120
30

60
90
×103

η tEJ/�

P(t)

η

0.032

0.022

0.012

( )
2

2

2

0.08

0.04

0
0 30 60 90

tEJ/�

FIG. 6. (Color online) Switching distributions for different amplitudes with a fixed bias current at I = 0.96. We have chosen C and R such
that ω0 = 0.0183 EJ /h̄, ω01 = 0.48ω0, and ζ = 8.4 × 10−4EJ . We drive the junction at a very low frequency ωmw = 0.036ω0. To the left the
power of the field is increasing from the front (dark blue) to the back (dark red) at η = 0.012, 0.016, 0.020, 0.024, 0.028, and 0.032. The arrows
(magenta) indicate when the accumulated probability for a switch equals unity. In the strong field case this happens after only one-half cycle.
To the right we show a color plot of the same switching distributions as a function of the driving field amplitude.
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Potentially our approach may thus form the basis for a novel
quantum theory of measurement, where the noise and back
action is adapted to the special field amplitude sensitivity of
the device.
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